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Abstract

In this paper the control of flerible joint manipulators is
studied in detail. A composite conirol algorithm is pro-
posed for the flezible joint robots, which consists of two
main parts. Fast control, uy, which guaraniees that the
fast dynamics remains asymptotically stable, and the corre-
sponding integral manifold remains invarient. Slow control
s, ilself consists of a robust PID designed based on the
rigid model, and a corrective term designed based on the re-
duced flezible model. The stability of the overall closed loop
systern is proved to be UUB stable, by Lyapunov stability
analysis. Finally, the effectiveness of the proposed control
law 43 verified through simulations. It is shown that the
proposed control law ensure the robust stability and perfor-
mance, despite the modeling uncertainties.

I. Introduction

After the inception of harmonic drive, multiple-axis flex-
ible robot manipulators are widely used in industrial and
space applications. In early eighties researchers showed
that the use of control algorithms developed based on rigid
robot dynamics on real non-rigid robots is very limited and
may even cause instability [15]. To avoid this problem,
many researchers have proposed control algerithms based
on slow and fast dynamics of the system. Among them,
in adaptive methods many algorithms are developed for
FJR’s, in most of which a term due to the fast subsystem
is added to the adaptive algorithm based on rigid models
(3, 4]. In robust methods by considering model uncertain-
ties the stability of the fast subsystem is first analyzed and
by the use of robust control synthesis, a robust controller
is designed for the slow subsystem [1, 7]. Hence, most
of the research on FJR's are concentrated on nonlinear
control schemes. In this paper we propose a new method
based on the simple form of PID, and analyze the robust
stability of the uncertain closed-loop system in the pres-
ence of structured and unstructured uncertainties. In this
analysis we introduce an integral manifold plus a compos-
ite control law in order to restrain the integral manifold
invariant and to satisfy asymptotic stability requirement.
The control effort consists of three elements, the first ele-
ment is designed for the fast subsystem, the second term
is a robust PID control designed for the rigid subsystem
and the third term is a corrective term designed based on
the first order approximation of the reduced flexible sys-
tem. Based on the Lyapunov stability theory the complete
closed-loop system is proven to be UUB stable. In order to
verify the effectiveness of the proposed design method, and
to compare its results to that presented in the literature,
simulation of single and two link flexible joint manipulators
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Fig. 1. Two-link Flexible Joint Manipulator.

are examined. It is shown in this study that the proposed
control law ensure the robust stability and performance,
despite the modeling uncertainties.

II. Flexible Joint Robot Modeling

Spong [13], has derived a nonlinear dynamical model for
FJR using singular perturbation, in which the slow states
are the position and velocities of the joints and the fast
states are the forces and their derivatives. In order to
model an N-axis robot manipulator with n revolute joints
assume that: § : ¢ =1,2,..., n denote the position of i’th
link and ¢; : { = n+1,n+ 2,...,2n denote the position
of the i'th actuator scaled by the actuator gear ratio. If
the joint is rigid §i = gn+¢Vi. For flexible joint, if the
flexibility is modeled with a linear torsional spring with
constant k;, the elastic force z; is derived from:

2 (1)
The spring constants k;’s are relatively large and rigid-
ity is modeled by the limit k; — co. Let u; denotes the
generalized force applied by the i'th actuator and use the

notation:

ki(Gs ~ Gnti)

g = (@, Gy Gntr, o fon)’ = (@7 1a3)T  (2)

The equation of motion of the system can be written in
the following form using Euler-Lagrange formulation,

M{g)g + N(g, @) = Klgz —aq1)
Ji2 = K —g2) — Dge+Tr +

(3)
in which,
N(g,¢1) = V(@) + Glgn ) + Fagn + Fa (G} + Ta (4)

and K is the joint stiffness matrix, AM(q:} is the mass
matrix, Vin{gi1g1) is the matrix of Coriolis and centrifugal
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terms, G(q1) is the vector of gravity terms, Fy is the vis-
cous friction matrix, Fy(¢1) is the Coulomb friction vector,
Ty is the vector of the joint bounded unmodeled dynam-
ics, J is the actuator moments of inertia matrix, D is the
actuator viscous friction matrix, and T is the actuator
bounded unmodeled dynamics. For all revolute manipula-
tors, it is shown in [2, 10], that

mil < M{gr) < mad |Vl @}l < Gellgnll

(8

NG € ¢ 3 HFudy + Feld)|] = Cro+ Caillaall (8)
_71ISJSJQI H dlISDSdQI (7)
Moreover, if the perturbations are bounded:

(Telf £ ¢ 5 IITF|l < {p2 (8
in which Cr2,Ge,d2, 1, J2, J1,511, 650, g, Ger T2, 1 aTE
positive real constants. If the joints are all rigid:

Me(@)§+ Nelg, @) = wo ©)

in which ¢ = ¢; and M, is a positive definite matrix. This
model is the model of FJR where # — oo verifying that
the FJR model is a singularly perturbed model of rigid
system. Assume that all spring constants are equal the
elastic forces of the springs can be calculated by:

z=ka—q), K=Fk (10)

in order to use a small quantity for singular perturbation
define ¢ = § by which for rigid system (k — co) in this
form we have ¢ —+ 0. Multiplying M~ to the both side of
3 and taking z = k(¢ —q2) , ¢ = ¢, and using ¢z = ¢1 —ei:

{ §=ai{g,4) + A ()= (11)
€% = aa{q,§; €) + Aa2{q)z + Bou
in which,

A=-MYg) 5 a=-M@Ngd  (12)

ay = —eJ ' Di+ I DG T e - MTHg)N(g,4) (13)
A =~(M )+ "), Ba=—J" (14)
Equation 11 represents FJR as a nonlinear and coupled

system. This representation includes both rigid and flexi-
ble subsystems in form of a singular perturbation model.

III. Reduced Flexible Model

The singular perturbation mode] of the FIR is given in
Equation 11, This model represents the flexibility in the
joints, however, the reduced order model is the model of
rigid system, which can be easily derived from Equation 11
by setting ¢ = 0. With some matrix manipulation it can
be shown that:

(M+DNG+N-Te+Dg=ug
Rewrite this equation in this form:

My(@)f + Ni(g:4) = wo (18)

in which
M,(g)=M(q)+J
N-‘-(%QJ = N(Q:Q) - TF +Dq =
Vi (g, §)d + Glg) + (Fy + D)g + Fo(§) + T — T (17)

(16)

This representation introduces a 2n dimension manifold,
Mo, which is called the rigid manifold. If € # 0 the pro-
duced manifold M, which is a function of € represents the
flexible system. To define flexible manifold M, assume:

geR™ ueR", zeR" (18)
¢qeR"  ueR", zeR™ (19)

z = H(q, q"! u! e)
%= H{g,4,u,¢)

M. is an integral manifold for the flexible system if for
each initial condition

{z(t) =A

) =¢
i(t) = o 2nd {

§t)y=¢
in M. all trajectories of ¢(t} and z{t} for ¢ > #, remain in
the manifold M.. In other words V¢ > t,:

a(t) = H(g(), d(t), u(t), )
3(t) = H(a(t), d(t), ult),€)

Now, the reduced flexible model can be derived by replac-
ing z, # with H, H in Equation 11.

(20)
(21)

(22)

The order of this equation is equal to the rigid system,
however, this model includes the effects of flexibility in
form of an invariant integral manifold embedded in itself.
Hence, this reduced order model is not an approximation
of the FJR model, but it represents its projection on the
integral manifold.

G = ailg,q) + A1(g)H(q, ¢, %, ¢)

IV. Composite Control

In order to have a valid reduced flexible model for the
system, it is essential that the M, be an invariant manifold,
or the fast dynamics be asymptotically stable. This can
be satisfied using a composite control scheme [6). In this
framework the control effort u consists of two main parts,
u, the control effort for slow subsystem, and uy the control
effort for fast subsystem, as:

U= Us (Q1 4, E) + uf(’?l rt') (23)

in which u4(n,7) is designed such that the fast dynamics
becomes asymptotically stable. 7 denotes the deviations
of fast state variables from the integral manifold.

(24)
(25)

U=Z”H(Qafj:ua:€)

=% Hlgq,use€)
The slow component of the control effort, u,(g, 4, ¢), is also
designed based on the reduced flexible model. We describe
the design technique for uy and u, in the next subsections,
respectively.

A. Fast Subsystem Dynamics and Control
Recall Equation 24; hence,

¢l = [a2(q, ¢, €8) — a2(q, ¢, eH)] + Aslg)n + Baws  (26)

Substitute the value of a2 and use fast time scale T = 75;

with some manipulations we reach to [5):

€fi = Aa(q)n + Baus (27)
and in state space form:
[il=lato 5101+ La]= @
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The flexible modes are not stable since the eigenvalues are
on the imaginary axis. Hence, u; must be designed such
that the eigenvalues are shifted to the open left half plane
in order to guarantee stability.

Theorem 1: The diagonal and positive definite matrices
K,; and K,y exist such that the closed loop system includ-
ing the subsystem 27 with the control effort uy = Kpyn+
K, 7 becomes globally asymptotically stable. (Proof in

[17])
B. Control of Reduced Flexible Model

The reduced flexible model represents the effect of flexi-
bility in the form of the flexible integral manifold. In this
section a robust control algorithm is proposed for the sys-
tem based on this model. In order to accurately derive a
robust control law ws(g, 4, €) for the system, manipulation
of partial differential equation is necessary. To avoid com-
plex manipulations, we propose deriving the robust control
law us(q, ¢, €) to any order of ¢ from the series expansion
of the integral manifold to the same order of ¢.

H(Q;q":u-ﬂ:e)=H0(Qrdrus)+6H1{qad1“5)+"' (29)
and implement the controller u.(¢, 4, ¢) in the same form
as: :

Us (q: (j: E) = uU(Qa q} + e (91‘]) doeee (30)

in which the functions H;(g,q,us),ui(g,¢), ¢ = 0,1,---
are calculated iteratively without need to solve the partial
differential equations. It i3 important to note that as ¢ —
0, u, tends to rigid control, and H tends to rigid integral
manifold. «p is designed using a robust design technique
based on the rigid reduced order model (¢ = 0), and Hy is
calculated from: )

Hy = —45" (@20 + Boug) (31)

in which:
a2 = a2(g,4,0) = J ' Dg— J ' Tr(g,§) — M {q)N(q,q)

32)
Let:

az(g, §,eH) = ax + cAas + O[c%)

in which azo is given in Equation 32, and compare to Equa-
tion 13 we reach to:

{

Aay=-J'DH
Aago = —J_IDHO

Hence,

ey = aso+ AasHo+ Bauy +e(Aazo+ Az Hy +BQH1)+O(62)

(33)
and, .
Ho = Aago+ Az Hi + Baw {34)
Therefore,
H = A;l(ﬁo — Aaag ~ Baui) {35)
To calculate uy refer to reduced flexible model 22 and

approximate it to the first power of ¢

§=ai(g,q) + A1 () Ho + €4 () A7 ' (o — Aazo — Bawr)

By factoring the equal powers of € we reach to:

w = By (Ho — Aazo) (36)
The only condition on robust control design is that uo must
be at least twice differentiable. Finally, the control law for
slow subsystem has the form: K

Uy = ug + w1 (37)
In which u, is called the corrective term which is derived
through this subsection and ug is the robust control based
on the rigid model elaborated in the next section.

C. Robust PID Control for Rigid model

In this section we first propose a robust PID controller
based on the rigid model of the system and then prove its
robust stability with respect to the model uncertainties,
Recall the rigid model of the system from Equation 15,
choose a PID controller for uo:

i
un:Kvé+er+K1/ e(s)ds= Kz {38)
0
in which
e=4q4 — ¢
K:[K} Kp Kv]

{

Similar to (2, 11] and [12], assume:

z= [f; eT(s)ds &7 eT|T

m.J < My(g) € ed (39)

and put some limits on:

1N < Bo + BILI + Bl lLI® 5 [IViell < B3 + BallL|| (40)

in which ||| is the Euclidean norm and L = [T &7

Impiement the control law wug in 15 to get:

&= Ar+ BAA (41)
where
@ Iy # )
A= @ ) Iy B=| 0
-M 'K, -M7'Kp —-M 'Ky M
AA = N, + My (42)

To analyze the system robust stability consider the follow-
ing Lyapunov function:

¢
Vig)=z" Pz = %[(hf e(8)ds + are + 8] M,.
a

t
(a2 / e(s)ds + are 4 6] + w” Piw (43)
a
in which
w = f;e(s)ds po= L [azKP +o K oKy +KI]
2 ! 2 CI’QKV"‘K[ a;KV+KP

Hence,
-
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asKp + oKy +ajM,
apKy + Ki +ajasM;
ao Mg

axKy + Kr +ayasM,
a Ky + Kp +alM;
o My

oo M,
oy My
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Since M, is a positive definite matrix, P is positive definite,
if and only if, P1 is positive definite.
Lemma 1: Assume the following inequalities hold:

a >0 a2>0 atoa<l
s1=calkp —kv)— {1 —ai1)k;r — a2(l + a1 —az)my >0
sz =kp + (o0 —a)bv —k; —a1(l + a2 — 1) >0
Then P is positive definite and satisfies the following in-
equality (Rayleigh-Ritz)[9]:
APIz]|* < V () < MP)|lel® (44)
in which,

AP) = rm'n{] = a; —az

1+ar +as__
2

§1 82
1y, ?)E‘}

T 83 84

A(P) = max{ o ?}

and

83 = az(kp + k) + (1 4+ an)kr + (1 + o1 + ap)az®,
34 = a1Te (1 + o1 + az) + (@1 + a2)kv + kp + kr

Proof is based on Gershgorin theorem and is similar to
that in [11]. with some manipulations we can show [5]:

v = min{azkr, c1kp — ankyv — ky, kyv'}

Now considering Equations 40, 42 and ||L}] < ||z]| then,

& = ’12_1/\1,60 + Clz_lx\lA:;mt
&1 = y—MfPs— AT —ar M
& = MBitar' M

in which

A= Ama::(l{l)
AE = Ama:r:(R2)
Az = suplldal|

{

and Apfin, Aaiae are the least and largest eigenvalues, re-
spectively, and

O:%I 4 31 CtzI O.’zI
= [amg[ il aﬂ:]
021 Q]I I
] a3l el
R; = % o d PLITTY ) ((Y% + Oez)fil
aoe!  (of +as)i a1l

According to the result obtained so far, we can proof the
stability of the error system based on the following theo-
rem.

Theprem 2: The error system 41 is stable of the form of
UUB, if & is chosen large encugh.

The conditions are:

&L > 24/&be
2 2 A(P)
E + 682 — 46ty > 26&L(1+ m?))
81+ VE 480k > 2|al :\\E—ﬁ%

These conditions can be simply met by making & large
enough by choosing large enough control gains Kp, K,
and K;. (Proof in [17])

COutput & Desired Trajectary

x 10° o4 D'accnlro] Bcllcr\“ 2 18 2
2 T T
1 - 4
° V\,
o 0.2 0.4 0.6 08 1 12 1.4 18 1.8 2

Fig. 2. Poor tracking performance of the closed loop system for
perturbed model; Spong algorithm

V. Stability Analysis of the Complete Closed-loop
System

The stability of the fast, and slow subsystems are sepa-

rately analyzed in previous sections. However, the stability

of the complete closed-loop system may not be guaranteed

through these separate analysis [8]. In this section the

stability of the complete system is analyzed. Recall the

dynamic equations of the FJR Equation 11. The integral

manifold and the control effort are chosen as:

n=z-H
H=H0+EH1
w= s +up = wy + €Uy + Us

Combine these equations to Equation 11, 35, 31 and 38,

and consider, ¢ = [fote(s)Tds el éT]T iy =
(7" 7" then,
&=Az+BAA+C[I By (45)
e = Ay (46)
in which,
r ] I ] ] |: @
A= ] @ I ; B= @
| -M7'Kr M7 Kp —M7'Ky Mt
AA =N + Mg
ro = ] ef
C= *?41} ; A=[AZ+B2KW' —eJ D+ B Ky

Theorem 3: There exist diagonal and positive definite ma-
trices Ky and K,y such that the closed loop system 46
becomes globally asymptotically stable. {(Proof in {17])
Theorem 4: The closed-loop system of Equations 45 and
46 is UUB stable if K,5, K,;, and & are chosen large
enough. (Proof in [17])

The detail conditions on the PID controller -parameter
bounds to preseve the closed-loop stability, are given in
[17]. However, the stability conditions met if the controller
gains are selected high enough.

V1. Simulations

In order to verify the effectiveness of the algorithm a simu-
lation study has been forwarded next. In the foliowing sim-
ulation study, the results of the closed loop performance
of a single, [14], and a two link flexible joint manipulator,
[1], examined in the literature is compared to that of the
proposed control algorithm.
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Fig. 3. Suitable tracking performance of the closed loop system for
perturbed model; Proposed algorithm

A. Single Link Flexible Joint Manipulator
Consider the single link flexible joint manipulator intro-
duced in [14]. The dynamic equation of motion of this sys-
tem is as following:

= L K
B = —4 sin(zy) — —(z1 — ®3) (47)
I I
T3 = T4
Ta = E(:T, —z3) + lu
4 = Flm-m)t S

in which £; = ¢; and 2 = ¢. By choosing ¢1 = g and
z = K (g1 —g2) as the elastic force, the model of the system
can be rewritten in a singular perturbation form:

. Mgl 1

tT 1’\5 Lsm(Q) ) le‘ 1 1

, _ —MgL 11,1

e = 7 sin{g} (I+ J)z Su (48)

in which e = &.

Spong has proposed a composite control law for this sys-
tem, in which there exists two control components corre-
sponding to the fast and slow dynamics. As it is illustrated
in [14], the closed loop system became unstable, provided
that only the corresponding rigid control effort ug is ap-
plied on the system. Moreover, the system becomes stable
and the desired trajectory gz = sin{8t) is well tracked, im-
plementing the proposed compaosite control on the nominal
model of the system. However, this algorithm is not ro-
bust to the model parameter variations. As illustrated in
Figure 2 the tracking performance is getting quite poor
for the maximum perturbation values for the parameters
I,J,M, and L. For the sake of comparison, the proposed
robust PID controller may be now applied on the same
system. The proposed control law is composed of three
terms, in which the rigid control law is a PID controller
whose coefficients satisfies the robust stability conditions
elaborated in Theorem (4) as following:

1
to = 200& + 500e + 100/ e(s)ds.
0
The integral manifold would be:
H, = —4.9sin(q) — %’u,

and the corrective term corresponds to

w1 = H,.

5 10 15

Fig. 4. Tracking performance of the closed loop system and per-
turbed model; Proposed algorithm N ’

The fast control law is a simple PD controller satisfying
the robust stability conditions such as:

us =5 -+ 5

in which # indicates the variation of 2 from the integral
manifold H.
It is observed that by implementing the proposed control
taw, not only the system is well tracking the desired tra-
_ jectory for the nominal parameters of the model {5], but
also the robust stability and tracking performance of the
system with maximum variation in its model parameters
are preserved (Figure 3).

B. Multiple Link Flexible Joint Manipulator
Counsider the two link Flexible Joint manipulator illus-
trated in Figure 1. In this manipulator Joint flexibility
is modeled with a linear torsional spring with stiffness k.
The equation of motion of this system and its parameters
is given in [1]. Our proposed algorithm is applied to the
system for comparison of the results. Hence, the reduced
order first order model is evaluated as following:

(.5 cos(eHT) & HY +eH]

[ 0.5 cos{cH{) 1.25 } [ b ] + [ HS +¢Hj
[ 14.7cos(81) + 0.56% sin(eH?) } _ [ ]

4.9 cos(f;) — 0.567 sin(cH?)
In order to evaluate the fast dynamics caused by the joint

2.25

0
0

Hexibility, the normalized time variable T = % is used.
Hence, - .

HY =0 —wi ; H =82—u3 (49}

Hi=-H -l ; Hi = —Hj -} (50)

With expanding Equation 49 to the first order of ¢ we have:

HY = —058% H? : H = —0.507 H? {51)
And from Equation 50 we get:
w = —0.565 HY — HY ; wh=—0.56] H{ — H (52)

Finally, the stow part of the control law will be calculated
from:
w1 = uS +eut 5 way = ud + eus (53)

The »f,u? are the rigid part of the control law and as
elaborated before is robustly designed as a PID controller.
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Fig. 5. Tracking performance of the closed leop system for nominal
model; Al-Ashoor et al algorithm

In here we design the PID gains as following which satisfies
the robust conditions:

Il

¢
500e + 50é + 50 / e(s)ds (54)
0

Il

¢
200e + 50 + 50/ e(s)ds
0

The fast control law 1s also designed as a PD controller as:

uiy =th+m ; uzg =792+ {(55)

Finally the control law is composed from the east and slow
parts:

) = wps urp 3 up = us + oy (56)

To have simulation results compared to [1], the reference
signal is considered as:

f; = 1.57 + 7.8539¢ " — 9.428¢ 1% =12 (57)

=

in which the joint angles reach to a final value of §; = 3
from zero initial state. Figure 4 tllustrates the response of
the perturbed system to our proposed cornposite control
law. The system becoines stable, and the tracking per-
formance is quite desirable, despite the 50% variation in
model parameters. The control is limited to a maximum
allowable bounds by adding a saturation block in the'sim-
ulation. Al-Ashoor et al have used a robust—adaptive con-
trol law in addition to the composite law we introduced
in this paper. Figure 5 illustrates the results obtained
for the reference signal introduced in Equation 57 in [1].
This figure illustrates the tracking performance despite the
bounded control effort illustrated in Figure 6. Comparing
it to our result (Figure 4), similar performances are ob-
tained, The only limitation exists in our proposed law
compared to that in [1], is the amplitude of the control
law in the initial time of the simulation. The adaptive law
have smaller control effort in the beginning of the simu-
lation, due to the adaptive nature of the algorithm, and
using the information of the identified model of the system
in the control law. This issue is under current investiga-
tion, and promising results are obtained by a H., —based
composite controller, in which the control effort can be
limited to desirable bounds, [16].

VII. Conclusions

In this paper the control of flexible joint manipulators is
examined in detail. In order to achieve the required per-
formance a composite control algorithm is proposed, con-
sisting of corresponding control law for fast and slow sub-
systems. A simple PD control is proposed for the fast

m e,

e ——— e
sy

eg——

Fig. 6. Control effort for the closed loop system and nominal model;
Al-Ashoor et al algorithm

subsystem, and it is proven that the fast subsystem be-
comes asymptotically stable. The slow subsystem itself is
controlled through a robust PID controller designed based
on the rigid model, and a correction term designed based
on the reduced flexible model. The stability of the com-
plete closed—loop system is analyzed and it is shown that
the proposed controller is capable of robustly stabilizing
the uncertain flexible joint manipulator. Finally, the ef-
fectiveness of the proposed control law is verified throngh
simulations. are compared to that given in the literature,
and the effectiveness of preserving the robust stability, and

performance of the system is verified and compared rela-
tive to them.
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