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 Abstract - In this paper, a novel hybrid fuzzy proportional-
integral-derivative (PID) controller based on learning automata 
for optimal tracking of robot systems including motor dynamics 
is presented. Learning automata is used at the supervisory level 
for adjustment of the parameters of hybrid Fuzzy-PID controller 
during the system operation. The proposed method has better 
convergence rate in comparison with standard back-propagation 
algorithms, less computational requirements than adaptive 
network based fuzzy inference systems (ANFIS) or neural based 
controllers and having the ability of working in uncertain 
environments without any previous knowledge of environments’ 
parameters. The proposed controller has been successfully 
applied in simulation to control a 6-DOF Puma 560 manipulator 
using robotic toolbox, and has satisfactory results. In this 
simulation also, external disturbance and noise are addressed. 
The result of simulation has also shown that the rate of 
convergence and robustness of the designed controller 
guarantees practical stability.  
 
 Index Terms - Learning automata, hybrid controller, robot 
control, Fuzzy-PID controller. 
 

I.  INTRODUCTION 

 The tracking control of robot manipulators, has received a 
lot of attention in the past decades [1], [2]. Tracking control is 
needed to make the joints track a desired trajectory leading to 
the end-effector tracking the desired path [5], [13]. Robotic 
manipulators are nonlinear multi-input multi-output systems 
subjected to uncertainties associated with their dynamics. 

Different models of the robots, including actuator dynamics 
and the interaction between motors and joints have recently 
been considered in robotic control design [17], [18]. However, 
robot manipulators have to face various uncertainties in 
practical applications, such as pay load parameter, internal 
friction and external disturbance [25]. All the uncertain or 
time varying factors could affect the system control 
performance seriously.  

Moreover, external disturbances are inevitable under 
practical operation conditions [3], [4]. For these reasons an 
efficient tracking controller for robot manipulators should be 
sufficient robust with respect to the modeling uncertainties, as 
well as external additive disturbances [12], [27]. 

To deal with the unknown nonlinearities and external 
disturbances, various control strategies have been proposed in 
the forms of the automatic tuning of PID controller, variable 

structure controller, feedback linearization, adaptive 
controller, intelligent controller, etc. [1]-[5]. 

Intelligent control approaches such as neural networks, 
fuzzy inference systems and neuro-fuzzy systems do not 
require mathematical models to be known exactly and have 
the ability to approximate nonlinear systems. With these 
features of intelligent control theory, many researchers have 
been attempting to use intelligent control approaches to 
represent complex plants and construct advanced controllers 
such as the model reference or direct adaptive controllers. [1], 
[11], [15] 

Although nonlinear control methods have greatly evolved 
and been implemented on robotic manipulators, the 
proportional-integral-derivative (PID) control method is still 
widely accepted and used in industrial robots [8], [9]. The 
success of the PID control is attributed to its simple control 
structure, ease of design and tuning schemes and to its good 
performance in practice in presence of modeling uncertainties, 
and external disturbances [23], [26].  

Neural network based methods, need a learning phase to 
determine the algorithm’s parameters with trial and error. Also 
these methods are suitable for repetitive operations to have 
their convergence guaranteed. [13] 

Beygi and Meybodi [6], have shown that learning automata 
based algorithms, have a faster convergence rate than standard 
backpropagation learning algorithms and can escape from 
local minima in optimization problems when standard BP fails 
to find the global minima. 

There have been many attempts in the past to develop 
control techniques and algorithms to tune the PID gains. 
Kazemian studied a supervisory fuzzy controller to adjust a 
PID controller and showed fine accuracy in trajectory tracking 
of a two link revolute-joint robot-arm [16]. 

In this paper, we present a novel learning automata based  
hybrid fuzzy-PID controller which is very simple to 
implement and has a great accuracy and fine performance 
making it suitable for practical applications. Due to the 
nonlinear properties of robot dynamics, environment 
uncertainties and external disturbances, a learning automata 
based method has been chosen which can be effectively used 
to overcome the problem of operating in an unknown 
environment with enough fast convergence rate. The 
dynamics of robot arm and actuator with external noise are 
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employed as a tool to study the behavior of the novel self-
organizing controller. 

The proposed intelligent controller doesn’t need major prior 
learning, to find optimal parameters of the hybrid controller as 
in neural based controllers. 

Also we have shown in simulation that the proposed 
controller has better performance than an optimally trained 
neural network based, ANFIS [14] and a conventional PID 
controller in trajectory tracking of a 6-DOF Puma 560 robot 
manipulator using robotic toolbox [20] as simulation tool and 
the Integral of the Absolute magnitude of the Error (IAE) as a 
measurement parameter. 
 The paper is structured as follows. In section II, the 
nonlinear dynamics of robot manipulators including the 
actuator dynamics are introduced. Section III presents the 
proposed controller and its stability analysis. The learning 
automaton is introduced in section IV. The simulation results 
for the 6-DOF Puma 560 robot are given in section V. Finally, 
in Section VI, the conclusions are presented.  

II. ROBOT MANIPULATOR DYNAMICS AND CONTROL 

A. A dynamic model of robotic manipulator plus joints, 
driven by dc motor, including actuators is described by (1). 
The motion equations of a robotic manipulator with revolute 
joints can be expressed as [16]: 

dτG(q)q)qC(q,q(q)M ′+=++′ &&&&  (1) 

In which, nRq,qq, ∈&&&  are vectors of joint positions, 
velocities, and accelerations; nnR(q)M ×∈′ is the mass matrix,  

nR)qC(q, ∈& is the vector of the centripetal and Coriolis forces; 
nRG(q)∈  is the vector of gravitational force; nR∈τ is the 

vector of torques generated at the joint side of gear box; and 
nRd ∈′ denotes the external disturbance. Note that the mass 

matrix M ′  is symmetric positive-definite. 
Several fundamental properties of the robot model are given 

in the literature [12]: 

• The matrix 1
2

M (q) C(q,q)′ − &  is skew-symmetric. 

• There exists a non-negative constant 1Ck  such that for all 
nRzyx ∈,,  ,we have 

1CC(x, y) z k y  z⋅ ≤  (2) 

• There exists a non-negative constant gk  such that for all 
nRzyx ∈,,  ,we have  

 )()( yxkyGxG g −≤−  (3) 

Where 
q
Gkg ∂
∂

>> for all nRq∈ . 

The relation between the joint position q  and the motor-
shaft position is given by 

Nqqm =  (4) 

Where nnRN ×∈ is a diagonal matrix of the gear ratios for 
the n joints and 0>N  (which means that the matrix N is 
positive-definite). By armature-controlled dc motors, the 
electrical model of the j th motor is characterized by 

nju
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mj
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,...,2,1, ==++  (5) 

Where jR is the resistance of the armature circuit, jL  is the 

inductance of the armature circuit, 
jbK  is the back 

electromotive force (EMF) constant of the motor, ji  is the 

armature current,
jmq is the motor shaft position, and ju is the 

armature input voltage. 
Because of the model’s complexity and nonlinearity, 

directly designing control laws is not easy. This situation is 
further compounded by the drift incurred in on-line 
measurements of acceleration, the frequent changes in load 
and model parameter, and the corruption of external 
disturbances. 

Given a task of a continuously differentiable and uniformly 
bounded trajectory in the joint space dq for which we wish 
the robot manipulator to follow. Therefore, we define the joint 
position error as 

dqqe −=  (6) 
Tarn, Bejcay, Yun and Li [25], developed a feedback 

linearization plus decoupling technique based on differential 
geometric control theory to provide a nonlinear feedback 
control law for the regulation of robotic arms. However, this 
design is possible only while the dynamics of the robotic are 
well known. The system represents the robotic tracking error 
dynamics, which in terms of the terminology given by 
Garofalo and Leitmann [10], it is a nominally linear uncertain 
system. 
In practical robotic systems, however, uncertainties due to 
parameter perturbations, unmodeled dynamics, and external 
noises are inevitable. These uncertainties deteriorate the 
tracking performance or even lead to system instability in the 
worst case. Hence, the effect of uncertainties on tracking error 
must be eliminated. 

III. CONTROLLER DESIGN 

 Nowadays, most industrial robotic manipulators are 
controlled by PID controllers. The wide use of robot 
manipulators in everyday applications is testament to the 
performance that can be achieved in a large variety of 
applications. PID controllers can minimize the steady-state 
error of robot manipulator but they are sensitive to parameter 
variation and uncertainties. 

Fuzzy controllers do not require an accurate mathematical 
model of the robot manipulator to be effective and they have 
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fast rise time and low overshoot. 
Hybrid Fuzzy-PID controller has the advantages of both 

PID and fuzzy controller. Fig. 1, shows the block diagram of 
the proposed controller. Also a learning automata algorithm 
has been added to the hybrid Fuzzy-PID controller to readjust 
the parameters of the controller dynamically. The learning 
automata algorithm observes the error signal with a predefined 
sampling rate, and updates its internal parameters besides the 
values of controller’s parameters. 

The control law of the PID controller is given by  

∫++=
t

ivp dδδqKqKqKτ
0

)(&   (7) 

Where the design matrices nn
ivp RεK,K,K ×         , which 

are respectively called “position, velocity and integral gains”, 
are symmetric positive definite matrices optimally selected by 
learning automata. From the stability analysis, we can draw a 
tuning procedure which is fairly simple for PID control. This 
method yields symmetric matrices vp K,K   and iK  that 

guarantees achievement of the position control objective, 
locally. The procedure stems can be summarized in terms of 
the eigenvalues of the gain matrices as follows [18]. 

0}{}{ >≥ iMiniMax KK λλ  (8) 

gpMinpMax kKK >≥ }{}{ λλ  (9) 
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2

−
>

≥

 (10) 

This tuning procedure requires knowledge of the structure 
of the inertia matrix M(q) and of the vector of gravitational 
torques G(q) of the robot 

))(( ,,
j

i
qjig q

qGMaxnk
∂

∂
=  (11) 

 

 
Figure 1.  Block diagram of the proposed hybrid controller. 

According to equations (8) to (10) the range of symmetric 
matrices     vp K,K and iK  are achieved. 

The fuzzy controller uses the error and its derivative as input 
and its single output is the control signal U. It has seven 

membership function of triangular shape for each input and 
one rule-base with 49 rules shown in Table I.  

TABLE I 
FUZZY CONTROL RULES 

 
E E&  

NL NM NS ZR PS PM PL 
NL NL NL NL NL NM NS ZR 
NM NL NL NL NM NS ZR PS 
NS NL NL NM NS ZR PS PM 
ZR NL NM NS ZR PS PM PL 
PS NM NS ZR PS PM PL PL 
PM NS ZR PS PM PL PL PL 
PL ZR PS PM PL PL PL PL 
 
The initial membership function of two inputs and one output 
of fuzzy controller is shown in Fig. 2. 

 
Figure 2.  Membership function of error, derivative of error and control 

output 

 In the next section, the learning automaton is described 
which is used as an optimization method with fast 
convergence rate to obtain the best gains for the hybrid fuzzy-
PID controller and optimize the range of fuzzified inputs and 
output. 

IV. LEARNING AUTOMATA 

a) Learning Automata Types 
Classical and modern control techniques require a fair 

knowledge of the system, in the form of a mathematical model 
or statistical values such as mean and variances of the 
uncertainties. However, not all those assumptions on the 
system or uncertainties can be derived in practice. Therefore, 
it is necessary to obtain further knowledge of the system by 
observing it during operation. One approach is to view this as 
a problem in learning. The idea behind designing a learning 
system is to guarantee robust behavior without the complete 
knowledge, if any, of the system and/or environment. A 
crucial advantage of reinforcement learning compared to other 
learning approaches is that it requires no information about 
the environment except for the reinforcement signal.  

The stochastic automaton attempts a solution of the 
problem without any a priori information on the optimal 
action. At each instant n, one action is selected according to 
the action probability distribution, the response from the 
environment is observed, action probabilities are updated 
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based on that response and the procedure is repeated. A 
stochastic automaton acting as described to improve its 
performance is called a learning automaton [19]. 

The learning automata can be classified into two main 
groups: FALA and CALA [24]. As Fig. 3 shows, the action-
set of FALA is finite, the action probability distribution is 
represented by an r-dimensional probability vector and is 
updated by the learning algorithm. CALA has a continuous 
action set with a probability distribution function which is 
updated based on the reinforcement signal as shown in Fig. 4 
[6], [22]. 

A learning automaton may send its action to multiple 
environments at the same time. In that case, the action of the 
automaton results in a vector of responses from environments 
(or “teachers”). Then, the automaton has to find an optimal 
action that satisfies all the teachers [7]. Learning Automata 
can be classified into two main families: fixed structure 
learning automata and variable structure learning automata. In 
the following, the variable structure learning automata which 
will be used in this paper is described. 

A VSLA is a quintuple < α, β, p, T(α, β, p) >, where α, β, 
and p are an action set with r actions, an environment 
response set, and the probability set p containing r 
probabilities, each being the probability of performing every 
action in the current internal automaton state, respectively. 
The function of T is the reinforcement algorithm, which 
modifies the action probability vector p with respect to the 
performed action and received response. If the response of the 
environment takes binary values, learning automata model is 
P-model and if it takes finite output set with more than two 
elements that take values 

in the interval [0,1], such a model is referred to as Q-model, 
and when the output of the environment is a continuous 
variable in the interval [0,1], it is refer to as S-model. 

b) Algorithm Description 
In this paper we have used an S-model VSLA. Also weight 

factors are associated with specific teachers. 
The algorithm of the discrete action set learning automata is 

as follows: 
• The range of parameters is divided into N equal limits. 

Number of divisions does not have severely effect on 
design performance, yet it must be selected large 
enough. 

• The probability vector is initialized to have equal 
probability for each action. 

⎪⎩

⎪
⎨
⎧ =

=
otherwise

,N,,n
N(n)pi

0

211
)0( L           (12) 

Where )()( np k
i is the probability of selecting nth limit for ith 

parameter at kth iteration. 
• The cost function is defined as a weighted sum of 

∞
e , sse and ∫

T

dtte
0

)( . The time, T, is the simulation 

time and is selected large enough (here T=10sec).  

 
Figure 3.  The discrete action set learning automata block diagram. 

 

Figure 4.  The continuous action set learning automata block diagram. 

• At kth iteration, the )(kJ (the cost function at iteration 
kth) is used to calculate the reinforcement signal β, 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−
=

min

)(
,0max,1min)(

JmeanJ

kJmeanJkβ  (13) 

Where )(kβ is the reinforcement signal at kth iteration, and 

minJ  , meanJ  are minimum and average of previous costs 
respectively. Defining reinforcement signal as (13) gives the 
average of costs with non-increasing behavior that guarantees 
convergence. The probability vector of each parameter is 
updated in each iteration as: 

⎟
⎠
⎞

⎜
⎝
⎛ +=+ )()()()()()()1( k

iQknk
ipk

ink
ip βα  (14) 

Where, )(k
iQ  is an exponential function centered in selected 

limit and defined as (15).  
2~

2
)in(n

qr
(k)
iQ

−−
=  (15) 

in which, 
in~ is a selected limit and 

qr is a positive constant. 

)(k
iα  in (14) is a normalization factor calculated by (16).  
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• The procedure is finished after a sufficient number of 
iterations or when the maximum of one of probability 
vectors is reached desirably to one. 

After sufficient iterations, the probability of optimal limit 
for each parameter is maximized and the value of each 
parameter converges to the optimum value. 

Here the supervisory level, using learning automata 
algorithm, adjusts the gains of PID controller and the width of 
membership functions of fuzzy controller. 
 

V. Simulation and Results 

In this section, we simulate our proposed method on the 
robust tracking design of a Puma560 robot manipulator as 
shown in Fig. 5 using robotic toolbox. [20] 

Assume that the trajectory planning problem for a 
weightlifting operation is considered and the Puma560 robot 
manipulator suffers from time-varying parametric 
uncertainties and exogenous disturbances.  

With the aim of testing in experiments the performance of 
the proposed controller, a rectangular reference trajectories in 
joint space has been selected. 

 TABLE II 
DISTURBANCE AMPLITUDE 

Joint Number Disturbance 
Joint 1 0.15Sin2t 

Joint 2 0.1 Sin2t 

Joint 3 0.1 Sin2t 

Joint 4 0.05 Sin2t 

Joint 5 0.06 Sin2t 

Joint 6 0.04 Sin2t 

Also, the exogenous disturbances 1d through 6d are 
assumed which their values are mentioned in Table II. [21] 
Obviously, the parameter uncertainties and exogenous 
disturbances are extremely large. Therefore, the proposed 
learning automata based tracking control algorithm is 
employed to treat this robust tracking control design. 

Fig. 6 shows that the trajectory tracking error is very small 
and robot arm is following our desired trajectory with an 
acceptable and fairly small difference. After initial time, the 
internal variables of learning automata algorithms such as the 
probability vector and array of costs are sufficiently updated 
and the algorithm has adapted itself to the dynamics of system 
and environment’s parameters so the performance gets better 
and the accuracy of path tracking increases. 

Control signals are also shown in Fig. 7 which denotes that 
after the convergence of the parameters of learning automata 
algorithm, the system has a more stable control effort with 
appropriate magnitude. 

In this intelligent controller, the accuracy of algorithm 
increases as the controller interacts with the system and 
environment. So the parameters of the algorithm can be 
adjusted to minimize the error of trajectory tracking without 
having any affect on the controller’s performance.  

 

 
Figure 5.  Puma 560 robot manipulator 

 

Figure 6.  Simulation results of the proposed method. 

Table III shows the results of IAE comparison between our 
novel learning automata based hybrid fuzzy-PID controller, an 
optimally trained neural network based PID controller a 
conventional one and an ANFIS controller. The results show 
that after the trained ANFIS controller, the learning automaton 
has better performance in matter of IAE value and adaptation 
with unknown environments.  

TABLE III 
THE IAE OF TRAJECTORY TRACKING SIMULATION 

 Joint Number 
Controller 1 2 3 4 5 6 

Automata based 
Hybrid Fuzzy-PID 0.24 7.37 2.06 0.0019 0.13 0.00001 

ANFIS 0.09 5.14 0.83 0.0002 0.07 0.00003 
Neural Based 0.34 8.23 2.72 0.009 0.16 0.0001 

Conventional PID 0.56 9.87 3.35 0.018 0.28 0.0004 

VI. Conclusions 
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In this paper it is proposed to use learning automata to tune 
the parameters of a hybrid fuzzy-PID controller dynamically. 
The fast convergence of learning automata algorithm enables 
the proposed controller to adaptively adjust the parameters 
and keep the tracking error at a low level in spite of 
uncertainties and external disturbances. The simulation results 
on a 6-DOF Puma 560 robot using the proposed algorithm 
show that the suitable controller parameters can be obtained in 
order to minimize the cost function and IAE. The control 
scheme does not require the robot dynamics to be known 
exactly and can be used for tracking of robot manipulators 
with external disturbances. The simulation results indicate that 
a desired tracking performance can be guaranteed for an 
uncertain robotic system via the proposed algorithm under 
large time-varying parameter perturbations and external 
disturbances. Also the simulation results show that the 
proposed algorithm has better performance in comparison 
with conventional PID controller and a neural network based 
PID controller in trajectory tracking and adaptation with 
unknown environment and parameter variation. Also it 
doesn’t need extensive learning like ANFIS controller and has 
much less computational complexity. 

 

Figure 7.  Control signals of thr poposed method. 
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