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Abstract

In this paper the control of flexible joint manipulators is studied in detail. The model of
N—azis flexible joint manipulators are derived and reformulated in the form of singular per-
turbations, and integral manifold is used to separate fast dynamics from slow dynamics. A
composite control algorithm is proposed for the flexible joint robots, which consists of two main
parts. Fast control, uy, which guarantees that the fast dynamics remains asymptotically stable,
and the corresponding integral manifold remains invariant. Slow control ,us, itself consists of
a robust PID designed based on the rigid model, and a corrective term designed based on the
reduced flexible model. The stability of the fast dynamics, robust stability of the PID scheme are
analyzed separately, and finally, the closed—loop system is proved to be UUB stable, by Lyapunov
stability analysis. Finally, the effectiveness of the proposed control law is verified through simu-
lations. The simulation results of single and two—link flexible joint manipulators are compared to
that given in the literature. It is shown that the proposed control law ensure the robust stability

and performance, despite the modeling uncertainties.
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I. INTRODUCTION

Multiple—axis robot manipulators are widely used in industrial and space applications. The
success in reaching high accuracy in these robots is due to their rigidity, which make them highly
controllable. After the inception of harmonic drive in 1955, and its wide acceptance, and use in
the design of many electrically—driven robots, the rigidity of the robot manipulators are affected
greatly. In early eighties researchers showed that the use of control algorithms developed based
on rigid robot dynamics on real non-rigid robots is very limited and may even cause instability
[18]. The singular perturbation theory is used as the basis to model the dynamics of the flexible
joint robots, in which by use of two—time scale behavior, these systems are divided into fast and
slow subsystems[9], [10]. As shown in [2] for a three—axis flexible robot the system is not feedback

linearizable, and the use of methods such as computed—torque methods for flexible manipulators



is not directly implementable. By neglecting the effects of link motion on the kinetic energy
of the rotor, Spong has derived a mathematical model for such systems, in which the system
is feedback linearizable [16]. However, to linearize the system acceleration and jerk feedback
is required whose measurement are costly. To avoid the need of acceleration and jerk in this
method the idea of integral manifold is employed. In this method instead of using the zero order
approximation of the model extracted from the singular perturbation theory, higher order models
can be used, and hence, a series of corrective terms is added to the control algorithm [6], [18].
In adaptive methods many algorithms are developed for FJR’s, in most of which a term due to
the fast subsystem is added to the adaptive algorithm based on rigid models [5], [6]. In robust
methods by considering model uncertainties the stability of the fast subsystem is first analyzed
and by the use of robust control synthesis, a robust controller is designed for the slow subsystem
1], 3.

As it is shown, most of the research on FJR’s are concentrated on nonlinear control schemes.
In this paper we propose a new method based on the simple form of PID, and analyze the robust
stability of the uncertain closed-loop system in the presence of structured and unstructured
uncertainties. In this analysis we borrow the idea of the singular perturbation model of the
flexible joint robot, but in presence of the modeling uncertainties, and divide the system into
slow and fast subsystems. Then we introduce an integral manifold plus a composite control law in
order to restrain the integral manifold invariant and to satisfy asymptotic stability requirement.
The control effort consists of three elements, the first element is designed for the fast subsystem,
the second term is a robust PID control designed for the rigid subsystem and the third term is a
corrective term designed based on the first order approximation of the reduced flexible system.
Based on the Lyapunov stability theory the complete closed-loop system is proven to be UUB
stable. In order to verify the effectiveness of the proposed control law design, and compare
its results to that presented in the literature, simulation of single and two link flexible joint
manipulators are examined. It is shown in this study that the proposed control law ensure the

robust stability and performance, despite the modeling uncertainties.

II. FLEXIBLE JOINT ROBOT MODELING

Spong [16], has derived a nonlinear dynamical model for FJR using singular perturbation,
in which the slow states are the position and velocities of the joints and the fast states are the
forces and their derivatives. In order to model an N—axis robot manipulator with n revolute joints
assume that: ¢; : © = 1,2,...,n denote the position of i’th link and ¢; : ¢t =n+1,n+ 2,...,2n
denote the position of the i’th actuator scaled by the actuator gear ratio. If the joint is rigid
Gi = Gn+iVi. For flexible joint, if the flexibility is modeled with a linear torsional spring with

constant k;, the elastic force z; is derived from:
zi = ki(¢i — Gnti) (1)

The spring constants k;’s are relatively large and rigidity is modeled by the limit k; — co. Let

u; denotes the generalized force applied by the i’th actuator and use the notation:

q = (lea'--annann-i-la"'anZn)T = (QﬂCIQT)T (2)

The equation of motion of the system can be written in the following form using Euler-Lagrange



Fig. 1. Two-link Flexible Joint Manipulator.

formulation.

{ M(q1)d1 + N(q1, 1) = K(g2 — q1) (3)

Jj» = K(¢1 —q2) — Do+ Tp + u

in which,
N(q1,q1) = Vin(q1d1)d1 + G(q1) + Fagr + Fs(41) + Tq (4)

and K is the joint stiffness matrix, M (q;) is the mass matrix, V;,,(¢q1¢1) is the matrix of Coriolis
and centrifugal terms, G(q;) is the vector of gravity terms, Fy is the viscous friction matrix,
Fs(¢1) is the Coulomb friction vector, Ty is the vector of the joint bounded unmodeled dynamics,
J is the actuator moments of inertia matrix, D is the actuator viscous friction matrix, and Tr

is the actuator bounded unmodeled dynamics. For all revolute manipulators, it is shown in [4],
[12]

mil < M(q) <maol 5 ||[Vi(gr @)l < Celldr]] (5)
G(g)ll < ¢ 5 ||Fadi + Fs(qr)l| = Cro + Crllan]] (6)
I <J<jgol ; dil <D <dol (7)

Moreover, if the perturbations are bounded:

I Tull < Ce 5 TrIl < Cp2 (8)

in which (o, (e, d2,d1, j2, j1, 1, € f0, Cgs Ce, M2, M are positive real constants. If the joints are all
rigid:
My(q)G + Ni(g,q) = uo (9)

in which ¢ = ¢; and M, is a positive definite matrix. This model is the model of FJR where
k — oo verifying that the FJR model is a singularly perturbed model of rigid system. Assume

that all spring constants are equal® the elastic forces of the springs can be calculated by:
z =kign—q), K = kI (10)

in order to use a small quantity for singular perturbation define ¢ = % by which for rigid system

(k — o00) in this form we have ¢ — 0. Multiplying M~! to the both side of 3 and taking

!This assumption does not reduces the generality of the formulation, since by scaling z we reach to the same

conclusion.



z=k(q1 — ¢2), ¢ = q1, and using ¢» = 1 — €2:

{Q‘:al(q,d)JrAl(q)z (11)
€Z = as(q,q,€2) + A2(q)z + Bau
in which,
A =-MYq) ; ar=-M '(q)N(q,q) (12)
ag = —eJ 'Di+J 'Di—J T — M ' (q)N(q,q) (13)
Ay=—(M"Nq)+J7Y), By =-J"" (14)

Equation 11 represents FJR as a nonlinear and coupled system. This representation includes

both rigid and flexible subsystems in form of a singular perturbation model.

III. REDUCED FLEXIBLE MODEL

The singular perturbation model of the FJR is given in Equation 11, This model represents
the flexibility in the joints, however, the reduced order model is the model of rigid system, which
can be easily derived from Equation 11 by setting ¢ = 0. With some matrix manipulation it can
be shown that:

(M + J)j+ N —Tp + Dj = ug

Rewrite this equation in this form:

in which
Mi(q) = M(q) +J (16)
Ni(q,4) = N(q,q) —Tr + DG =
Vin(9,4)4 + G(q) + (Fq + D)g + Fs(4) + Ty — Tr (17)

This representation introduces a 2n dimension Manifold, M,, which is called the rigid Manifold.
If € # 0 the produced manifold M., which is a function of € represents the flexible system. To

define flexible manifold M, assume:

z = H(q,q,u,¢) geR",ueR", ze R" (18)

Z2=H(q,q,u,¢) geR"™, ueR", ze R" (19)

M. is an integral manifold for the flexible system if for each initial condition

z(t) = A q(t) =¢

. and .

2(t) = A q(t) = ¢'
in M, all trajectories of ¢(¢) and z(t) for ¢ > t, remain in the manifold M.. In other words
Vi > t,:



Equations 20 and 21 are called the manifold conditions. An integral manifold for FJR exists if
Ay = —(M~! + J71) is nonsingular Vg € R™ [10]. This is always true since the mass matrices
M, and J are positive definite. If the manifold condition are not satisfied at initial time ¢,, but
the fast dynamics are asymptotically stable, the initial transient will die down shortly, and the
manifold condition will be satisfied after a short transient.

In order to derive the reduced flexible model, the flexible manifold is used in the formulation.
Assume that the function H is several time differentiable with respect to its arguments. Hence,

by differentiating Equations 20 and 21 and substitution in Equation 11:

6H(Q7 qlaua 6) = GQ(Q,q, EH(q,q,U, 6)) + AQ(Q)H(Q, q.aua 6) + B2u (22)
in which,
. OH OH 0u O0H OH 0u
7= e P A )+ Y 2
(B T auag)d T ag @t A+ 505 (23)

Now, the reduced flexible model can be derived by replacing z, z with H, H in Equation 11.

qg=a (qa q) + A1 (q)H(Q7 q,u, 6) (24)

The order of this equation is equal to the rigid system, however, this model includes the effects
of flexibility in form of an invariant integral manifold embedded in itself. Hence, this reduced
order model is not an approximation of the FJR model, but it represents its projection on the

integral manifold.

IV. CoMPOSITE CONTROL

In order that the reduced flexible model hold for the system, it is essential that the M, be an
invariant manifold, or the fast dynamics be asymptotically stable. This can be satisfied using a
composite control scheme [9]. In this framework the control effort u consists of two main parts,

us the control effort for slow subsystem, and u; the control effort for fast subsystem, as:

U = Us(Qadae) +Uf(77’7?) (25)

in which us(n,n) is designed such that the fast dynamics becomes asymptotically stable. 7

denotes the deviations of fast state variables from the integral manifold.

n:Z_H(Qaq.ausae) (26)

f]:z"—H(q,q',us,e) (27)

The slow component of the control effort, us(q, ¢, €), is also designed based on the reduced flexible
model. In this section we describe the design technique for u; and u, in the next subsections,
respectively.

A. Fast Subsystem Dynamics and Control

Recall Equation 26

€1) = €Z — eH =
a2(q7 q‘a €Z) + AZ(Q)Z + BZU - (G‘Z(qa q.a 6‘E{) + AZ(Q)H + B2us)



or,
61.7 = [G‘Z(Q7 q.a GZ) — a2 (qa q‘a EH)] + AZ(q)T’ + BZuf (28)

Substitute the value of as and use fast time scale 7 = ﬁ with some manipulations we reach to

[8]:
e = A2(q)n + Bauy (29)

7 0 el [n 0
M B lAQ(q) 0] M i lBJ“’” 0)

The flexible modes are not stable since the eigenvalues are on the imaginary axis. Hence, uf

and in state space form:

must be designed such that the eigenvalues are shifted to the open left half plane in order to
guarantee stability.

Theorem 1: The diagonal and positive definite matrices K,y and K, exist such that the closed
loop system including the subsystem 29 with the control effort uy = Kprn + K,rn becomes
globally asymptotically stable. (Proof in [8])

B. Control of Reduced Flexible Model

The reduced flexible model represents the effect of flexibility in the form of the flexible integral
manifold. In this section a robust control algorithm is proposed for the system based on this
model. In order to accurately derive a robust control law wus(q, ¢, €) for the system, manipulation
of partial differential equation is necessary. To avoid complex manipulations, we propose deriving
the robust control law us(q, ¢, €) to any order of € from the series expansion of the integral manifold

to the same order of e.
H(q7Q7u576) :Ho(q7Q7us)+6H1(Q7Q7us)+"' (31)
and implement the controller u4(q, ¢, €) in the same form as:

Usg (qa q‘a 6) = uO(Qa Q) + eup (qa Q) +oe (32)

in which the functions H;(q, ¢, us),ui(q,q), i = 0,1,--- are calculated iteratively without need
to solve the partial differential equations. It is important to note that as € — 0, u, tends to rigid
control, and H tends to rigid integral manifold. By substitution of Equations 31 and 32 into

manifold condition 22 we reach to:

6ﬁ0(Q7 q.aus) + 62ﬁ1(q7q.7us) +oe = aZ(Qa q.a 6I:.{U + 62-E.{l + - ) + AQ(Q)(HO + GHI + - )+
Bo(ug + €uy + -+ +) (33)

The right hand side of Equation 33 can be expanded with respect to the powers of € and by
addition of equal powers of €, a set of equations for H;,u;, + = 0,1,--- in term of € are resulted.

The first order approximation of Equation 33 will result in:
6-EIO(qa q‘a us) = a?(Qa qla 6-E[()) + AQ(Q)(HU + EHI) + BZ(UU + 6“1) + 0(62) (34)
When € = 0 the equation relating ug to Hy will be:

0 = ago + A2(q)Ho(q, ¢, uo) + Baug (35)



in which:
a0 = aZ(Qa qs 0) = Jﬁqu‘ - JﬁlTF(Qa Q) - Mﬁl(q)N(qa q) (36)

ug is designed using a robust design technique based on the rigid reduced order model (e = 0),
and Hj is calculated from:
Hy = —AEI(GQU + BZU[]) (37)

The details of robust design technique is explained in the next section. Now, since ug and Hy
are known, from Equation 34, H; can be similarly calculated in terms of u;, and the first order
manifold H; can be substituted into the reduced flexible model (Equation 24). If higher order
terms are neglected, the first order corrected model for the system is derived. In order to calculate
H, from H{ and uyg, let:

GQ(Q, q‘a EH) = ay + 6Aa2 + 0(62)

in which agg is given in Equation 36, and compare to Equation 13 we reach to:

{Aa2 =—J DH
Aagy = —JleHO

Hence,
EHO = agy + AsHy + Boug + E(AaQO + AsHy + BQ’U,l) + 0(62) (38)
Compare Equation 38 to 35:
Hg = Aago + A2H1 + Bgul (39)
Therefore,
H, = AQ_I(HO — Aagy — BQ’U,l) (40)

To calculate uq refer to reduced flexible model 24 and approximate it to the first power of e:
G = a1(g,9) + A1(q)Ho + €A1 (q) Ay ' (Ho — Aagy — Bouy)
By factoring the equal powers of € we reach to:
uy = By Y (Hy — Aag) (41)

The only condition on robust control design is that wg must be at least twice differentiable.

Finally, the control law for slow subsystem has the form:
Us = ug + €Uy (42)

In which wu; is called the corrective term which is derived through this subsection and ug is the

robust control based on the rigid model elaborated in the next section.

C. Robust PID Control for Rigid model

In this section we first propose a robust PID controller based on the rigid model of the system
and then prove its robust stability with respect to the model uncertainties. Recall the rigid

model of the system from Equation 15, choose a PID controller for wug:

t
ug = Kvé—i—er—l—K]/O e(s)ds = Kz (43)



in which

€=4qd—¢
K=[K; Kp Ky]
x =] geT(s)ds el et

Similar to [4], [13] and [14], assume:

myl < Mi(q) <l (44)
and put some limits on:
INUI < B+ BUILI + BATIE 5 [Viall < B+ BallL] (45)
in which ||| is the Euclidean norm and L = [ ¢T]. Implement the control law ug in 15 to get:
&= Az + BAA (46)
where
0 I, 0 0
A= 0 0 I, B=] 0
~M7'K; -M7'Kp —-M'Ky Mt
AA = Ny + Mygq (47)

To analyze the system robust stability consider the following Lyapunov function:
1 t ¢
V(z) =2" Pz = §[a2/ e(s)ds + are + €T . My.[a / e(s)ds + e + €] + w! Pyw (48)
0 0

in which

ge(s)ds p 1| asKp+ o1 K oKy + Kp
w = 1 = —
2 as Ky + Kr a1 Ky + Kp

e
Hence,

| CYQKP + OllK] + Ol%Mt CYQKV + K[ + 0[10[2Mt Olth
P = 3 Ky + Ki + aiceMy  oq Ky + Kp + oM, oM,
a2Mt Olet Mt

Since M, is a positive definite matrix, P is positive definite, if and only if, P; is positive definite.

Now choose,

Kp =kpl
Ky = kyI
K =FkiI

such that,

askp + arky  asky + kg
asky + kr arky +kp

becomes positive definite. The following Lemma gives the conditions where V' can become

positive definite and upper and lower bounded.



Lemma 1: Assume the following inequalities hold:

a; >0 ag>0 op+ax<l1
S1 :ag(kp—kv)— (1—0[1)]61—0[2(1-’-@1 —ag)mt >0

so =kp+ (0[1 — ag)k‘v —kr — 0[1(1 + ag — al)mt >0

Then P is positive definite and satisfies the following inequality (Rayleigh-Ritz)[11]:

AP)|z]]” < V(z) < XP)|=|” (49)

in which,
A —ap —as 81 82
P) = - - R
A(P) = min{l 0%y, 21 %2
- 1+a1+as__ s3 s4
P) = - - 2 =
A(P) = max{ > mt32a2}

and

s3 = ag(kp + ky) + (L +ar)kr + (1 + a1 + a2)aoimy
sS4 =army(l + a1 + ag) + (a1 + a)ky + kp + kr

Proof is based on Gershgorin theorem and is similar to that in [13]. Now when P is positive
definite then:

V(z) =2T(ATP 4+ PA+ P)z +2:"PBAA (50)
asl aol
Vir) = —z'Qx+ %xT ol | My[oaol onI Ilz+z' |l | AA (51)
1 I
L, 0 ol aranl My, O 0
+ 3% ool 20100 (0 + o)1 0 M, 0 |z
arasl  (a? + ao)T al o 0 M

refer to [12]
y" My = 2y" Viny
with some manipulations we can show [8]:
V(@) < —llall? + AlVaalllol? + Malial? + o3 Azl 1A A

V() < |zl (€ — & llzll + &lll) (52)

and
Y= min{azk[, qup — OszV — k[, kv}
Now considering Equations 45, 47 and 52 and ||L|| < ||z|| then,

& = ay'M\Bo+ay A sy
& = =\ — Ny —ay A B
& AiBi+ ay ' M B



in which
AL = Amaz (B1)
A2 = Apaz (R2)
A3 = sup||dal
and Aprin, Anaz are the least and largest eigenvalues, respectively, and

a%[ ajasl  aol

Ry = | gyl a%[ arl
asl a1l I
0 ol aragl
Ry = % aol 201l (@2 + ao)T
araol  (a? + ag)l ol

According to the result obtained so far, we can proof the stability of the error system based on
the following theorem.
Theorem 2: The error system 46 is stable of the form of UUB, if £; is chosen large enough.
Proof:  According to Equations 52 and 49 and the Lemma 3.5 from [12], if the following
condition hold, the system is UUB stable with respect to B(0,d), where

AP
£1+\/51 —45052VAP

d=

The conditions are:
&1 > 262
&+ &G\ -4t > 2661+ M)

§1+ /& — 4 > 26 |1U0||\/

These conditions can be simply met by making ¢; and the control gains Kp,K,, and Ky large

enough. |

V. STABILITY ANALYSIS OF THE COMPLETE CLOSED-LOOP SYSTEM

The stability of the fast, and slow subsystems are separately analyzed in previous sections.
However, the stability of the complete closed-loop system may not be guaranteed through these
separate analysis [10]. In this section the stability of the complete system is analyzed. Recall
the dynamic equations of the FJR Equation 11. The integral manifold and the control effort are

chosen as:
n=z—-—H
H = Hy+eH;

U=1Us+Uf =Uy+ €U +Uf
Combine these equations to Equation 11, 40, 37 and 43, and consider, x = [f(;t e(s)Tds el &l ]T
and y = [n7 777 then,

t=Ar+BAA+C[I 0]y (53)

e = Ay (54)



in which,

0 I 0 0
A= 0 0 I ; B= 0
-M'K; -M7'Kp -M'Ky Mt
AA = Ny + Mgy
0
C— 0 _ 0 el
B A ’ B Ay + Bngf —eJ7'D + BQKUf
—41]

Theorem 3: There exist diagonal and positive definite matrices K,y and K,; such that the
closed loop system 54 becomes globally asymptotically stable.
Proof: Substitute Ao, By from Equations 14 into 54, and define:

M7+ J 4+ J Ky =U
eJ'D+J 'Ky =G

Where U and G are both positive definite, since M, J, K,y and K,y are all positive definite,

11 el

Consider the following Lyapunov function:

hence,

Vi =y’ Sy

in which y = [ 7] and,

1[ 21 G
S=-1|°

2 |Gt U!

In order to have positive definite S, according to Shur Complement we must have:

21 >0
-1 —1(2\=1/v—1 -1 -2 (55)
U =G (DG >0=U"-5G7">0

Now since U1, G2 are positive definite in order to satisfy 55 the following condition must be

met:

2>\min (U_l)
Amin (G—Z)

e <
in which A.,;;, is the smallest eigenvalue. Differentiate Vr along trajectories of 54
. . 1 1 1
Ve =9"Sy+y"Sy+y Sy =——n"GTUn—i'[-UT'G— (G +(U)) <0
€ €

Since G is diagonal and positive definite, and limited ¢,¢ will limit (U~')’, then by choosing

appropriate values for K,r, K, Vi becomes negative definite and it can be written as:

Vi = —y Wy



in which
1 [YG'U+UuG)
2 0

0
W =
wovle+quhHy—(Uty-Ggt

Theorem 4: The closed-loop system of Equations 53 and 54 is UUB stable if K7, K, r, and &;

are chosen large enough.
Proof: Consider the following composite Lyapunov function:
V(z,y) =27 Pz +yT'Sy (56)
where T Pz is the Lyapunov function candidated for slow subsystem, and y” Sy is the Lyapunov

function of fast subsystem 54. Therefore, from Rayleigh—Ritz inequality:

A(P)z]|* < 2T Pz < X(P)|||?
AS)Iyl* < y'Sy < MS)llyl®

in which X and ) are the largest and smallest eigenvalue respectively. Adding the above inequal-

ities:
A lyll? + AP)lzl* < V(z,y) < XS)yl” + A(P)||z]?
Define,
Ze =l Nyl (57)
then,
AP x
et [ X7 | < v
AP) 0] [l
S [ o W) luynl
Again apply Rayleigh—Ritz inequality:
(58)

AMZ < VI(Zy) <X Z|

where

Now differentiate 56 along trajectories of 53 and 54,

V = 20T Pi + 2T Pz + 207 Sy + yT Sy = 22T PC[I  O]y+
(227 P(Az + BAA) + 27 Pz] + 247 Sy + 4" Sy

and consider Equations 50 and 52, and define 1 = Aoz (M 1) As it is shown in Theorem (3),

29T SG + 47 Sy < —Nin (W) |y ||



Hence

YAP)  Amin(W) Yl
+éollz + Eall|)?

Vo< [l ||y||1[_ oo A(P)H”x“]

And according to 57
V < ~Z{RZ + &||Zi|| + &\ Zi]|*

where,

R l &1 —71X(P)]
—NAP)  Apin(W)
In order to have positive definite R

At & min (W) = 7N (P) > 0

or,

23%(P
Amin(W) > ’7157() (59)
1
Condition 59 is met by choosing appropriate K, and K, for fast subsystem, hence,
V <1 Zll(€0 — Amin (R Z4 + &)1 Z4)1°) (60)

Now, according to Equations 60 and 58 and the Lemma 3.5 of [12], if these conditions are met
then the closed—loop system is UUB stable with respect to Y (0,d'), where

. f
) + J Amm — 460ty

mzn

and the stability conditions are:
Amin(R) > 2v/60&2

A +¢Amm 45052>252||zt0||\f

&‘

3)

|
These conditions are simply met by increasing A,in(R), through appropriate choice of large &,
and Apin (W). & is a function of the robust PID gains K),, K1 and Ky, and Ay, (W) are affected
by the fast subsystem gains K, ; and K,;. Therefore, by the choice of the controller gains such

that the above conditions are met the robust stability of the closed—loop system is guaranteed.
VI. SIMULATIONS

In order to verify the effectiveness of the algorithm a simulation study has been forwarded next.
In the following simulation study, the results of the closed loop performance of two flexible joint
manipulators examined in the literature is compared to that of the proposed control algorithm.
First a single joint manipulator examined in detail by spong et al [17], has been simulated, and
the closed loop performances are compared. Then, the two link manipulator which has been
studied by Al-Ashoor et al [1], is examined in detail and a robust PID controller is designed for
each joint. Moreover, the closed loop performance of this system is presented. The simulation
results show the effectiveness of the proposed algorithm, despite the simplicity of its structure,

and the convenience of its online implementation.



A. Single Link Flexible Joint Manipulator

Consider the single link flexible joint manipulator introduced in [17].The dynamic equation of

motion of this system is as follows:

:ﬁlsz

. —MgL . K
T = g sin(z1) — —(z1 — z3) (61)
I I
j?g = T4
Ty = E(ac —x3) + lu
1+ = 3 7

in which 1 = ¢; and x2 = ¢o. In the limit of k¥ — oo the rigid model of the system is given by:

51.31 = T2

. —MgL (1) 1

X = sSin|\x — —U
2 T+J O

(62)

in which 27 = ¢ = ¢2. By choosing ¢; = ¢ and z = K(¢q; — g2 as the alastic force, the model of

the system can be rewritten in a singular perturbation form:

—MglL 1
) ]\/I[gL Sin(q) . flz 1 1
e = _ Ig sin(g) — (7 + 5)z — < (63)

in which e = -

Spong has proposed a composite control law for this system, in which there exists two control
components corresponding to the fast and slow dynamics. The slow dynamic component is
composed of a control law based on the rigid model of the system in addition to a corrective
term, which is a feedback linearization algorithm based on the rigid model of the system [17].
According to the rigid model of the system given is Equation 62 the feedback linearization control

signal can be chosen as:
uy = (I + J)v + Mgl sin(z) (64)
in which v is linear component of it, and can be given as:
v =29 —a(z, — 2%) — ag(xy — 22) (65)

In order to derive the corrective term, the integral manifold and the control law are expanded

as follows:

H = H,+eH +0(é)
us = u,+eus + O(€?)

Substitute these relation into Equation 63 and equating the corresponding terms, we have:

—~MgLJ I
H, = —sin(q) — ——u,
I+J Sm@) - (66)

and similarly,

uy, = H, (67)
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Fig. 2. Instability of closed loop system by applying only rigid controller term w,; Spong algorithm

Choose
up =1n+ 11 (68)

in which 7 corresponds to the variation of z from the manifold H. Hence, the composite control

law is given by:
u=us+up=U,+ eus +uy (69)

in which ug,u1, and uy are evaluated in Equation 64, Equation 67 and Equation 68, respectively.

As it is illustrated in the Figure 2, the closed loop system became unstable, provided that
only the corresponding rigid control effort ug is applied on the system. However, as illustrated
in Figure 3 the system becomes stable and the desired trajectory ¢; = sin(8t) is well tracked,
implementing the proposed composite control on the nominal model of the system. However, this
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Fig. 3. Tracking performance of the closed loop system for nominal model; Spong algorithm
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Fig. 4. Poor tracking performance of the closed loop system for perturbed model; Spong algorithm

algorithm is not robust to the model parameter variations. As illustrated in Figure 4 the tracking
performance is getting quite poor for the maximum perterbation values for he parameters I, J, M,
and L.

For the sake of comparison, the proposed robust PID controller may be now applied on the
same system. The porpsed control law is composed of three terms as given in Equation 69, in
which the rigid control law is a PID controller whose coefficients satisfies the robust stability

conditions elaborated in Theorem (4) as following:

t
o = 200€ + 500e + 100/ e(s)ds.
0
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Fig. 5. Instability of closed loop system by applying only rigid controller term u,; Proposed algorithm
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The integral manifold would be:
. 1
H, = —4.9sin(q) — g lo
and the corrective term corresponds to
Uy = ﬁo.
The fast control law is a simple PD controller satisfying the robust stability conditions such as:
up = 5n + 51

in which 7 indicates the variation of z from the integral manifold H.

It is observed as before, that if only the rigid term of the composite control law is implemented
on the closed loop system, the system becomes unstable as illustrated in Figure 5. However,
By implementation of the complete proposed control law, not only the system is well tracking
the desired trajectory for the nominal parameters of the model (refigfig:spong6), but also the
robust stability and tracking performance of the system with maximum variation in its model
parameters are preserved (Figure 7).

The simulation results show clearly the effectiveness of the proposed control algorithm to ro-
bustly stabilize the system, while achieving robust performance. The superiority of our proposed
algorithm compared to Spong algorithm is its robustness to the system model variations, and
the simplicity of its implementation. To quantitatively compare the tracking errors obtained
by these methods, note that the two—norm of the tracking error in Spong algorithm is 20.73,
while its infinity—norm is about 1,123. By our proposed method these values are reduce to 2.93,
and 0.447, respectively, despite the similarity in the norm of the actuator efforts. Hence, the
proposed algorithm is not only robust to the model variation, and quite simpler in structure, but

also improves the tracking performance quite significantly.
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Fig. 7. Suitable tracking performance of the closed loop system for perturbed model; Proposed algorithm

B. Multiple Link Flexible Joint Manipulator

Consider the two link Flexible Joint manipulator illustrated in Figure 1. In this manipulator
Joint flexibility is modeled with a linear torsional spring with stiffness k. The equation of motion

of this system is as follows [1]:

M6 + misby + Corfy” + G + ki(01— 1) =

ma16 + masby + Crafy” + G + k2(02 — ¢2) =
NYJmidy — kr(01 — ¢1) = wy (70)
NY Tmadhs — ko (02 — o) = uy

in which m;; are the elements of the following mass matrix.

mllgl + mgl% +Jn maliles COS(¢1 — 91)

M0, ¢) =
mglllCQ COS(¢1 — 91) mzlé + JZQ

(71)

m;, J;; are the mass and the moment of inertia of the i’th link, while /;, L.; are the link length
and the distance of the center of mass of i’th link to its joint, respectively. The other terms of

Equation 71 are given as follows:

Co1 = —moliles sin(¢1 — 01) , Gi1 = (mllcl + m2l1)g COS(OI) (72)
012 = mglllcg sin(¢1 — 01) y G2 = lecgg COS(OQ)

in which g is the gravity constant, k; is the stiffness of i’th spring, J; is the moment of inertia of
i’th link and N; is the i’th gearbox ratio. The numerical parameters used for simulations are as

following [1]:

mlzmgzl; JllZJlQZ].; k1:k1:100
N2Jmi =N3Jma =111 =la=1; I,y =l = 0.5



Borrowing this system from [1], our proposed algorithm is applied to the system for comparison
of the results. The equation of motion of the system can be reformulated in the standard form
of singular perturbation, using € = % = k—12 = % = 0.01 as the singular perturbation parameter.
defining two new state variables z; = k(01 — ¢1),22 = k(f2 — ¢2) as the elastic torques in the

compliant elements, then:

[ 2.25 0.5 cos(ez1) -I [ 6, ]+[ 14.7 cos(01) + 0.502 sin(ez) ]+ [ z1 -I _ [ 0 ] (73)
| 0.5cos(ez1) 125 | | 6y | | 49cos(6a) — 056 sin(ezr) | |2 | |0 ]

oo Ja] [a]_[w] -
Lol la )l L L]

The corresponding rigid model when & — oo will be:

[325 05 | by | ) [ 14.7cos(0) | [ 0]

| 05 225 | | 6| | 49cos(6) | |0 | (75)
As elaborated before the integral manifold for corresponding system can be defined as:
Zy = Hi(01,01,05,0,u1,uz,€) ; Zo = Ha(61,01,02,02,u1,us,€) (76)
in which Hy, Hs satisfy the manifold condition. Expand the manifolds up to first degree:
H, = H? + eH} + O(¢®) ; Hy = H§ + eH} 4 O(€) (77)
and expand the corresponding control efforts as:
U = ud + eul + O(€%) ; ugs = ug + eus + O(€?) (78)

Hence the reduced order first order model is evaluated as following:

2.25 0.5 cos(eH?) 0, N 14.7cos(61) + 0.503 sin(eH?)
0.5 cos(eHY) 1.25 0y 4.9 cos() — 0.50% sin(eHY)

HY + eH] ] - [ 0

HS+eHY | |0
(79)

In order to evaluate the fast dynamics caused by the joint flexibility, the normalized time variable

_ ot
T= s used. Hence,

d? d2

dTTI21 =€ dtgl = U{(ﬂlﬂh)

d? d2

Loy — e — oy — uf (1, o) (80)

m=21—H{ ; ny=2Zy—Hj
in which HY, HS can be evaluated simply by replacing € = 0 in Equation 74.
HY =6, —uf ; HY=0,—u (81)

In order to evaluate the integral manifold, and the control law for this system, Equation 74 is
used, substituting Z; = H; and equating up to first order term with respect to €. This concludes

to,

HY = —f9—u} 5 H} = —H3 —u} (82)
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Fig. 8. Instability of closed loop system by applying only rigid controller term u,; Proposed algorithm

With expanding Equation 81 to the first order of ¢ we have:
H} = —0.502 HY ; H) = —0.56? H? (83)
And from Equation 82 we get:
ul = —0.502 HY — HY ; ub = —0.56? H? — HY (84)
Finally, the slow part of the control law will be calculated from:
U = uf +eul 5 ugs = ug + eud (85)

The u{,u$ are the rigid part of the control law and as elaborated before is robustly designed
as a PID controller. In here we design the PID gains as following which satisfies the robust

conditions:

t
u] = 500e + 50¢é + 50/0 e(s)ds (86)

u3

200e + 50€e + 50 /Ot e(s)ds
The fast control law is also designed as a PD controller as:

uip =11 +n ;3 ugp =12+ 02 (87)
Finally the control law is composed from the east and slow parts:

Ul = Uls +uLf 5 U2 = Ugs + Uay (88)

B.1 Simulation Results

To have simulation results compared to [1], the reference signal is considered as:

0; = 1.57 4+ 7.8539¢ "t — 9.428¢ /12 i =12 (89)
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Fig. 9. Tracking performance of the closed loop system for nominal model; Proposed algorithm

in which the joint angles reach to a final value of §; = 5 from zero initial state. As shown in
Figure 8, the system reaches to instability if the rigid control is applied to the system. The main

reason for stability is the divergence of its fast dynamics.

Figure 9 illustrates the response of the system to our proposed composite control law. The
system becomes stable, and the tracking performance is quite desirable, despite the limited
control effort guaranteed with a adding a saturation block in the simulation (Figure 10). In
order to analyze the robustness of the response, the system parameters are varied 50%. Figures

11 and 12 illustrate the robustness of the performance, and stability to the model variations.

In order to compare the effectiveness of our proposed control law, the simulation results are

compared to the results presented in [1]. Al-Ashoor et al have used a robust—adaptive control law

Control Action # Link 1

50 T
o | A/\\
-50 L |
0 5 10 15
Control Action # Link 2
50
0
-50 ! .
5 10 15

Fig. 10. Control effort for the closed loop system and nominal model; Proposed algorithm
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Fig. 11. Tracking performance of the closed loop system for Perturbed model; Proposed algorithm

in addition to the composite law we introduced in this paper. By this means, in addition to the
corrective adaptive term used based on the integral manifold, another term is used for robustness
of the performance against the modeling uncertainties. Figure 13 illustrates the results obtained
for the reference signal introduced in Equation 89 in [1]. This figure illustrates the tracking
performance despite the bounded control effort illustrated in Figure 14. Comparing these results
to that obtained with our proposed control law (Figure 9 and Figure 10) it is clear that, despite
the simplicity of our proposed control law the results are quite similar. Hence our proposed
algorithm results into a much simpler implementation effort without loss of performance. The
only limitation exists in our proposed law compared to that in [1], is the amplitude of the
control law in the initial time of the simulation. The adaptive law have smaller control effort

in the beginning of the simulation, due to the adaptive nature of the algorithm, and using the
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Fig. 12. Tracking Error for the closed loop system and perturbed model; Proposed algorithm
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Fig. 13. Tracking performance of the closed loop system for nominal model; Al-Ashoor et al algorithm

information of the identified model of the system in the control law. This issue is under current
investigation, and promising results are obtained by a H, —based robust performance synthesis

for PID design, in which the control effort can be limited to desirable bounds, [19].

VII. CONCLUSIONS

In this paper the control of flexible joint manipulators is examined in detail. First the model
of N—axis robot manipulators are given and reformulated in the form of singular perturbations.
Rigid and flexible integral manifolds are defined for the singularly perturbed model of the sys-
tem, and fast and slow subsystems are partitioned by them. In order to achieve the required
performance a composite control algorithm is proposed, consisting of corresponding control law
for fast and slow subsystems. A simple PD control is proposed for the fast subsystem, and it
is proven that the fast subsystem becomes asymptotically stable and the flexible manifold is in-

variant. The slow subsystem itself is controlled through a robust PID controller designed based

. t" (N.m.)

{nput torques T,

time(sec)

Fig. 14. Control effort for the closed loop system and nominal model; Al-Ashoor et al algorithm



on the rigid model, and a correction term designed based on the reduced flexible model. The

robust stability of the PID controller is analyzed by lyapunov theory, and has been proven that

the system is UUB stable. Then, the stability of the complete closed—loop system is analyzed

and it is shown that the proposed controller is capable of robustly stabilizing the uncertain flex-

ible joint manipulator. Finally, the effectiveness of the proposed control law is verified through

simulations. Single, and two link flexible joint manipulators are examined in this study. The

simulation results are compared to that given in the literature, and the effectiveness of preserving

the robust stability, and performance of the system is verified and compared relative to them.
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