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Abstract - In this paper a controller design method for 

flexible joint robots (FJR), considering actuator saturation is 

proposed and its robust stability is thoroughly analyzed. This 

method consists of a composite control structure, with a PD 

controller on the fast dynamics and a PID controller on slow 

dynamics. Moreover, the need of powerful actuator is removed 

by decreasing the bandwidth of the fast controller during critical 

occasions, with the use of a supervisory loop. Fuzzy logic is used 

in the supervisory law, in order to adjust the proper gain in the 

forward path. It is then shown that UUB stability of the overall 

system is guaranteed in presence of uncertainties, provided that 

the PD and the PID gains are tuned to satisfy certain conditions. 

Index Terms - Flexible joint robot, Actuator saturation, 

Supervisory control, Stability analysis, Fuzzy logic.. 

I. INTRODUCTION

 The desire for higher performance from the structure and 

mechanical specifications of robot manipulators has spurred 

designers to come up with flexible joint robots (FJR). This 

necessity has emerged new control strategies required, since 

the traditional controllers implemented on FJRs have failed in 

performance [1], [2]. Since 1980’s many attempts have been 

made to remedy this shortcoming and now, several methods 

has been proposed including various linear, nonlinear, robust, 

adaptive and intelligent controllers [ 3 ], [ 4 ].However, the 

practical limitations such as actuator saturation is rarely 

considered in the controller synthesis, as an important 

practical drawback to achieve good performance [5]. On the 

other hand actuator saturation has been considered by the 

control community from early achievements of control 

engineering. A common classical remedy for systems with 

bounded control is to reduce the bandwidth of the control 

system such that saturation seldom occurs. This is a trivial 

weak solution, since even for small reference commands and 

disturbances the possible performance of the system is 

significantly degraded. This idea of reduction in bandwidth by 

reduction in the closed loop gain, is easily implementable, 

therefore, this motivates some researchers to propose an 

“adaptive” reduction in bandwidth [ 6 ]. The “adaptation” 

process is done under supervision of a supervisory loop, and 

as proposed in [6] can be accomplished through complex 

computations. In order to come up with an online implement-

able controller for FJRs, a fuzzy logic supervisory control has 

been proposed by authors in [7]. In this topology, the fuzzy 

logic is set to be “out of the main loop”, at a supervisory level, 

at the aim of preserving the essential properties of the main 

controller. This idea is first published by the authors in [8] and 

is modified to use with composite controller for FJRs in [7]. It 

is observed in various simulations that by including this 

supervisory loop to the controller structure, the steady state 

performance of the system is preserved, and moreover, the 

stability of the overall system is preserved. The stability 

analysis of the overall system, however, is essential for the 

closed loop structure for susceptible applications of the FJRs 

such as space robots, where the stability is a main concern. 

This issue is analyzed thoroughly in this paper.  

In this paper a PD controller is used to stabilize the fast 

dynamics and a PID controller is proposed to robustly 

stabilize the slow dynamics for the FJR. Moreover, a 

supervisory control loop is added to the structure in order to 

decrease the bandwidth of the fast controller during critical 

occasions. The robust stability of the overall system in 

presence of the modeling uncertainties is then analyzed in 

detail, and it is shown that UUB stability of the overall system 

is guaranteed, only if the PD gains of the fast controller and 

the PID gains are tuned to satisfy certain conditions.  

II. FJR MODELING

 In order to model an FJR, the state vector includes the 

link positions, and the actuator positions in a vector as 

follows: 
TTTT
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Where i : i = 1,2,…,n represents the position of the i’th link 

and the position of the i’th actuator is represented by i+n :

i=1,2,…,n . Using this notation and considering some 

simplifying assumptions [9], the governing equation of motion 

of the system is as follows: 
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Where M is the matrix of the link inertias and J is that of the 

motors, u  is the vector of input torques and N is the vector 

of all gravitational, centrifugal and Coriolis torques as 

follows: 
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In which matrix ),( 11 qqmV  consists of the Coriolis and 

centrifugal terms, G(q) is the gravity terms, Fd is the diagonal 



viscous friction matrix, Fs includes the static friction terms, 

and finally, Td is the vector of disturbance and unmodeled but 

bounded dynamics. Including this last term in the model, 

enables us to encapsulate the modeling uncertainties into the 

picture. As it is demonstrated in [10], the following quantities 

are all bounded:  

1( )m q m≤ ≤I M I  (4) 
2

1 1 0 1 1 2 1( , )N q q q qβ β β≤ + +  (5) 

1 1 3 4 1( , )q q qβ β≤ +mV  (6) 

Where mm,  and 
iβ ’s are real positive constants and these 

uncertainty bounds will be used in robust stability analysis. It 

is assumed that all flexible elements are modeled by linear 

springs and without loss of generality [7], all springs assumed 

to have the same spring constant k. the matrix K is defined as 

K = kI .The inertia matrices are non-singular so the model can 

be changed to the following singular perturbation standard 

form: 

−−+−=
−−=

−−−−

−−

uqqNqzqz

qqNqzqq

1111

11

),()())((

),()()(

JMJM

MM

ε
 (7) 

in which 
1 1 2, ( )q q z q q= = −K  and ε= 1/k. Now if we 

choose ε = 0 then the slow behavior of z  could be derived 

as: 
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By substitution of this into equation (7) after some matrix 

manipulations we reach to: 
1 1 1( ) [ ( )] ( , ) [ ( )]S f Sq q z q N q q q u− − −= − − + + +M J M J M  (9) 

in which 
fz  represents the fast behavior of z  which is 

defined as 
f Sz z z= − . Its dynamics could be found to be 

1 1 1( ( ) )f f fz q z uε − − −= − + −M J J  (10) 

having 
Su  and 

fu  we can solve the last three equations to 

find , andS S fq z z .Tikhonov theorem [11], provides some 

stability conditions, under which, the overall behavior of the 

system can be determined from these variables as follows: 
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In which, O(ε) determines the terms whose order is as the 

order of ε The stability conditions can be satisfied by proper 

selection of 
fu . Taking into account the dynamics of 

fz

(equation (7)), a proper second order dynamics can be 

imposed to it by the use of a simple PD controller: 

[ ]f f fu z z= +Pf DfK K  (11) 

Different control strategies can be used for the slow 

subsystem. Using a robust PID controller for the 
Su  provides 

the following benefits: No need for rate measurements, no 

need for offline computations, and guaranteed robust stability 

under the conditions detailed in [12]. These characteristics 

makes this structure attractive for practical implementation, 

hence, we propose using such structure. 
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in which the error vector is defined as: 

de q q= −  (13) 

The overall control system is shown in Fig. (1) by which the 

desirable performance can be achieved at the expense of high 

control effort, and may result in actuator saturation. This draw 

back is remedied by a supervisory loop added to the control 

structure which will be detailed in the proceeding section. 

Fig. 1 The FJR control system 

III. THE SUPERVISORY LOOP

Let us first describe the idea of error governor as it is first 

proposed by the authors in [6]. Then the modifications needed 

to use this idea with the FJR model are elaborated. Without 

loss of generality one can assume that each element ui(t) of the 

control vector has a saturation limit of 1. In other words the 

saturation function can be defined as follows: 
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The proposed method is twofold, first the compensator is 

designed without considering any saturation limit, then a time 

varying scalar gain 0<λ(t) 1 is added which modifies error 

and is adjusted via a supervisory loop in order to cope with 

saturation as depicted in Fig. 2. 

K(S) Saturation G(S)
e(t) u(t) u (t) y(t)r(t) s

plantcompensator

λ(t)I

error governor

adjustment

logic

λ(t)

Fig. 2. The closed loop system with error governor 

Intuitively one can state the logic of adjustment as follows: 

• If the system is to experience saturation make λ smaller,  

• Otherwise increase λ up to one. 

This logic decreases the bandwidth when the system is to 

experience saturation and in normal conditions the effect of 

error governor is diminished by making λ=1. This 

configuration reduces the amplitude of the control effort as is 

done by saturation itself but there are some important 

differences. First, this is a dynamic compensator and not a 

hard nonlinearity as is the case with saturation. Second, this 

approach limits the control effort by affecting the controller 

states while saturation will limit the control effort independent 



of the controller states. In other words, it acts in a closed loop 

fashion rather than an open loop structure of a saturation 

block. Hence, the dynamic behavior of it can be used to 

preserve stability. 

It is difficult to implement this logic with a rigorous 

mathematical model. However, fuzzy logic can be easily 

employed in here as first proposed by authors in [8]. Details 

are as follows. In order to sense the value of closeness to 

saturation, the absolute value of the amplitude of the control 

effort |u(t)| can be used as a good measure. To give a kind of 

prediction to the logic )t(u  is also taken into account. The 

above logic thus can be interpreted with fuzzy notation as 

follows: 

• If |u(t)| is NEAR to one and )t(u  is POSITIVE make λ
LESS than one, 

• When |u(t)| is OVER one, make λ SMALL if )t(u  is 

negative and VERY SMALL if )t(u  is not negative, 

• Otherwise make it ONE (see table 1). 

Table 1 Fuzzy Rules 

Over NearSmall 
u

|u|

SOneOne Neg

VSOneOneZero

VSLOnePos

To implement this logic, corresponding fuzzy sets are defined. 

Since the logic is based on a model free routine, the proposed 

method can be implemented not only on FJRs but also on a 

variety of systems experiencing limitations in the actuators, 

and the effectiveness of this structure is verified in different 

applications [7], [8]. 

Figure 3: The complete control system for the FJR with fuzzy supervisor  

In order to use this strategy for the FJR, some adjustments to 

the general structure has been made, which is briefed as 

follows. First, the supervisor is only applied for the fast 

subsystem, which mainly causes the instability when limited 

by saturation. Second, the saturation limit is not 1 in the FJR 

configuration, so the control effort u(t) must be attenuated by 

this factor before feeding to the supervisor. The modified 

supervisory loop for the FJR is shown in Fig. 3. A filter is 

used to estimate )t(u  from u(t) so that the only measurement 

required is u(t). As mentioned in the previous section the 

composite controller composed of a fast PD controller and a 

slow PID controller has been shown to be robustly stable [12]. 

But the robust stability of the system after adding a fuzzy 

supervisor and the effect of the term λ(t) on it is studied in this 

paper, and in the following section. 

IV. ROBUST STABILITY ANALYSIS

 Recall the system equations 
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Where ( ) ( )t q q=M J + M  and the control terms in presence of 

supervisor have the form of: 
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the error dynamics could be evaluated as: 
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and the fast dynamics is 
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We can rewrite this dynamics as 
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These equations can be rearranged into state space format as 
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In the next subsection we study the effect of λ(t) on the 

stability of the fast subsystem. 

A. Stability of the fast subsystem 

To study the stability of the fast subsystem we consider the 

following Lyapunov function candidate: 

( ) T
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in which S is defined as 
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Lemma 1: The matrix S is positive definite.



The proof is based on Shur complement [13] and is the same 

as what can be found in [14] for the case λ(t) = 1. So the 

function Vf is positive. 

Theorem 1: The fast subsystem of (25) with the matrix Af

introduced in (28) is stable provided that condition (33) is met.  

In other words, there are some bounds on the parameters KPF,

KDF, λ(t) used in control term (18) which if it is satisfied, the 

dynamics (16) in a closed loop configuration becomes stable.  

Proof: To prove stability using Lyapunov direct method 

consider the time derivative of Vf along trajectory (25) 
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considering the first term, note that 
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Since matrices K1 and K2 are positive definite, in order to 

make matrix W positive definite the following matrix should 

be positive definite. 
1 1− −− >1 2 1K K K 0  (33) 

After some matrix manipulations this can be transformed to 

the following condition on PD gain matrices 
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Where  and λ λ  represent the smallest and largest 

eigenvalues, respectively. Note that, if we let λ(t) = 1 this can 

be met by increasing KDF and decreasing KPF. In other words 

a lower bound on KDF and simultaneously an upper bound on 

KPF should be satisfied (as is the case when there is not a 

supervisory loop). For example if we assume the gain matrices 

to be diagonal 

,Df Pfk k= =Df PfK I K I  (35) 

then the following conditions must be met in absence of 

supervisor. 

kkkk PfDf ≤≥ ,  (36) 

Where  and k k are some positive constants. In presence of 

supervisory logic, as λ(t) is always less than 1, the upper 

bound can be left unchanged. However, the lower bound can 

be adjusted assuming a lower bound on λ(t)

 λ(t) > Λmin (37) 
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Now consider the second term in equation (31) 
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which is symmetric and lower triangular, and hence, clearly 

negative definite, so one can write 
2
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now if the condition (34) is satisfied the matrix W will be 

positive definite so from the above equation 
fV  is negative. 

Thus Vf is a Lyapunov function and the stability is guaranteed.

By this means, we can deduce that the supervisory loop will 

not essentially affect the stability results previously presented 

at [ 15 ]. It only imposes an adjustment on the stability 

conditions as in Equation (38). With this fact in mind, in the 

next subsection we will study the stability of the overall 

system. 

B. Preliminary lemmas for stability analysis  

To prove the robust stability of the closed loop system in 

presence of modeling uncertainty, the Lyapunov direct 

method is used. Let V be the Lyapunov function candidate as 

follows 

yyxxyxV TT
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in which S is defined as before (equation (30)) and P is 

chosen to be 
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in which αi s are real positive constants. The above function in 

Equation (41) has a quadratic form and it is positive definite 

due to positive definiteness of P and S. Positive definiteness of 

S has been shown in lemma 1 and the following lemma 

guarantees that P is also positive definite in the presence of 

modeling uncertainty.  

Lemma 2: The matrix P is positive definite if

 α1 > 0 ,  α2 > 0 ,  α1 + α2 < 1 (43) 
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in which 
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Proof is given in [16]. 

Now for the stability analysis Differentiate V along trajectories 

(24) and (25), which yields to 
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the following lemmas will be used to prove that V is a 

Lyapunov function. 

Lemma 3: For the matrices P, A, B and ∆A defined 

previously, the following inequality holds
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In this inequality ε0, ε1 and ε2 are real positive constants that 

depend only on α1, α2 and the uncertainty bounds introduced 

in equations (4) to (6) as follows: 
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Proof: Consider the first two terms of the left hand side of 

(48) 

2

2 1

[ ]

[ ]

T T T

T T

x x x

x x x

α
α

+ + ∆ =

− + + ∆

PA A P PB A

M 0 0 I

Q R 0 M 0 I A

0 0 M I

 (56) 

in which matrices R2 and Q has been defined in Equations 

(54) and (55). Thus  
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where parameters γ, λ1 and λ2 has been introduced in (52). 

Now consider the last term in (48) 
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taking into account the fact that for robot manipulators the 

following equation holds for any vector v  [17] 
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equation (58) can be changed to 
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adding Equations (57) and (61) and considering the 

uncertainty bounds (4) and (5) ends the proof. 

Lemma 4: For the matrix C defined previously the following 

inequality holds
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proof is straightforward. 

Lemma 5: Suppose that the Lyapunov function of a dynamic 

system has the following properties
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then the system is UUB stable with respect to B(0,d), provided 

that
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where ||X0|| denotes the initial condition.

Proof can be found in [10] under proof of lemma 3.5 in it. 

C. Stability of the complete system 

In this subsection we present the main result. To be compact 

we simply refer to the equations by their numbers in the body 

of the theorem. 

Theorem 2: Consider the flexible joint manipulator of 

equations (15) and (16) with the composite controller 

structure of equations (17) and (18), under supervisory loop. 

The overall closed loop system with governing equations of 

motion (24) and (25) is UUB stable and the state variables 

converge to the origin under conditions of theorem 1 and 

lemma 2 and some new certain limits imposed on the fast 

(PD) and slow (PID) controller gains which will be deduced 

at the end of the following proof.

Proof: The Lyapunov function candidate V introduced in (41) 

has been shown to be positive definite. This imposes 

conditions of lemma 2, equations (43) to (45), to be satisfied. 

Now in order to study the negativity of ),( yxV , consider 

(47),(48), (62) and (40) which yield 
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here we see that the matrix W must be positive definite thus 

condition (33) or (34) must be satisfied, as well. Now if we 

define 
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x
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we have 
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thus 
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Now apply the Riley Ritz inequality which reads 
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adding these two equations yields 
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Now from (69) and (72) and by lemma 5 we can state that 

given that  
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the system is UUB stable with respect to B(0,d), provided the 

following stability conditions are satisfied 
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where ||z0|| denotes the initial condition. 

This proof reveals an important aspect of the supervisory loop 

dynamics included in the proposed controller law. Because of 

the dynamical gain adaptation of the controller, this adaptation 

preserves the robust stability of the system, without perturbing 

the stability conditions. Another aspect that can be concluded 

from this analysis is the robustness property of the stability, in 

presence of modeling uncertainty. Since the unmodeled but 

bounded dynamics of the system is systematically 

encapsulated in the system model (as stated in Equations (3) 

to (5)), the only influence this will impose on the stability is 

the respective controller gains bound depicted in the above 

mentioned conditions. 

V. CONCLUSIONS

In this paper the problem of controller synthesis for flexible 

joint robots in presence of actuator saturation is analyzed in 

detail. The singularly perturbed model of the system is first 

introduced briefly, and a composite controller structure is 

proposed for the system. In order to remedy the limitations 

caused by actuator bounds, a supervisory loop is proposed, 

and it is shown that a model free fuzzy supervisory loop makes 

it possible to preserve stability, without great loss in 

performance. The supervisor will affect the signals in prior to

the controller, and therefore, affecting the controller states. 

This is on contrary to the static saturation block which will be 

placed after the controller. It is shown through a Lyapunov 

based stability analysis, that due to the structure of the 

supervisory loop, and regardless of the logic it uses, since the 

controller adaptation gain is bounded and the overall variation 

of the system energy is dissipative, the stability condition of 

the composite controller remains unchanged. The detail 

stability analysis of the overall closed loop system is 

performed using Lyapunov direct method and the robust 

stability conditions are derived, respectively. These all 

considerations have enabled us to offer an implementable 

controller with guaranteed robust stability which is an 

essential requirement for susceptible applications such as 

space robotics. 
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