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ABSTRACT: An analytical investigation of a half-car model including passenger dynamics, subjected to
random road disturbances is performed, and the advantage of active over conventional passive suspension
systems are examined. Two different performance indices for optimal controller design are proposed. The
performance index is a quantification of both ride comfort and road handling. Due to practical limitations,
all the states required for the state-feedback controller are not measurable, and thus must be estimated
with an observer. Stochastic inputs are applied to simulate realistic road surface conditions, and statistical
comparisons between passive system and the two controllers, with and without state estimator, are carried
out to gain a clearer insight into the performance of the controllers. The simulation results demonstrate
that an optimal observer-based controller, when including passenger acceleration in the performance inder,

retains both excellent ride comfort and road handling characteristics.
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1 INTRODUCTION

Demands for better ride comfort and controllability of road vehicles has motivated many automotive
industries to consider the use of active suspensions. These electronically controlled suspension systems can
potentially improve the ride comfort as well as the road handling of the vehicle. Generally, a vehicle suspension
system may be categorised as either passive, semi-active or fully-active.

Passive suspension systems consist of conventional springs and shock absorbers used in most cars. The

springs are assumed to have almost linear characteristics; while, most of the shock absorbers exhibit nonlinear



relationship between force and velocity. In passive systems, these elements have fixed characteristics and,
hence, have no mechanism for feedback control, (Miller, 1988).

Semi-active suspensions provide controlled real-time dissipation of energy, (Crosby et al., 1973). For an
automotive suspension this is achieved through a mechanical device called an active damper which is used in
parallel to a conventional spring. The main feature of this system is the ability to adjust the damping of the
suspension system, without any use of actuators. This type of system requires some form of measurement
with a controller board in order to properly tune the damping.

Active suspension employs pneumatic or hydraulic actuators which in turn creates the desired force in the
suspension system, (Esmailzadeh, 1979, and Wright et al., 1984). The actuator is secured in parallel with a
spring and shock absorber. Active suspension requires sensors to be located at different points of the vehicle
to measure the motions of the body, suspension system and/or the unsprung mass. This information is used
in the online controller to command the actuator in order to provide the exact amount of force required.
Active suspensions may consume large amounts of energy in providing the control force, and therefore, in the
design procedure for the active suspension the power limitations of actuators should also be considered as an
important factor.

In any vehicle suspension system, there are a variety of performance parameters which need to be optimized.
Among them there are four important quantities which should be considered carefully in designing a suspension
system; namely, ride comfort, body motion, road handling, and suspension travel. The trade off between ride
comfort and road handling characteristics is usually a trial and error procedure.Moreover, no suspension
system can simultaneously minimize all four of the above mentioned parameters. The advantage of controlled
suspension is that a better set of design trade-offs are possible in comparison to passive systems (Miller, 1988).
State-feedback control for active suspension is a powerful tool for designing a controller, (Esmailzadeh et al.,
1992, and Shannon et al., 1989). In this approach a mathematical quantification of ride comfort and road
handling will be optimized considering the actuator limitations. Since body motion and suspension travel are
also functions of the system states, they will also be optimized during the design.

Linear optimal control theory provides a systematic approach to design the active suspension controllers
(Chen, 1970), and has been used by several investigators. Sinha et al. (1987) and Caudill et al. (1982) have
used this method to design active suspension controllers for railroad vehicles. Esmailzadeh (1992) investigated
a pneumatic controlled active suspension for automobiles. Hrovat (1990, 1992) appends this method with the
concept of dynamic absorber for improved performance for quarter-car and half-car models. Elmadany (1991)
considered using integral and state feedback controllers for active suspension for half-car model. Shannan et al.
(1989) considered the lateral and longitudinal motion for a full car model, and implemented active controller
with linear optimal control. Observer based controller design is discussed by Alleyne et al. (1992), Elmadany
et al. (1992) and Rajamani et al. (1993).

In this study, we are again considering state-feedback control for active suspension; however, our intention
is not to compare this method with other control approaches, as done by Yue et al. (1989) and Sharp et al.
(1986). We intend to emphasize the effective methodology of controller design in order to satisfy a preassigned

set of design criteria. In the numerical example given in this paper, the parameters of a typical mid size car are



used with the road information extracted from ISO, in order to illustrate how the methodology presented here
can be utilized to satisfy a specified performance within the natural limitations of actuators and controllers.

There are two main contributions of the present research. First, we present a model of vehicle including
passenger dynamics, which to our knowledge is given little attention in the existing literature. This has
been accomplished in a framework of a half car model, which may be generalized further to a full-car model.
This research illustrates the importance of passenger dynamics, when the objective would be to improve the
passenger ride comfort as well as to satisfy the road handling requirements. Second, we developed a statistical
technique for quantitative comparison of the system. This method extracts useful quantitative data from the
time history of important variables, which results into relative ease in comparing different methods. Here,
this approach is used to compare the two controller designs, with and without state estimation, to the passive

system. However, it can well be utilized as an effective platform for comparison of different controller designs.

2 MATHEMATICAL MODELLING

This section is devoted to the mathematical modelling of vehicle, considering the passengers dynamics and
road disturbance. A linear model is considered to represent the vehicle-passenger dynamics, while a normal

random profile is used to model the road roughness.

2.1 Vehicle-Passenger Model

Figure 1 illustrates the half-car model of a passenger car, which has six degrees of freedom (6 dof). The
model consisted of a body, two axles and two passengers. Body motions are considered to be bounce and
pitch, with every axle having its own bounce. The passengers are considered to have only vertical oscillations.
The suspension, tire, and passengers seats are modelled by linear springs in parallel to viscous dampers. The
actuators are considered to be a source of controllable force, and located parallel to the suspension spring and
shock absorber.

The system variable notations with their corresponding values are presented in Nomenclatures. The pa-
rameters related to the tires are denoted with subscript ¢, while, the passenger parameters have subscript p.
The system with six degrees of freedom are represented by the following states: body bounce, z; body pitch,
6; tire deflection, 41, z42; and passenger vertical motions, Tp1, Tps.

The following equations of motion can be derived using Newton-Euler method:
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These equations can be simply written as a matrix equation:

x=Ax+ Bu+ Gw (7
where the state vector x is composed of:
X1 T
X = . , X1 = [.’I}, 07 Tpl , Tp2 , Ttl , th] (8)
X1

The input vector u representing the two actuator forces, while the disturbance vector w consists of road

disturbance.
T . 1T
u={[fi, f]" 5 w=y, v, 0,y 9)

The matrix representation of Equation 7 would be the basis for linear optimal controller design.

2.2 Road Roughness Model

In the early days of studying the performance of vehicles on rough roads, simple functions such as sine
waves, step functions, or triangular waves were generally applied as disturbances from the ground. While
these inputs provide a basic idea for comparative evaluation of designs, it is recognized that the road surface
is usually not represented by these simple functions, and therefore, the deterministic irregular shapes cannot
serve as a valid basis for studying the actual behaviour of the vehicle.

In this study a real road surface, taken as a random exciting function, is used as the input to the vehicle-
road model. Power spectral density (PSD) analysis is used to describe the basic properties of random data.
Several attempts have been made to classify the roughness of a road surface. In this study, classifications
are based on the International Organization for Standardization (ISO). The ISO has proposed road roughness
classification using the PSD values (ISO, 1982), as shown in Table 1.

To make use of the above mentioned classification, a normal random input is generated with a variable
amplitude. Using fast Fourier transform(FFT), a trial and error attempt is proposed in order to obtain the
desired PSD characteristics of the random input. Table 2 illustrates the stochastical characteristics of the final

random input design, which corresponds to the poor road condition as being classified by ISO.



Table 1: Road roughness values classified by ISO.

Degree of Roughness S(Q) x 10~°

Road Class Range Geometric mean
A (Very good) <8 4

B (Good) 8 — 32 16

C (Average) 32—-128 64

D (Poor) 128 — 512 256

E (Very poor) 512 — 2048 1024

F 2048 — 8192 4096

G 8192 — 32768 16384

H 32768 <

3 OpPTIMAL CONTROLLER DESIGN

The performance characteristics which are of most interest when designing the vehicle suspension are
passengers ride comfort, body motion, road handling, and suspension travel. The passenger acceleration has
been used here as an indicator of ride comfort. Suspension travel and body motion are the states of the system,
but road handling is related to the tire deflection. The controller should minimize all these quantities.

The linear time-invariant system, (LTI), is described by Equation 7. For controller design it is assumed
that all the states are available and also can be measured exactly. First of all let us consider a state variable
feedback regulator:

u=-K-x (10)

where K is the state feedback gain matrix. The optimization procedure consists of determining the control
input u, which minimizes the performance index. The performance index J represents the performance
characteristic requirement as well as the controller input limitations.

In this paper two different approaches are taken in order to evaluate the performance index, and hence
designing the optimal controller. The first approach is the conventional method, in which only the system
states and inputs are penalized in the performance index. However, in the second approach special attention

is paid to the ride comfort and hence, the passenger acceleration terms are also included in the performance

Table 2: Stochastical characteristic of road random disturbance.

Random Input Characteristics

Spatial (mm) PSD (m3/cycle)

Min —49 0

Max 40 2.06 x 1073
Mean 0 3.08 x 10~*
STD 12 3.26 x 1074




index.

3.1 Conventional Method (CM)

In this method, the performance index J penalizes the state variables and the inputs; thus, it has the

standard form of:

J= /00 (x"Qx+u"Ru)dt (11)
0

where Q and R are positive definite, being called weighting matrices. Here the passenger acceleration which
is an indicator of ride comfort is not being penalized.

To obtain a solution for the optimal controller introduced in Equation 10 the LTI system must be stabiliz-
able, (Bryson et al., 1975). This condition unlike controllability is rather more accessible. A system is defined
stabilizable when only the unstable modes are controllable. Therefore, for a system with no unstable mode,
being the case considered in this paper, the optimal solution is guaranteed.

Linear optimal control theory provides the solution of Equation 11 in the form of Equation 10. The gain

matrix K is computed from:

K=R'B’P (12)
where the matrix P is evaluated being the solution of the Algebraic Riccati Equation, (ARE).
AP+ AP -PBR'B'P+Q=0 (13)

Equation 7 for the optimal closed-loop system, being used for computer simulation, can be written in the form
of:
x = (A —BK)x + Gw (14)

3.2 Acceleration Dependent Method (ADM)

In this method the two passenger accelerations are included in the performance index. Suppose that the

vector z represents the passengers acceleration, in the form of:

The performance index can be written in the following form
J:/ (XTQx+uTRu+zTS z) dt (16)
0

The weighting matrix for acceleration terms in the simple case may be assumed diagonal:

S 0
S = (17)
0 S
Therefore, Equation 16 becomes
J= / (x"Qx + u"Ru + &)} S13y1 + &]55282) dt (18)
0



Equation 18 can be further modified, since both passenger accelerations are linearly dependent on the state
variables. Hence,

Fpt =V1IX 5 Epp=VaX (19)

where v; and vy are two constant row vectors depending on system parameters. Thus, Equation 18 can be

written as:
J =/°?xT (Q + v{Sivy + V1 Savs) x + u' Ru) dt (20)
or in the simple form of ’
J= /00 (z7Qu z +u' R u) dt (21)
where, ’
Q. = Q+v{ S1v1 + V5 Savy (22)

The optimal solution for Equation 21 can be found in a similar manner to that of Equation 11. Equation 13
shows that the optimal solution and its final performance of the closed-loop system are directly related to the

initial values of weighting matrices, Q and R.

4  OPTIMAL OBSERVER DESIGN

In previous section we assumed that the state vector is available for use in the optimal state feedback
law. It might appear that the state feedback method is not applicable in practice, since the whole state
feedback is not available. However, it is possible to estimate the states of the system, provided the system is
detectable.This is done by designing a dynamical system called State Observer. It is possible to recover much
of the behavior of the state feedback law by using state estimates instead of states in the feedback law.

The input to the state observer is the measured outputs of the system y, which generally can be expressed
in the form

y=Cx+v (23)
where, x is the system states, and v is the measurement noise. A typical sensor arrangement for passenger

cars can provide the relative suspension travel, and the relative passenger bounce. For this case,

-1 b1 0 0 1 0
-1 +b2 0 0 0 1
C= (24)
-1 dl 1 0 0 O
-1 +4d2 0 1 0 O
The observer structure is in the form of,
x = AXx + Bu + L(y — Cx) (25)

where L is the optimal observer gain matrix, which produces an LQG optimal estimate of x, denoted as X.

Similar to Section 3.1, L can be evaluated from,

L=pPC’v~! (26)



where P is the positive definite solution of the Riccati equation,
AP+ PAT —PCTVICP+W =0 (27)

and W = E[wwT],V = E[vvT] are the plant disturbance and measurement noise covariances. Notice in
Equation (25) % is a function of output y and input u, but the input u itself is generated by a state feedback

law as

u=-Kx (28)

Therefore, for simulation purpose we can augment the system dynamic equation (Equation (7)) with that of

the observer(Equation (25)), and solve the whole at once as illustrated by the following equation:

(x| _[a] -mx ][],

|| |Lc|a-Bk-LC | ||

G|O w
0L v

(29)

5 SIMULATION RESULTS

A program has been written using Matlab, to handle the controller and observer design and simulation.
For Controller design Equation (12), for observer design Equation (26) and for simulation Equation (29) are

the basis of the program.

5.1 Statistical Consideration

To have a quantitative comparison between the different simulation results, a statistical approach is fol-
lowed. Since the input to the system is in the form of normal random distribution, it is expected to have
normal distributed outputs. Therefore, we can calculate useful probability values for the signals.

For a Gaussian normal distribution, the probability function of the random signal x(#) can be written,

(Thomson, 1988):

Prob[—Xo < z(t) < Ao] =
L [, e i de = Bxf () (30)

oV2mw 2

and,
Prob[|z(t)| > o] =

1 — Prob[- o < z(t) < Ao] = Erfe (%) (31)
where o is the standard deviation (STD), A is a real number, Erf denotes error function and Erfc denotes
complementary error function.

In this study, some limits are assigned for all the states, both passenger acceleration, and actuator limits in

order to satisfy the required ride comfort, road handling, and the design restriction. These limits are illustrated



Table 3: Variable limits assigned for the controller design.

Variables T 0 Tp1 Tp2 Tt1 T2 i'pl fi’pg f1 f2

Limits 0.01 0.05 0.01 0.01 0.05 0.05 0.05g 0.05g 500 500

in Table 3. The first condition in designing the controller is to satisfy these limits. This can be examined by
checking the probability values of the outputs.

For a quantitative comparison between the two controllers, for each variable the amount of bounding limit
with 90% probability is calculated. This quantity can be easily obtained using standard deviation of the signal
together with Equation (30). Let Erf ! represents the inverse error function. Then Equation 30 will transform
to:

Ao = V2 Erf~'(0.9) (32)

and

Zgo = Agp X 0 + mean[x(t)] (33)

where x99 represents the bounding limit of the random signal z with 90% probability. This quantity can be
used to compare different designs quantitatively.

The problem of controller design is then a challenge of finding suitable weightings that satisfies the design
performances. This can be done by trying an arbitrary weighting matrix W and comparing the resultant xzgg of
the closed loop system to the prescribed limits, and adjusting the weighting elements due to this comparison.
This methodology has been forwarded for a typical mid size car and the results are illustrated in Figures 2 —

5.

5.2 Observer Performance

Figure 2 compares the estimated states to the real ones. The numerical values used in the simulation for
system parameters are given in Nomenclature. As it is clearly illustrated, the estimated states, despite the
randomness of the signal is quite close to the real states. This performance is achieved by employing optimal
observer design, where both the speed of the response and its initial error is penalized in the optimization cost

function.

5.3 Active and Passive Comparison

Let us now examine the effect of active system to remedy the drawbacks of the passive system. Figure 3
illustrates how the active suspension can effectively absorb the vehicle vibration in comparison to the passive
system. There are the body motions, passengers acceleration, and tires deflection compared in this figure,
acceleration dependent method (ADM) is used for the controller design in the active system. The passenger
accelerations in the active system are reduced significantly, which guarantee better ride comfort. Moreover,
the tire deflection is also smaller in the active suspension system; therefore, it is concluded that the active
system retain both better ride comfort and road handling characteristics compared to the passive system.

Table 4 gives quantitative comparison of these systems, which illustrates the system variables bounds with



Table 4: Comparison of variable bounds with 90% probability for passive and active systems.

90% Probable Bound

States Passive CM ADM

x 7.601 x 1073 2.150 x 1073 2.029 x 1073

4.957 x 1073 2.368 x 1073 2.151 x 1073
Zp1 1.160 x 1072 4.925 x 10~ 4.019 x 1073
Tp2 8777Tx 1073 3.175x 1073 2.922x 1073
Ty 1.109 x 1072 4.348 x 1073 3.971x 1073
T2 1.268 x 1072 7.315x 1072  7.520 x 1073
Zp1 8.294 x 10~*  5.260 x 10~*  3.092 x 107!
Zpo 7.261 x 107t 4483 x 107! 2.383x 107!
fi 0 5.859 x 10T!  1.430 x 1072
fo 0 4.019 x 101 1.013 x 10*2

90% probability for passive and both active systems. In this statistical comparison it is shown that the body
bounce and passenger acceleration in active case are reduced to about half of their values in passive system,
and the tire deflection is also reduced at least 40%. This confirms the efficiency of the active suspension in

both ride comfort and road handling performance.

5.4 Active Controllers Comparison

Now let us compare the results of two different methods of controller design in detail. Figures 4 and 5 show
the simulation results for the final controllers design. In Figure 4 body bounce and pitch, passengers accel-
erations and the tires deflection are compared. The body motions and the tires deflection are approximately
the same in both methods; however, the passenger accelerations are significantly lower in the ADM approach.
This implies that ADM can improve the ride comfort, while retaining the road handling performance.

Figure 5 compares the actuator forces of the two different methods. The actuator forces are well below
the limits and practically implementable. In ADM approach gaining better passenger acceleration is possible
by the cost of larger actuator forces. However, optimal controller design can limit the actuator forces in some
realistic bounds.

Table 4 gives a quantitative comparison of the above mentioned methods. This table gives the variable
limits with 90% probability. Comparing the variable limits with the prescribed limits in both methods, the
controllers are able to satisfy all the limits. However, ADM approach is more successful in reducing the
passengers acceleration. The body motion and tire deflection limits do not have significant difference in
both methods. These quantitative values can be as an effective tool for the designer to satisfy the required

performance or to compare different designs.
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6 CONCLUSIONS

The objective of this paper has been to examine the use of optimal state-feedback controllers for improving
the ride comfort and stability performance of the road vehicles. The potential for improved vehicle ride comfort,
and road handling resulting from controlled actuator forces, are examined. The performance characteristics
of such suspension systems are evaluated by two methods, and compared with a passive suspension system.
Optimal observer was employed to estimate the system states, from few measured signals, hence, making
state-feedback implementable.

The result of comparison, presented in this paper, lead to the conclusion that the optimal control theory
provides a useful mathematical tool for the design of active suspension systems. Using random inputs for road
surface disturbances applied to the vehicle, make it possible to have a more realistic idea about the vehicle
dynamic response to the road roughness.

The suspension designs which may have emerged from the use of optimal state-feedback control theory
proved to be effective in controlling vehicle vibrations and achieve better performance than the conventional
passive suspension. The stochastical comparison of the final designs can well be used in further improvement of
the controller performance. Moreover, it provides either a detailed quantitative comparison between different

designs, or a better degree of satisfaction for the required performances.

NOMENCLATURE
Not. | Description Units Values || Not. | Description Units | Values
I, Body inertia Kg-m? | 3443.05 || m Body mass Kg 1794.4
mp1 | Driver mass Kg 75 mp2 | Passenger mass | Kg 75
my1 | Front axle mass Kg 87.15 my | Rear axle mass Kg 140.04
k1 Front main stiffness N/m 66824.2 || 1 F.m. damping % 1190
ko Rear main stiffness " 18615.0 || co R.m. damping " 1000
kp1 | Front seat stiffness " 14000 || ¢p1 | F.s. damping " 50.2
kp> | Rear seat stiffness " 14000 || cp2 | R.s. damping " 62.1
ki1 Front tire stiffness " 101115 || ¢ F.t. damping " 14.6
ko Rear tire stiffness " 101115 || ¢ R.t. damping " 14.6
by Dimension m 1.271 bo Dimension m 1.713
dy Dimension m 0.481 dy Dimension m 1.313
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Figure 1: Half-car dynamical model of road—vehicle-passenger with six degrees of freedom.
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Figure 2: Comparison of real and estimated states. Dotted: Estimated, Solid: Real.
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Figure 3: Comparison between passive and active systems. Dotted: Passive, Solid: Active.
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Figure 4: Comparison of two controller designs. Dotted: Conventional, Solid: Acceleration dependent.
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Figure 5: Comparison of the actuator forces for two controller designs. Solid: Conventional, Dotted: Acceler-

ation dependent.
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