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Abstract

The unique performance features of harmonic drives, such as high gear ratios
and high torque capacities in a compact geometry, justify their widespread indus-
trial application, especially in robotics. However, harmonic drives can exhibit sur-
prisingly more complex dynamic behavior than conventional gear transmissions. In
this paper, a systematic way to capture and rationalize the dynamic behavior of
the harmonic drive systems is examined. Simple and accurate models for compli-
ance, hysteresis, and friction are proposed, and the model parameters are estimated
using least—squares approximation for linear and nonlinear regression models. A
statistical measure of variation is defined, by which the reliability of the estimated
parameter for different operating condition, as well as the accuracy and integrity of
the proposed model is quantified. Finally, the model performance is assessed by a

simulation verifying the experimental results on two different harmonic drives.

1 Introduction

Since its inception in 1955, the harmonic drive has found widespread acceptance among
practitioners. This mechanical transmission, occasionally called “strain-wave gearing”,
employs a continuous deflection wave along a non-rigid gear to allow for gradual engage-

ment of gear teeth. Because of this unconventional gear-tooth meshing action, harmonic



drives can deliver high reduction ratios in a very small package. In fact, the radical me-
chanical operation of this gear train defies conventional understanding of gear behaviour
and creates a new arena for exploration and understanding.

The harmonic drive exhibits performance features both superior and inferior to those of
conventional gear transmissions. Its performance advantages include high torque capacity,
concentric geometry, lightweight and compact design, near—zero backlash, high efficiency,
and back drivability. Harmonic drive systems suffer however, from high flexibility, reso-
nance vibration, friction and structural damping nonlinearities. The unique performance
features of the harmonic drive have captured the attention of designers in many fields.
It has been used in industrial and space robots, assembly equipment, and measuring in-
struments, as well as heavy duty applications such as machine tools and printing presses.
Additionally, space and aircraft systems often employ harmonic drives for their light weight
and compact geometry.

Throughout its short existence, the harmonic drive has enjoyed increasing international
attention from designers as well as researchers. The Russians were perhaps the first who
initiated substantial research on the dynamic behavior of harmonic drives [1, 24].

More recently Tuttle and Seering performed an extensive effort to model the stiffness,
positioning accuracy, gear tooth-meshing mechanism and friction of the harmonic drive [22,
23]. Their experimental observations show that the velocity response to step commands in
motor current are not only contaminated by serious vibration, but also by unpredictable
jumps. The velocity response observations were used to guide the development of a series
of models with increasing complexity to describe the harmonic drive behavior. Their most
complex model involved kinematic error, nonlinear stiffness, and gear-tooth interface with
frictional losses.

Kircanski and Goldenberg have also attempted to model the harmonic drive in detail
[13]. They used the drive system in contact with a stiff environment, in contrast to
unrestrained motion experiments used by Tuttle and Seering [23], and illustrated that in
this case nonlinear stiffness, hysteresis and friction are more tractable. Simple models for
soft-windup, hysteresis, and friction were proposed and the parameters were identified by
restrained motion experiments.

Hsia [11], Legnani [14], Marilier [16], and Seyfferth [17] are among others who at-
tempted to model the stiffness, friction, and position accuracy of harmonic drive systems.
All these researchers noted the inherent difficulties in finding an accurate model for the

system.



In this paper a moderately complete model of harmonic drive system is developed.
Restrained and unrestrained motion experiments are use to identify the model parameters
and illustrate the fidelity of the model for two different types of harmonic drive systems.
It is shown that a linear stiffness model for stiffness combined with a velocity dependent
structural damping model can replicate the hysteresis torsion curve of the system compli-
ance. The frictional losses of the transmission have been modelled using Coulomb friction,
viscous damping and Stribeck friction. Both high speed, and low speed friction terms
have been identified using unrestrained and restrained motion experiments respectively.
Finally, the simulation of the system, built in Simulink, has been used to verify the model
fidelity by experiments. It has been verified that the simulation accurately predicts the

restrained and unrestrained experiments.

2 Experimental Setup

Two harmonic drive testing stations were used to monitor the behaviour of two different
harmonic drives. A picture of those setups is illustrated in Figure 2, in which the harmonic
drive is driven by a DC motor, and a load inertia is used to simulate the robot arm for
unrestrained motion. Also a positive locking system is designed such that the output
load can be locked to the ground for restrained motion experiments. In the first setup, a
brushed DC motor from Electro—Craft, model 586-501-113, is used. Its weight is 1.36 Kg,
with maximum rated torque of 0.15 N'm, and torque constant of 0.0543 Nm/amp. The
servo amplifier is a 40 Watts Electro—Craft power amp model Max-100-115. The harmonic
drive in this setup is from RHS series of HD systems model RHS-20-100-CC-SP, with gear
ratio of 100:1, and rated torque of 40 Nm. In the second setup the DC motor is a brushless
Kollmorgen Inland motor, model RBE-01503-A00. Its weight is 475 gr, with maximum
rated torque of 5.6 Nm, and torque constant of 0.1815 Nm/amp. The servo amplifier is
a FAST Drive Kollmorgen, model FD 100/ 5E1. The harmonic drive is from CFS series
of HD Systems, Inc. with gear ratio 160:1, and rated peak torque of 178 Nm.

In the first experimental setup, the circular spline is fixed to the ground and the output
is carried by the flexspline, while in the other setup, the flexspline is fixed and the circular
spline is used for output rotation. By this arrangement, the behavior of the transmission
under different operating configurations can be examined. Each setup is equipped with
a tachometer to measure the motor velocity, and an encoder on the load side to measure

the output position. The output torque is measured by a Wheatstone bridge of strain



gauges mounted directly on the flexspline [19], and the current applied to the DC motor
is measured from the servo amplifier output. These signals were processed by several data
acquisition boards and monitored by a C-30 Challenger processor executing compiled

computer C codes.

3 Modelling and Identification

The goal of modelling the harmonic drive system is to discover the simplest repre-
sentation which can replicate system performance to a desired level of accuracy. Our
purpose in modelling is to implement a model-based torque control algorithm on the sys-
tem. Moreover, we used the computer model for examining and improving control laws,
before implementing them. As recommended by other researchers [13, 23], in order to
comply this objective it is necessary to have at least a simple and accurate model for
friction, and compliance of harmonic drive systems. In practice it has been proven that
the knowledge obtained through the process of modelling and identification of the system
becomes a powerful medium for understanding, and improving the design, as well as for

providing new horizons for controller design.

3.1 DC Motor

A DC motor can be viewed as a two—input, one—output black box, where the servo
current and external torque are the inputs and the angular displacement (or velocity) is

the output. The torque balance for the DC motor can be written in the form:
Kopi = Jub + Ty, + Tous (1)

where K, is the motor torque constant, ¢ is the input current to the motor, .J,, is the motor
inertia, and T, is the external torque. T is the friction torque, which can be modelled

in the form of velocity direction dependent viscous and Coulomb friction as follows:
T},.(0) = To,u_, (—0)0 + T, u_, (0)0 + Ty, u_, (—0)sign(0) + T, u_, (9)sign(f) (2)

where

1 ifz>0
u_(x) = 3
(@) {Oif:cgo ®)

Note that the indices p and n represents the dependence of the friction coefficients on the

velocity direction.



DC Motor 1 DC Motor 2
Estimated | Variation | Estimated | Variation
Parameter | Measure || Parameter | Measure

K, 0.0542 0% 0.1815 0%

Jn || 5.5 x 1075 0.82% 5.8 x 107° 5.75%
T,, || 5.3 x 107° 23.3% 8.6 x 10~* 7.75%
T,, || 5.3 x107° 11.5% 5.8 x 107* 14.4%
T, || 1.4 1072 9.01% 1.5 x 1072 25.9%
T, | 1.3 x 1072 5.72% 2.7 x 1072 25.8%

Table 1: DC motors estimated parameters

The model parameters are estimated by least—squares approximation. Using Equa-
tion 1 as a linear regression model, and measuring the motor velocity and current for
two sets of high and low velocity experiments, the model parameters can be estimated
using the Moore—Penrose generalized inverse [7, 4]. Householder reflection is utilized in
numerical calculations to avoid ill conditioning [8].

Four type of inputs are applied to the servo amplifier, and motor velocity and current
are measured and logged in each experiment. The input shape functions are sinusoid,
square wave, triangular wave, and composite sine wave, where the composite sine waves
are generated combining three sinusoids as: cos(wt) + 0.5 sin(2wt) + sin(3wt). For each
signal type, frequencies from 0 to 10 Hz and amplitude from 10 % to 100 % of maximum
allowable amplitude are spanned, to experiment both low and high velocities with wide
frequency range. To generate the motor acceleration from the velocity signal, first the
velocity signal are filtered using a fifth order Butterworth filter, by zero-phase distortion
routine, and then numerically differentiated. The details and advantages of this method
are analysed through simulation and reported in [18].

By means of least—squares estimation, for each experiment we obtained a set of pa-
rameters. However, these parameters are deemed acceptable, only if they are consistent
between experiments. This can be quantified by a statistical measure, namely the ratio of
the standard deviation to the average value of each parameter estimated for different ex-
periments which we call variation measure. If the variation measure is small, we have good
consistency for different experiments, and model is capable of capturing the dynamics of
the system.

Figure 3 illustrates the velocity fit obtained by the model for two typical experiments.
The model is able to capture the dynamics of the system for both low and high velocity



experiments. Table 1 summarizes the estimation results for two setup DC motors, where
for each setup about 15 experiments are considered (All parameters expressed in ST units).
The motor torque constant K, is obtained from the motor specs, and assumed to be
known in the least-squares estimation. The variation measure of the results for different
experiment shows less than 10% for some parameters, and less than 30% in others. The
reason for variation in variation measure among parameters is that the responses are
relatively insensitive to variations in those particular parameters. However, it has been
verified by simulations that having variation measure less than 30% gives relatively good

match to the experiments [18].

3.2 Harmonic Drive Compliance

As described in a manufacturer’s catalogue [12], a typical shape of the harmonic drive
compliance curve is given in Figure 4. This curve illustrates harmonic drive nonlinear stiff-
ness and hysteresis. To capture the nonlinear stiffness behavior, manufacturers suggest
using piecewise—linear approximations [12], whereas other researchers prefer a cubic poly-
nomial approximation [23, 24]. The hysteresis effect, however, is more difficult to model,
and consequently it is often ignored. Recently Seyfferth et al. proposed a fairly complex
model to capture the hysteresis [17]. The hysteresis in the harmonic drive compliance
profile is caused by structural damping of the flexspline. The inherent coupling of stiffness
torque and structural damping, therefore, make it very hard to identify those separately.
We suggest that Figure 4 is in fact a Lissajous figure, and we identify both the stiffness
and damping of the flexspline together using least-squares estimation. Linear and cubic
models for compliance and many different models for structural damping were tried in
this framework. The Dahl model for friction [6, 20], the Duham, Preisach and Babuska
models for hysteresis [15], are among the dynamic models used to replicate the hysteresis
torsion curve. We observed, however, that a linear stiffness model with a static model,
relating the structural damping to a power of the velocity can best capture hysteresis
behavior. The reason why dynamic models were not capable of predicting hysteresis in
harmonic drive structural damping accurately is that despite their dynamic relation, the
dependence of the structural damping torque to a power of the velocity was not introduced
by them. Hence, our proposed model, simpler in structure, appears to better characterize
the hysteresis, and in practice the variation measure of identified parameters in our model

is much less than those of other dynamic models we examined. Equation 4 gives in detail



Harmonic Drive 1 Harmonic Drive 2
Estimated | Variation || Estimated | Variation
Parameter | Measure || Parameter | Measure

a 2 0% 2 0%
K, 6340 9.6% 104.2 4.36%
Ty 57.2 28.2% 7.96 28.0%
T | 1.0x107° | 6.38% || 1.0x10 " | 8.72%
T, | 37x107" | 167% || 1.8x10° | 13.2%
T, |[35x107" | 193% | 21x107" | 8.42%
T, | 46x107" | 23.7% | 75x10 | 29.2%
T, || 44x107 | 24.0% || 33x107 | 30.8%
T,y —0.0076 14.7% —0.0487 20.3%
Tss,, —0.0203 23.8% —0.0450 18.6%
Tss, 0.1 0% 0.1 0%

Table 2: Harmonic drives estimated parameters

the compliance model, where A#f is the flexspline relative torsion.
Trneas = K1 A + Ty | AB|*sign(AF) (4)

To identify the model parameters, a set of restrained motion experiments has been em-
ployed, in which the torque 7},.,s and the motor velocity have been measured. The
experiment shape functions are the same as that explained in DC motor experiments.
Equation 4 forms a nonlinear regression in which Ky, T, and o are unknown. Using an
iterative least—squares solution for this nonlinear regression model, it is found that the
optimal estimate of « is very close to 0.5. Consequently the structural damping can be
related to the square root of the relative torsion velocity. Figure 4 illustrates a typical
hysteresis torsion curve fitted by the model, comparing the difference between the optimal

1

aanda:§.

occurs when the velocity is changing rapidly; otherwise, the model is approximating the

The maximum mismatch (points (—2,—0.5) and (0.5,0.8) in Figure 4)

hysteresis curve quite accurately. By fixing the value of a = %, Equation 4 forms a linear
regression model for the system, that can be solved for different experiments. Table 2

summarizes the compliance parameter for the harmonic drives of our two setups.

3.3 Harmonic Drive Friction

All harmonic drives exhibit power loss during operation due to transmission friction.



Figure 5 illustrates the schematics of the harmonic drive model. The bulk of energy
dissipation can be blamed on the wave generator bearing friction T%,, gear meshing friction
T},, output bearing friction T, and the flexspline structural damping T;. Among them,
most of the frictional dissipation results from gear meshing. Also comparing the ball-
bearing frictions, T is more important than 77, since it is acting on the high speed/low
torque port of transmission, and its effect on the dynamics of the system is magnified by
the gear ratio. The transmission torque is measured directly by strain gauges mounted
on the flexspline (namely node ¢y, of Figure 5 ). The torque balance, therefore, can be
written as: .

ng = N(TmeaS) + Tf1 + sz (5)

in which the measured torque T},,cqs = T}, +T, N is the gear ratio, and Ty, is the resulting
torque of wave generator, provided by the DC motor. From Equation 1, T}, can be related

to the input current by:

Ty = Kmi — Jnb — T, (6)
Thus, the final torque balance of the system is the following:
1 .
Koni = Tneas = Jegsbog + (T, + Ty, +T,) (7

in which K, is the motor torque constant, J.;f is the effective input inertia, and 7%, is
the motor friction. The gear meshing friction torque is modelled as Coulomb, viscous and

Stribeck friction [3, 21], having velocity direction dependent coefficient as follows:
Ty, = Tvpéwg U_, (Bug) + T Busg U_, (—Ourg) + Tspsign(éwg) U_, (Bug) + Ty, 5ig0(0g) u_, (—Ouy)
2 2

. _ éwg . - 6.'wg
+Ts,,5180 (0ug) U_, (Oug)e (T”ﬂ) + T, 8180 (0yg) u_, (—Oug)e (T“M)

(8)
The Stribeck model for friction can capture the dynamics of the friction at low veloc-
ities. Unlike compliance identification, both restrained and unrestrained experiments are
employed to identify the friction model parameters. Unrestrained experiments are per-
sistently exciting for viscous and Coulomb friction, while restrained motion experiments
operate the system at low velocities which are ideal for Stribeck coefficient identification.
Unrestrained low—velocity experiments are used as well, for Stribeck coefficient identifi-
cation. The experiment shape functions are the same as that explained in DC motor
experiments, where for restrained motion case 20 experiments, and for unrestrained mo-
tion case 30 experiments are considered for each setup.
Equation 7 forms a linear regression model for the high velocity experiments in the

absence of the nonlinear Stribeck terms. It should be noted that in this regression model



instead of the internal system friction 7%, ,T, and TY%,, the entire friction of the system
(Ty =Ty, + Ty, +T},), can be identified. This imposes no limitation on the identification
procedure, since only the entire friction T is required for the simulations. For low-
velocity experiment also, Equation 7 can provide a linear regression if Ty, = Ty, =
Tss,, is assumed to be known. Figure 6 illustrates the output torque fit obtained by the
model for four typical experiments, assuming fixed Ts;, = 0.1. Table 2 summarizes the
estimated friction parameters of two harmonic drives, and their variation measure. The
variation measure for all parameters are less than 30%, which indicates the reliability of
the estimated parameters.

It is important to note that the estimated Stribeck friction coefficients are negative,
which is in contrary to the usual dynamics of friction reported at low velocities [2, 10].
Nevertheless, this represents rising friction at low velocities as illustrated in Figure 7, and
no stiction, verifying the manufacturers claim [5]. This may be rationalized by the fact
that the main bulk of frictional losses in the harmonic drive systems are due to the gear
meshing, but that, contrary to other transmissions, a combination of elastic deformation of
the flexspline and gear teeth engagement contributes to the velocity reduction. Therefore,
the low—velocity experiments in the harmonic drive transmission shows smoother start
up velocity compared to the other transmissions. This is verified by both constrained
and unconstrained motion experiments, where no stick slip or stiction is observed. The
reliability of the negative Stribeck coefficient is assessed first by obtaining acceptable
variation measure for Stribeck coefficients, and second by getting similar results for the
two different harmonic drives. The effect of noise and other uncertainties at low velocity
experiments is also reduced to a minimum by carefully filtering the signals with a fifth

order Butterworth filter, by zero—phase distortion routine.

4 Modelling Scheme Verification

To verify model validity, simulations of the system for both restrained and unrestrained
systems is developed in Simulink. Figure 8 illustrates the simulation block diagram of the
unrestrained motion built in Simulink. The nonlinear equation of motions for each part
are embedded in the simulation blocks. A Runge-Kutta fixed-step integration method
with 1ms integration steps is used to execute the simulation, consistent with the 1 kHz
sampling frequency in the experiments. The simulation input is the measured current on

the system, as well as the identified parameters reported in Section 3.



One important characteristic of a harmonic drive torque transmission, as observed in
unrestrained motion, is a high—frequency oscillation in output torque signal, named torque
ripples (See torque curve in Figure 9). Torque ripples are caused mainly by harmonic drive
gear meshing vibration. Harmonic drive gear meshing vibrations introduce a real torque
oscillation which can be observed in the end effector motions of robots using harmonic
drives and even sensed by hand when back—driving the harmonic drive. Its principal
frequency of oscillation (in rad/sec) is twice the motor velocity (in rad/sec), since the gear
teeth in harmonic drives are meshing in two zones. A small fraction of the torque ripples
are caused by the non-ideal torque measurement, because of the direct attachment of
strain gauges on the flexspline. Since the flexspline has an elliptical shape, strain gauges
mounted on the flexspline are subjected to unwanted strain caused by the elliptical shape.
Hashimoto [9], proposed using at least two pairs of Rosette strain gauges to compensate for
this unwanted strain. However, ideal compensation is possible only if there is no angular
misplacement of strain gauges on the circumference of the flexspline, which is unattainable
in practice. It has been found however, that using four Rosset strain—gauges, and using an
accurate method to mount the strain—gauges will reduce the amplitude of the torque ripple
to a minimum [19]. Unfortunately the frequency of torque ripples (in rad/sec) introduced
by the non—ideal behavior of the sensor is also twice the motor speed (in rad/sec), since
the major axis of the ellipse is travelling twice as fast as the wave generator. This make
it impossible to discern the true ripples caused by the gear meshing vibration from that
caused by non—ideal measurement. Power spectral analysis of the observed torque sensor
output has confirmed the frequency content of the ripples to be twice the motor speed (in
rad/sec), and it shows first-harmonic frequency of four times the motor speed as well. It
should be mentioned that to have an accurate model to predict the torque ripples requires
a complex gear meshing mechanism modelling, [22], which is not pursued in this research.
However, we have shown that a Kalman filter estimation of the torque ripples, using simple
harmonic oscillator model, can accurately estimate the torque ripples [19].

The output velocity and torque of the simulated system are compared to typical ex-
perimental outputs in Figure 9. For the unrestrained system, there is an almost perfect
match for the velocity, and a relatively good match for torque curves, except for the torque
ripples. For the restrained system, the match between velocities is less accurate compared
to that for the unrestrained system, which is because of the smaller velocity signal and
larger noise-to—signal ratio. However, the resulting torques are quite similar and there

is no torque ripple observed for the restrained system. This accurate match was verified
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for more than twenty other experiments for both harmonic drives, and similar results are
obtained for both restrained and unrestrained systems. The accurate match between sim-
ulation and experiment for different operating ranges, indicates the fidelity of the model to
accurately replicate the dynamic behavior of the system, and confirmed the effectiveness of
modelling and parameter identification schemes to capture the dynamics of the harmonic
drive systems.

To realize the significance of the nonlinear model and compare it to simpler models, a
simulation study was done in which, for a set of experiments, the simulation results of the
complete model is compared to that of the simplified model. In this study the importance
of Coulomb, viscous, and Stribeck model for friction as well as structural damping model
has been examined. It is concluded that Coulomb friction plays the most important role
for both high— and low—velocity experiments, while the effect of viscous friction is more
vital at high-velocity experiments, and Stribeck friction is only important at very low
velocity experiments. Moreover, the structural damping model contributes significantly to
estimate both velocity and torque output of the system accurately. Figure 10 illustrates a
typical velocity comparison of this study, where the significance of Coulomb friction and

structural damping to estimate the velocity of the system is shown separately.

5 Conclusions

Based on experimental and theoretical studies, a systematic way to capture and ra-
tionalize the dynamics of the harmonic drive systems is introduced. Simple and accurate
models for compliance, hysteresis, and friction are established and model parameters are
identified using least—squares approximation. A measure of variation is defined, by which
the reliability of the estimated parameter for different operating condition, as well as the
accuracy of the simple model is quantified. From compliance modelling results, it has been
shown that identifying stiffness and structural damping together will resolve the reported
difficulties in determining the compliance parameters. Moreover, it has been shown that
a linear stiffness model best captures the behavior of system when combined with a good
model for hysteresis. A simple static model for hysteresis is also introduced, and it is
shown that this simple model can replicate the hysteresis effect in harmonic drives better
than some other more complex dynamic models reported in the literature. Friction losses
of the harmonic drive are modelled at both low and high velocities. From experiments

on two different harmonic drives it has been observed that there is no stiction in the
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transmission, but rather a rising friction acts at low velocities. Finally, the model perfor-

mance is assessed by a simulation verifying the experimental results for both restrained

and unrestrained systems.
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Figure 1: Harmonic drive components

Figure 2: A picture of the experimental setups for the two harmonic drives
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Figure 3: Velocity comparison of the model and experiment for two typical experiments;
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Harmonic Drive Compliance Identification
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Figure 5: Transmission model of harmonic drive with compliance and friction
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Figure 8: Unrestrained system simulated on Simulink for model verification purpose. Top:
System; Mid: DC—motor; Bot: Harmonic drive
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Figure 9: Simulation verification for unrestrained and restrained systems; Solid : Simula-
tion, Dotted : Experiment
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Figure 10: Velocity comparison of the experiment with the complete and simplified model,
where the significance of Coulomb friction (top), and structural damping (bottom) are
examined separately; Dotted : Experiment, Solid : Complete model, Dashed : Simplified
model
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