
Composite-H∞ Controller Synthesis for Flexible Joint Robots 
H. D. Taghirad1, Gh. Bakhshi 

Advanced Robotics and Automated Systems, 
Department of Electrical Engineering, 
K.N. Toosi University of Technology, 

Tehran, Iran, 16314 
1Taghirad@novindana.com

Abstract 

In this paper a robust composite control algorithm is 
proposed for flexible joint manipulators, with the 
emphasis on satisfying control effort limitations. An H∞ 
framework is used for the slow subsystem controller 
design, instead of robust PID synthesis introduced in the 
literature. Linear identification techniques are used to 
represent the nonlinear dynamics of the system into a 
linear model plus multiplicative uncertainty. An H∞ 
controller is designed in the framework of composite 
control, in order to optimize the required control effort, 
along with satisfying robust stability and desirable 
performance. The effectiveness of the proposed control 
law is compared with other methods through a 
simulation study. The comparison results show a 
significant improvement in control effort, while satisfying 
both stability and performance requirements. 

1. Introduction 

The importance of flexibility in modeling and control 
synthesis of industrial robots has been experimentally 
shown in [6]. On the other hand, harmonic drives and 
torque transducers are extensively used in industrial and 
space robots. The joint flexibility produced by these 
elements, is one of the main reasons of widespread 
international attention to the topic of control of flexible 
joint manipulators in recent years. Spong et al observed 
that, by neglecting the flexibility of such systems, the 
designed controller, may even cause instability [5]. 
Singular perturbation is the main idea for modeling of 
flexible joint manipulators, and to separate the slow and 
fast dynamics. In most representations the elastic 
deformations are considered small, and the elasticity of 
the joint is modeled with linear torsional spring. The 
controller synthesis is, hence, separated into two parts in 
order to control the fast and slow dynamics, respectively. 
This type of control design is named composite control 
in the literature [4, 5]. Spong showed that by neglecting 
the rotor motion from kinetic energy derivation of the 
system, FJR becomes feedback linearizable, and hence, 
introduced a feedback linearization control algorithm for 
such systems. The main drawback of this method is its 
dependence to the acceleration and jerk measurements 
[4]. To avoid these costly measurements, a novel integral 
manifold control is introduced, by Spong et al in [5]. In 

this method the first order approximation of the flexible 
reduced order model is used, and hence, a correction 
term is added to the composite control law. In order to 
design the rigid control term many algorithms are 
proposed in the literature. Adaptive schemes are 
proposed by Khorasani [3], and followed by Ghorbel 
et al [2], while Taghirad and Khosravi proposed a simple 
form of PID controller [8]. The PID controller is 
designed with an emphasis on robust stability of the 
system, imposed to parameter and input uncertainties. 
One of the drawbacks of the aforementioned algorithms 
is their relatively high control efforts needed to 
accomplish a good performance. In this paper the control 
synthesis of FJR�s are reconsidered with the emphasis on 
robust performance and especially to optimize the 
required control effort, while obtaining robust stability 
and desired performance. In continuation of the previous 
results, the main significance of this method is providing 
a systematic approach to use the control effort limitations 
directly into controller synthesis. In order to introduce 
the proposed method, previous results on robust 
composite control of flexible joint robots are overviewed 
in next section. The representation of the nonlinear 
dynamics of the system in terms of a linear model and 
multiplicative uncertainty is elaborated next, and an H∞-
based robust controller is designed for the system. By 
analyzing the performance of the closed-loop system, it 
is observed that, the low frequency content reference 
inputs are well tracked, with a limited control effort, 
while the controller synthesis enables the designer to 
make a suitable compromise between the required 
bandwith and the control effort limitation. Moreover, in 
order to have the benefits of composite control law in 
addition to that of H∞ synthesis, these methods are 
combined and a composite H∞ controller is designed for 
the system. Through a simulation study it is shown that 
the composite H∞ controller provides significant 
improvement in control effort, while satisfying both 
stability and performance requirements. 

 2. Composite Control of FJR  

The singularly perturbed model of an n-link flexible joint 
robot with revolute joints, can be represented as [8]: 
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In which, q is the link position vector, z is the spring 
elastic force vector, and ε is the inverse of spring stiffness 
1/k, and the other parameters are as following:  
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Where, M(q) is the mass matrix,  is the inertial 
centrifugal and Coriolis torque vector, J is the Matrix of 
actuator moments of inertia, D is the vector of damping 
coefficients, and T

( , )N q q!

F is the external disturbance torque 
vector, and the effect of unmodeled dynamics of the 
system [8].  
Defining the integral manifold as Mε in form of 

: ( , , , )M z H q q uε ε= !  and limiting the system dynamics to 
remain within this manifold, the reduced order flexible 
model of the system, satisfies the following equation:  

 ),u,q,q(H)q(A)q,q(aq 11 ε+= !!!!  (3)
The integral manifold remains invariant, provided that the 
fast dynamics of the system is stabilized with the fast 
control term of a composite control law as following [8]: 

),(u),q,q(uu fs ηη+ε= !!  (4)
In which uf is designed based on asymptotic stability of 
fast subsystem, and us stabilizes the slow subsystem 
robustly with a PID design scheme elaborated in [8]. η is 
the variable indicating the variations of fast dynamics 
variables from integral manifold: 
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In which it is assumed that uf (0,0) = 0. Hence, the fast 
subsystem dynamics satisfies the following equation:  
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This is a dynamic relation with respect to q and its 
stability can be obtained with pole placement method. The 
slow subsystem control effort us, has a correction term, 
which is obtained by first order approximation of us, and 
H about ε=0 as following: 
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These approximations must satisfy the manifold 
invariance condition; hence: 
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By equating the similar order terms in the above relation, 
first uo is designed based on the robust stability of the 
rigid dynamics, and then the correction terms ui: i=1,2,� 
can be designed up to desired order in terms of uo. The 
details of stability theorems of this design procedure are 
given in [8], and a simulation-based comparison study is 
forwarded in [9]. It is observed that in all compared 
methods in this simulation study, the required control 
efforts show some peaks in small time intervals, which is 
hardly implementable. In order to remedy this 
shortcoming an improvement in the design procedure is 
proposed here within a robust H∞ design framework. 

3. H∞ Controller design for FJR 

Since the required objectives of robust stability, fast and 
suitable tracking response and disturbance attenuation 
despite the limited control effort, are well suited into an 
H∞ design framework, in this section the FJR controller 
design is reformulated such that this methodology can be 
applied. In order to apply H∞ synthesis to this problem, 
the nonlinear model of FJR is represented by a linear 
model and multiplicative uncertainty, using a systematic 
linear identification scheme. In this representation, the 
nominal model replicates the dynamic behavior of the 
system, only at nominal conditions, and all nonlinear 
interactions, unmodeled dynamics and the disturbances 
are encapsulated via an unstructured uncertainty 
representation. This idea is used extensively in many 
applications, where linear H∞ schemes are used in 
controller design of some nonlinear systems [7].  
In order to represent a system into this form, suppose the 
true system belongs to a family of plants ∏, which is 
defined by using the following perturbation to the nominal 
plant Po: 

( ) ( ) ( ) ( )( ) ( )1 oP s P s s W s P s∀ ∈Π = + ∆  (9) 
In this equation W(s) is a stable transfer function 
indicating the upper bound of uncertainty and ∆(s) 
indicates the admissible uncertainty block, which is a 
stable but unknown transfer function with ║∆║∞< 1. In 
this general representation ∆(s)W(s) describes the 
normalized perturbation of the true plant from nominal 
plant, and is quantitatively determined through identi-
fication in each frequency: 

( )
( ) ( ) ( )ωω∆=−
ω
ω jWj1
jP
jP

0  
(10)

In which 1
∞

∆ < ; hence,  

( )
( ) ( ) ω∀ω≤−
ω
ω ,jW1
jP
jP

0  
(11)

Where, │W(jω)│ represents the uncertainty profile with 
respect to frequency. Nominal plant Po, can be evaluated 
experimentally, through a series of frequency response 
estimates of the system in the operating regime [7]. Linear 
identification for the system can be applied with different 
input amplitudes, while their outputs are measured and 
logged. By minimizing the least squares of the prediction 
error, from the set of input-output information, a set of 
linear models are estimated for the system, which can be 
considered as Π. The uncertainty upper bound W(s), is 
then obtained using Eq. (11), while the nominal plant Po is 
selected from the average fit over all the individual 
identified plants. By this means, not only the nominal 
plant of the system is obtained, but also a measure of its 
perturbations, will be represented by the multiplicative 
uncertainty. This representation is highly effective, if the 
system variations from its nominal conditions are not 
large, especially within the desired closed-loop bandwidth 
of the system. In order to illustrate the details and 
effectiveness of this method, it is implemented for the 
one-link flexible joint manipulator introduced by Spong 
[4]. 



 

Table 1: One-link flexible joint robot parameters 

Parameter Nominal Values
Mass M=1 
Joint Stiffness K=100 
Length (2L) L=1 
Moment of Inertia I=1 
Rotor Inertia J=1 

 
The system dynamics are represented as follows: 
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In which x1 and x3 are the link and rotor angles, 
respectively and the system parameters are given in 
Table 1. 

 
Figure 1: Frequency response estimates of open-loop one-

link flexible joint robot; Nominal plant and uncertainty 
profile. 

Figure 1, illustrates some frequency response estimates of 
the system and its relating uncertainty profile. Multi-sine 
and chirp functions with different amplitudes and 
frequencies are used as inputs, and least-square estimation 
methods1, are used to find the estimates. The nominal 
model of the system Po, is determined from average of the 
estimated models, whose transfer function is as following: 
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The nominal plant has four poles at s = -0.018±3.39j and 
s=-1.63±12.03j, and two zeros at s=-41, -137, with a DC 
gain of �31 dB. The uncertainty weighting function is 
estimated as W(s)=0.176(s+0.4)2. Relatively small 
uncertainty at low frequencies is promising a suitable H∞ 
controller design, but sharp increase of the uncertainty at 
ω=0.4 rad/sec warns about the limitations on achievable 
closed-loop bandwidth for this system. The peak of 

uncertainty estimation at frequency 33.5 rad/sec exposes 
this bandwidth limitation. Hence, a second choice of the 
uncertainty profile is also illustrated in Figure 1 and in 
Equation 14, in which the sharp peaks are neglected. In 
practice due to the conservativeness of H∞ design, this 
assumption will reduce the bandwidth limitation without 
any practical stability concerns. 
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Figure 2: The closed-loop block diagram of system with 

input multiplicative uncertainty. 

Figure 2, illustrates the block diagram representation of 
the system with multiplicative uncertainty. The objectives 
of controller design are robust stability and good tracking 
performance in presence of torque disturbances, despite 
the limited control effort. All these objectives can be 
simultaneously optimized by the solution of a mixed-
sensitivity problem formulated on the generalized plant 
illustrated in Figure 3. The robust stability is guaranteed 
by minimizing the infinity norm of weighted transfer 
function from yd to z1, which is equivalent to the weighted 
complementary sensitivity function: ║WT║∞<1 (Small-
gain theorem). The tracking performance and disturbance 
attenuation is obtained by minimizing the infinity norm of 
yd to z2, or the weighted sensitivity function ║WsS║∞<1.  

 
Figure 3: Block diagram representation of mixed- 

sensitivity solution for system. 

The sensitivity weighting function Ws, must be selected 
such that the performance requirements like response 
speed and steady state errors are satisfied. Finally, the 
infinity norm of yd to z3, or weighted control effort transfer 
function penalizes controllers with high control effort, and 
provides a media in our optimization to include directly 
the control effort limitations into the controller synthesis. 
Hence, by simultaneously optimization of the infinity 
norm of the transfer matrix ║Tyz║∞<1, all the objectives 
are satisfied, provided that a solution exists to the mixed-
sensitivity problem. Many tractable numerical solutions 
exist for this problem2. The problem has been solved for 

                                                 
2 �Hinfsyn� function in µ-synthesis is used. 



 

the represented FJR, with an upper bound for control 
effort corresponding to Wu=0.001. This selection indicates 
that the maximum amplitude of the control effort for all 
reference inputs can only be smaller than W 1

u
− . The 

sensitivity weighting function is determined in order to 
have solution for the mixed sensitivity problem as well as 
to have maximum reachable bandwidth as following: 
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This selection indicates that the disturbance attenuation 
gain must be at least 20:1 or the steady state error to a unit 
step is smaller than 5%, while the designed bandwidth is 
about 1.6 rad/sec. The H∞ solution for this problem is 
calculated from numerical solutions as following with a 
DC gain of 57 dB. 
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To analyze the performance of the closed loop system, the 
nonlinear model of the system is used in simulations. First 
a sinusoid reference trajectory with frequency 2 rad/sec is 
considered, and the closed-loop response is illustrated in 
Figure 4. The tracking error is quite small, despite the 
limited control effort of order 103 (as assigned by Wu). 
Figure 5 illustrates the closed-loop tracking performance 
of the system with the proposed controller, in which the 
settling time is desirably short, and the tracking 
performance is quite suitable. Comparing these results to 
the composite controls introduced in [4] and [8], 
comparable tracking performance are obtained in spite of 
much smaller control effort. In addition to that, the H∞ 
controller is much simpler in structure and easily tunable 
and implementable. These desirable performances cannot 
be obtained if in the uncertainty representation, the sharp 
peaks were not neglected. Despite the practical 
importance of this method, since the uncertainty rep-
resentations are not accurately concurrent with the 
identification results, robust stability of the closed-loop 
system cannot be claimed rigorously. In order to remedy 
this theoretical draw back, the composite controller design 
is combined with the proposed H∞, replacing the robust 
PID design in the composite control law with an H∞ 
controller, designed to reduce the control effort. The 
details of the proposed composite H∞ are elaborated in the 
next section. 

4. Composite H∞ Control law 

Consider the composite control structure introduced in 
section 2 and in [8]. The control effort is composed of 
three terms, in which according to Equation 4, uf is 
designed to stabilizes the fast subsystem, and us has two 
main components: uo, and  u1, corresponding to the robust 
PID and the correction term from the integral manifold 
contribution in the slow subsystem control law. 
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Figure 4: Closed-loop tracking performance of 
H∞ controller to sinusoid reference command. 
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Figure 5: Closed-loop tracking performance of 
H∞ controller to a unit step reference command. 

Rigorous Lyapunov-based stability theorems are 
introduced in [8], which guarantees the robust stability of 
the closed-loop system with this control configuration. 
We propose, replacing the robust PID controller which is 
designed with only robust stability concern, with an H∞ 
controller designed for robust stability and tracking, 
especially to reduce the undesirable control effort. In 
order to accomplish that, similar identification schemes 
are applied to the closed loop system with the above 
composite control configuration, and different input-
output data is collected from the output of the PID and the 
plant blocks, respectively. By this means, the overall 
closed-loop system with fast control uf, and u1, is 
identified, excluding only uo term generated by the PID 
term. Hence, similar H∞ synthesis approach can be 
forwarded for this system to replace the PID with an H∞-
based controller. By this means not only the benefits of 
robust tracking synthesis is obtained, despite the control 
effort saturation, but also the robust stability theorems 
developed for the composite control law can be applied to 
the overall closed-loop system. 



 

Frequency Response Variations and Nominal Model
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 Figure 6: Frequency response estimates of composite 

controlled one-link flexible joint robot; Nominal plant and 
uncertainty profile. 

Let us apply the combined composite and H∞ algorithm 
for the one-link flexible robot of [4], and compare the 
results to the previous algorithms proposed in this paper. 
Similar identification simulations are forwarded for this 
configuration, and the estimated frequency response 
estimates and its uncertainty profile is given in Figure 6. 
The nominal plant of the identified model and the 
uncertainty profile upper bound are determined as 
following: 
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The uncertainty profile obtained for this system has DC 
gain of �2.5 dB, but provides much wider frequency band-
width. The reason for this improvement in uncertainty 
description is the effect of feedback, which makes the 
system more linear. Hence, much suitable tracking 
performance is expected for this representation. Using the 
control effort weighting function as W , the 
mixed-sensitivity problem is solvable for the following 
performance weighting function: 

4103 −×=u
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The selected performance weighting function indicates a 
bandwidth of 0.8 rad/sec, with a disturbance attenuation 
ratio of 20:1. The H∞ solution to the mixed sensitivity 
problem similar to previous section is calculated from 
numerical software. The designed controller has the 
following transfer function: 
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with a DC gain of 68 dB. As it is observed from the poles 
and zeros of the controller transfer function, it can be 
reduced to a lower order form. The controller is reduced 
into a second order controller, which is quite close to the 
robust PID form designed in [8]. The reduced order 
controller has the following transfer function: 
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Figure 7: Closed-loop tracking performance of composite 
H∞ compared to composite PID, to a sinusoid reference 

command. 

In which the DC gain of controller remains as before. The 
tracking performance of the system is illustrated in 
Figure 7. The reference signal is a sinusoid with 5 rad/sec 
frequency and the simulation is executed with a saturation 
block for a maximum control effort of 4000 N.m for 
composite PID controller, and 1000 N.m for composite 
H∞. This result illustrates the effectiveness of the 
proposed composite H∞ to provide larger bandwidth and 
suitable tracking error, despite a limited control effort. 
The robust PID controller results into instability in 
presence of control effort limitations, even with four times 
larger bounds on the control effort of composite H∞.  
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Figure 8: Tracking performance and control effort 

comparison of composite PID, H∞ and Composite H∞. 

To have a comparison between the results obtained with 
the two proposed methods and composite PID method [7], 
the tracking performance and control effort of them for a 
multi-sine reference command is illustrated in Figure 8. 
The closed-loop response of the system with H∞ controller 
is plotted with dashed line, composite PID with dash-
dotted line, and the proposed composite H∞ with dotted 



 

line. In the first figure the overall tracking performance of 
all methods are observed to be quite comparable, while in 
the second graph the tracking error is shown more 
accurately. In the last graph the control effort required by 
each method is given. Table 2 gives the two- and infinity-
norms of the tracking error and corresponding control 
effort. The tracking error of the composite H∞ has similar 
error compared to the composite PID, but requiring only 
about a quarter of corresponding control effort. H∞ 
controller results have the least control effort, on the other 
hand, but with relatively larger tracking error. This 
comparison clearly illustrates the effectiveness of 
combining composite control law with H∞ synthesis, in 
order to obtain a suitable tracking performance, with 
much smaller required control effort. Practical control 
effort limitations may cause even instability in the 
composite PID algorithm, while this limitation is fully 
acknowledged and compensated for, by the proposed 
composite H∞ synthesis. 

Table 2: Tracking error and control effort measures for 
different control algorithms. 

Control Method 2
e  e

∞
 u

∞
 

H∞ control  2.52 0.12 51003.0 ×
Composite PID  1.08 0.077 51042.0 ×
Composite H∞ 1.71 0.151 51013.0 ×

5. Conclusions 

In this paper, the robust control of flexible joint 
manipulators, with the emphasis on the performance and 
control effort limitations, is analyzed in detail. First, 
previous research on composite PID control law is 
elaborated, and the main draw back of it to provide 
solutions for limited control effort is described. Then 
with a new approach to the control synthesis of the 
system, an H∞ framework is proposed. In this 
framework, linear identification techniques are used to 
represent the open-loop system nonlinear dynamics as a 
linear model with multiplicative uncertainty. Then, an 
H∞ controller is designed for the system with the 
emphasis on robust performance and especially limited 
control effort. By this means relatively suitable tracking 
performance is obtained with much smaller control 
effort, compared to that of composite PID controller. In 
order to have the benefits of composite control in 
addition to H∞ controller, it is proposed to combine these 
methods, in which the PID controller of the composite 
algorithm is replaced with an H∞ controller, designed for 
performance. This has been accomplished by the 
proposed algorithm and the tracking performance and 
control effort limitations are compared in a simulation 
study. It is observed that on the contrary to composite 
PID control, the composite H∞ control is robustly stable, 
despite control effort limitations. Moreover, it is shown 
in the simulation study, that the proposed composite H∞ 
control law can provide similar tracking performance to 
composite PID, with much smaller control effort. This 
yields to a significant improvement in control effort, 

while satisfying the robustness and performance 
requirements.  
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