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ABSTRACT

In this paper the torque control of a harmonic drive sys-
tem for constrained—motion and free—motion applications is
ezamined in detail. A nominal model for the system is ob-
tained in each case from experimental frequency responses
of the system, and the deviation of the system from the
model is encapsulated by o multiplicative uncertainty. Ro-
bust torque controllers are designed using these information
in an Hoo ~framework, and smplemented on two different
setups. From time and frequency domain ezperiments, it
is shown that the closed—loop system retains robust stabil-
ity, while improving the tracking performance ezceptionally
well.

I. INTRODUCTION

Developed in 1955 primarily for aerospace applications,
harmonic drives are high-ratio and compact torque trans-
mission systems. The harmonic drive exhibits performance
features both superior and inferior to those of conventional
gear transmissions. Its performance advantages include
high—torque capacity, concentric geometry, lightweight and
compact design, zero backlash, high efficiency, and back
drivability. Harmonic drive systems suffer however, from
high flexibility, resonance vibration, friction and structural
damping nonlinearities.

In numerous robotic control techniques the actuator
torque is taken to variable being manipulated in practice,
however, is not torque but armature current in a DC mo-
tor, for instance. For harmonic drive systems the relation
between output torque and input current possesses nonlin-
ear dynamics, due to the flexibility, Coulomb friction and
structural damping of the harmonic drive [6]. Therefore, it
is desired to improve this input/output relation by torque
feedback, and to convert the system to a near—ideal torque
source with a flat frequency response over a wide band-
width. There are two types of torque—control applications
for a robot manipulator using harmonic drives in its joints.
First the applications where the robot is in contact with a
stiff environment, and high torques at very low velocities
are required at each joint. Simulation of this application
at each joint can be studied by a constrained-motion ex-
periment. The second type of applications occurs when the
robot arms are moving freely, and the only torque required
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at each joint is to compensate for gravity, friction and link
acceleration. This problem can be simulated through a
free—motion case, especially where the gear ratio is large
enough for the motor inertia to dominate. In the free-
motion case the amount of torque required at each joint
is very low but at much higher velocities. In this paper
the robust torque control of a joint for both constrained—
motion, and free—motion application will be addressed in
detail.

In this paper a general framework to design torque con-
trollers for harmonic drive system is developed and tested
for constrained-motion and free-motion experiments. It is
shown that an empirical linear model obtained from exper-
imental frequency responses of the system, and an uncer-
tainty characterization of this model is sufficient to build
a robust torque controller. An Ho, —framework is used for
controller design, and the proposed controller is tested for
two different setups The closed-loop performance in time
and frequency domains are shown to be exceptionally well.

II. EXPERIMENTAL SETUP

Two harmonic drive testing stations were used to moni-
tor the behavior of two different harmonic drives, in which
the harmonic drive is driven by a DC motor, and a load
inertia is used to simulate the robot arm for unrestrained
motion. Also a positive locking system is designed such
that the output load can be locked to the ground for re-
strained motion experiments. In the first setup, a brushed
DC motor from Electro—Craft, with maximum rated torque
of 0.15 Nm, and torque constant of 0.0543 Nm/amp. The
servo amplifier is an 100 Watts Electro—Craft power ampli-
fier. The harmonic drive in this setup is from RHS series of
HD systems, with gear ratio of 100:1, and rated torque of
40 Nm. In the second setup the DC motor is a brushless
Kollmorgen Inland motor, with maximum rated torque of
5.6 Nm, and torque constant of 0.1815 Nm/amp. The
servo amplifier is a 100 watts FAST Drive Kollmorgen. The
harmonic drive is from CFS series of HD Systems, Inc. with
gear ratio 160:1, and rated peak torque of 178 Nm.

Each setup is equipped with a tachometer to measure the
motor velocity, and an encoder on the load side to measure
the output position. The output torque is measured by a
Wheatstone bridge of strain gauges mounted directly on
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the flexspline [8]. The current applied to the DC motor is
measured from the servo amplifier output. These signals
were processed by several data acquisition boards and mon-
itored by a C-30 Challenger processor executing compiled
computer C codes. Moreover, Siglab [5], a DSP hardware
linked to Matlab, is used for frequency response analysis.

III. SYSTEM MODEL AND ITS UNCERTAINTY

A complete model of the system was derived in [6]. To
capture the system dynamics accurately, it is necessary to
consider nonlinear models for friction and structural damp-
ing. However, for the purpose of control, a linear model for
the system will be used for the synthesis. An empirical
method to find this nominal model is to perform a series of
experimental frequency response on the system, with dif-
ferent input amplitudes, and to find the best fit through
them. By this method, not only the empirical nominal
model of the system (without need of any linearization)
will be determined, but also variations in the frequency re-
sponse of system, due to the nonlinearities, will be encap-
sulated with an uncertainty representation. Using Siglab—
generated sine—sweep and random inputs with different am-
plitudes on each experimental setup, a set of frequency re-
sponse estimates for the system is generated. Applying an
iterative Gauss-Newton routine on one of the frequency re-
sponse estimates, a transfer function is obtained which min-
imizes the weighted least—squares error between the exper-
imental frequency response and the model . We call this
transfer function the “Nominal Model” of the system (illus-
trated in Figures 1 and 2). Moreover, the variation of each
frequency response estimate from the nominal model can
be encapsulated by a multiplicative uncertainty. Assuming
that the nominal plant transfer function is Pq(s), define P
as the family of possible models of the system which in-
cludes all the experimental frequency response estimates,
and the nominal model of the system, by multiplicative
uncertainty we consider:

VP(s)eP, P(s)=(1+A(s)W(s))Po(s) (1)

Here W(s) is a fixed transfer function, called the uncer-

tainty weighting function and A is a memoryless operator

of induced norm less than unity [4]. Note that in this repre-

sentation A(s)W(s) gives the normalized system variation

away from 1 at each frequency:
P(jw)

m - 1= A(jw)W(jw)

Hence, since ||A]|oc < 1, then

(2)

P(jw)
Py (jw)

Note that by this method an effective way to find the
closest linear model for a nonlinear system is proposed,
and the deviation of the nonlinear system and linear model
is encapsulated in model uncertainty. For harmonic drive

3)

- 1‘ < W(w)l,  Vw

!Function snufregs in Matlab
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Fig. 1. Frequency response of the system under constrained—motion,
nominal model, and multiplicative uncertainty

system the uncertainty measure at low frequencies, (as il-
lustrated in Figures 1 and 2), is relatively small and about
-5 db, which suggest the possibility of robustly controlling
the system to perform within this bandwidth.

A. System under Constrained—Motion

The methodology elaborated in § IIT is applied for two se-
tups to obtain their nominal model and uncertainty. Since
the results are similar, here we report only the results of the
first experimental setup, while the details of the other can
be found in [7]. Figure 1 illustrates the empirical frequency
responses of the first setup under constrained—motion, its
nominal model and its uncertainty. The nominal model for
the first setup is found to be a good fit to a third order
stable and minimum phase transfer function as follows:

Torque 1.0755 x 108

Ref Voltage s34 472.752 + 7.33 x 104s + 5.89 x 10(6 :
4
which has three stable poles at —289.83, and —91.44 +
109.48; and a DC—gain of —14.8 dB. Using Equation 3 the
system variations for four typical frequency response esti-
mates is illustrated in Figure 1, and the uncertainty weight-

ing function is approximated by W (s) = (s + 200)/356.

B. System under Free—Motion

Frequency response of free motion system
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Fig. 2. Frequency response of the free-motion system, nominal
model, and multiplicative uncertainty



Similar to the constrained—motion case, an empirical
nominal model for the system is derived using experimen-
tal frequency response on the system for free-motion ex-
periments. Figure 2 illustrates the empirical frequency re-
sponses of the system under free—motion, its nominal model
and its uncertainty bound. The nominal model for the sys-
tem is found to be a third order stable and minimum phase
transfer function as follows:

Torque 243.16 (s + 2.415)
Ref Voltage ~ s3 + 171.19s2 + 1.24 x 10%s + 1.47 x 1(()5)
5

which has three stable poles at —14.465, and —78.363 £
63.2885, and a DC-gain of —48 dB. The uncertainty
weighting function is approximated by a second order sys-
tem as: W(s) = (ﬁ%go)Q. Note that the lower DC~gain in
free—motion system is due to smaller torque outputs in free—
motion experiments compared to the constrained—motion
case. Also the system variations in free—motion are larger
than that in the constrained—-motion, since the nonlinear
friction plays more important role for low—frequency free—
motion experiments. These two factors make the control
of free-motion case harder than that in the constrained-
motion case.

IV. RoBUST TOorRQUE CONTROL

Figure 3 illustrates the block diagram of the setup us-
ing multiplicative uncertainty representation, in which Py
is the nominal model of the system, W is the uncertainty
weighting function, A is a memoryless operator of induced
norm less than unity, which represents the normalized vari-
ation of the true system from the model, and C is the con-
troller. The control objective can be defined as robustly
stabilizing the system, while maintaining good disturbance
attenuation and small tracking error, despite the actua-
tor saturation. More specifically, referring to Figure 3, we
would like to design a controller to trade-off minimizing the
norm of the transfer function from reference input y4 to the
tracking error e (tracking performance), the transfer func-
tion from the disturbance d to the output y (disturbance
attenuation), the transfer function from r to g (robust sta-
bility), and the transfer function from reference input yg4
to the plant input u (actuator limit). This objective is
well-suited to the general 7, problem.

Figure 4 illustrates the block diagram of the system
configured for the H, framework. It can be shown that
tracking and disturbance attenuation objectives can be ex-
pressed as sensitivity S minimization [2]. For multiplicative
uncertainty robust stability is guaranteed if the comple-
mentary sensitivity T has a norm less than unity (Small
Gain Theorem [9]). T can be shown to be the transfer

Fig. 3. Block diagram of the system considering multiplicative un-
certainty for plant
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Fig. 4. Block diagram of system in Ho framework

function from reference input yq to the output y. Weight-
ing functions W, and W, are also considered to normalize
and assign frequency content of the performance objectives
on sensitivity and motor current saturation respectively,
and W is the multiplicative uncertainty weighting func-
tion. Now the augmented system has one input yg4, and
three outputs 21, 22, and 23, in which the transfer function
from the input to the outputs corresponds to weighted com-
plementary sensitivity, weighted sensitivity, and weighted
actuator effort, respectively. The objectives now will be
reduced to finding the controller C(s) which minimizes the
induced norm of the transfer matrix from input y4 to the
output vector z or,

Find C(s) to minimize ||Ty,z|/c0 (6)

This problem is called a mixed—sensitivity problem in the
literature, and has optimal and sub—optimal solution algo-
rithms. Doyle et al. [3], provided the sub—optimal solution
for this problem in 1989, in which C(s) will be assigned
such that || Ty.|lec < 1. The p-synthesis toolbox of Matlab
uses this algorithm iteratively to find the best sub—optimal
solution achievable [1].

Performance-weighting functions are selected consider-
ing the physical limitations of the system. The actuator
saturation-weighting function is considered to be a con-
stant, by which the maximum expected input amplitude
never saturates the actuator. Its value is estimated to be
0.004 for the system under constrained-motion, and 0.002
for free-motion case.

The sensitivity weighting function for constrained-
motion setup is assigned to be W,(s) = 21(*%. This
weighting function indicates that at low frequencies, the
closed-loop system should reject disturbance at the output

Frequency response of the controllers
T T T

_200 . H
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Fig. 5. The frequency response of the two designed controllers; Solid :
Constrained—motion, Dashed : Free-motion
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Fig. 6. Closed-loop frequency performance of the system under
constrained—motion
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by a factor of 50 to 1. Expressed differently steady-state
tracking errors due to step input should be less than 2 %
or less. This performance requirement becomes less and
less stringent at higher frequencies. For higher frequencies
the closed-loop frequency response should degrade grace-
fully, always lying underneath the inverse of the weighting
function W,. For free-motion the sensitivity weighting
function is assigned to be W(s) = ﬁ%’, where 5 %
steady state tracking error for the closed loop system are
allowed for free-motion case. The different choice of sensi-
tivity weighting function for free-motion and constrained-
motion permit us to have similar bandwith characteristics
for the closed loop systems despite the lower torque out-
put and signal to noise ratio observed in the free-motion
case. For both cases the best cut-off frequency for perfor-
mance is maximized by an iterative method, provided the
Hoo solution to the problem exist.

Two controllers were designed using p—synthesis toolbox
of Matlab. For constrained-motion case the transfer func-
tion is :

2.08 x 107(s + 289.8)(s + 91.4 & 109.55)

Clo)= (s + 3)(s + 808.2 + 776.045) (s + 9.8 x 10%) "

with a DC—gain of 50.4 dB, while for free-motion case the
controller is as follows with a DC-gain of 78.8 dB.

8.35 x 10%(s + 14.5)(s + 78.4 £+ 63.3j)
(s + 1.83)(s + 2.8)(s + 273.23)(s + 10%)

C(s) = (8)
The controller zeros cancel the stable poles of the nomi-
nal plant, while the poles shape the closed-loop sensitivity
function to lie underneath W,. Figure 5 illustrates the
Bode plot of the two controllers, where for both controllers
there is a wide anti-resonance profile around resonance fre-
quency, to shape the complementary sensitivity function as
flat as possible. Hence, it is not possible to obtain similar
performance through a PID, or lead-lag controller.

V. CLOSED-LOOP PERFORMANCE
To verify the controller performance closed-loop experi-
ments have been utilized. To implement the controllers in
practice, bilinear discretization is performed with one kHz
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Time domain Performance
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Fig. 7. Closed-loop performance of the system under constrained—
motion

sampling frequency. The performance of the closed-loop
system under constrained—motion and free-motion is eval-
uated in both frequency and time domain for two setups.
However, because of the similarity in results, here only the
experimental results of the first setup is presented.

A. System under Constrained—Motion

The frequency domain performance of the closed-loop
system is obtained from the closed-loop frequency response
of the system and is illustrated in Figure 6. For both se-
tups the experimental sensitivity and complementary sen-
sitivity functions are shown to be underneath the inverse
of W, and W respectively. Also the Nyquist plot for the
loop-gain of the system is derived from the experimental
sensitivity functions, and the phase margin is found to be
60°. These results are an experimental verification of the
Ho design claim to preserve robust stability while shaping
the performance as desired.

The time response of the closed-loop system to differ-
ent reference input signals is illustrated in Figure 7. The
dotted lines are the measured output torque of the system,
which is tracking the solid line, the reference command,
very fast and accurately. Although our designed bandwidth
is 3 rad/sec, sinusoid inputs up to 10 Hz (62 rad/sec) are
shown to be well tracked. The step response is very fast
with a steady—state error less than 2 % as required. Track-
ing of the system to triangular signal is especially sharp at
the edges, and the tracking to an arbitrary signal is shown
to be very fast and well-behaved.

B. System under Free-Motion

The frequency domain performance of the closed-loop
system is obtained from the closed-loop frequency response
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Fig. 8. Closed-loop frequency performance of system under free—
motion

of the system and is illustrated in Figure 8. The experi-
mental sensitivity and complementary sensitivity functions
are shown to be underneath the inverse of Wy, and W re-
spectively. Also the Nyquist plot for the loop-gain of the
system is derived from the experimental sensitivity func-
tions, and the phase margin is found to be 80°.

The time response of the closed-loop system to different
reference input signals is illustrated in Figure 9. The dotted
lines are the measured output torque of the system, which
is tracking the solid line, the reference command. Although
our designed bandwidth is about 2.8 rad/sec, sinusoid in-
puts up to 10 Hz (62 rad/sec) are shown to be relatively
well tracked. The step response is very fast and tracking
of the system to triangular signal is especially sharp at the
edges. Finally, tracking to an arbitrary signal is shown to
be very fast and well-behaved.

The performance of the closed-loop system under free—
motion case are not as good as that in constrained-motion,
because in constrained-motion experiments the open-loop
system has higher DC—gain and lower uncertainty at low
frequencies. Hence, wider bandwidth and better closed—
loop performance are achievable as illustrated in Figure 7.

V1. CONCLUSIONS

In this paper the torque control of harmonic drive sys-
tems under constrained-motion and free-motion is exam-
ined in detail. It is illustrated how effectively an empirical
nominal model for the system can be obtained through ex-
perimental frequency response estimates, and there is no
need to resort to the nonlinear model of the system 6],
which proved to be quite difficult to obtain. By this means
not only can a linear model be proposed for the nominal
model of the system, but also the deviation of the nonlin-
ear system from the nominal model can be encapsulated in
a model uncertainty. This representation provides enough
information to build a robust torque controller for the har-
monic drive system. It is shown that a second- or third-
order transfer function can be used as a linear model of the
system, and a first— order or second-order weighting func-
tion can encapsulate the multiplicative uncertainty of the
model. Solving the mixed-sensitivity problem for a track-
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Time domain Performance
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Fig. 9. Closed-loop performance of the system under free-motion

ing and disturbance attenuation objective for each case, a
fourth- or fifth—order oo controller is designed consider-
ing the actuator saturation limits. Implementing the con-
trollers for two different setups under two different operat-
ing conditions, the performance of the closed-loop system
is evaluated experimentally. It is shown that the closed-
loop system retains robust stability, while improving the
tracking performance exceptionally well.
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