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Abstract

In this paper the control of �exible joint manipulators is studied in detail� The model of

N�axis �exible joint manipulators are derived and reformulated in the form of singular per�

turbations� and integral manifold is used to separate fast dynamics from slow dynamics� A

composite control algorithm is proposed for the �exible joint robots� which consists of two main

parts� Fast control� uf � which guarantees that the fast dynamics remains asymptotically stable�

and the corresponding integral manifold remains invariant� Slow control �us� itself consists of

a robust PID designed based on the rigid model� and a corrective term designed based on the

reduced �exible model� The stability of the fast dynamics� robust stability of the PID scheme are

analyzed separately� and �nally� the closed�loop system is proved to be UUB stable� by Lyapunov

stability analysis� Finally� the e�ectiveness of the proposed control law is veri�ed through simu�

lations� The simulation results of single and two�link �exible joint manipulators are compared to

that given in the literature� It is shown that the proposed control law ensure the robust stability

and performance� despite the modeling uncertainties�
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I� Introduction

Multiple	axis robot manipulators are widely used in industrial and space applications� The

success in reaching high accuracy in these robots is due to their rigidity� which make them highly

controllable� After the inception of harmonic drive in ����� and its wide acceptance� and use in

the design of many electrically	driven robots� the rigidity of the robot manipulators are a�ected

greatly� In early eighties researchers showed that the use of control algorithms developed based

on rigid robot dynamics on real non	rigid robots is very limited and may even cause instability

����� The singular perturbation theory is used as the basis to model the dynamics of the �exible

joint robots� in which by use of two	time scale behavior� these systems are divided into fast and

slow subsystems���� ����� As shown in ��� for a three	axis �exible robot the system is not feedback

linearizable� and the use of methods such as computed	torque methods for �exible manipulators



is not directly implementable� By neglecting the e�ects of link motion on the kinetic energy

of the rotor� Spong has derived a mathematical model for such systems� in which the system

is feedback linearizable ����� However� to linearize the system acceleration and jerk feedback

is required whose measurement are costly� To avoid the need of acceleration and jerk in this

method the idea of integral manifold is employed� In this method instead of using the zero order

approximation of the model extracted from the singular perturbation theory� higher order models

can be used� and hence� a series of corrective terms is added to the control algorithm ���� �����

In adaptive methods many algorithms are developed for FJR�s� in most of which a term due to

the fast subsystem is added to the adaptive algorithm based on rigid models ���� ���� In robust

methods by considering model uncertainties the stability of the fast subsystem is �rst analyzed

and by the use of robust control synthesis� a robust controller is designed for the slow subsystem

���� ����

As it is shown� most of the research on FJR�s are concentrated on nonlinear control schemes�

In this paper we propose a new method based on the simple form of PID� and analyze the robust

stability of the uncertain closed	loop system in the presence of structured and unstructured

uncertainties� In this analysis we borrow the idea of the singular perturbation model of the

�exible joint robot� but in presence of the modeling uncertainties� and divide the system into

slow and fast subsystems� Then we introduce an integral manifold plus a composite control law in

order to restrain the integral manifold invariant and to satisfy asymptotic stability requirement�

The control e�ort consists of three elements� the �rst element is designed for the fast subsystem�

the second term is a robust PID control designed for the rigid subsystem and the third term is a

corrective term designed based on the �rst order approximation of the reduced �exible system�

Based on the Lyapunov stability theory the complete closed	loop system is proven to be UUB

stable� In order to verify the e�ectiveness of the proposed control law design� and compare

its results to that presented in the literature� simulation of single and two link �exible joint

manipulators are examined� It is shown in this study that the proposed control law ensure the

robust stability and performance� despite the modeling uncertainties�

II� Flexible Joint Robot Modeling

Spong ����� has derived a nonlinear dynamical model for FJR using singular perturbation�

in which the slow states are the position and velocities of the joints and the fast states are the

forces and their derivatives� In order to model an N	axis robot manipulator with n revolute joints

assume that� �qi � i � �� �� ���� n denote the position of i�th link and �qi � i � n � �� n � �� ���� �n

denote the position of the i�th actuator scaled by the actuator gear ratio� If the joint is rigid

�qi � �qn�i�i� For �exible joint� if the �exibility is modeled with a linear torsional spring with

constant ki� the elastic force zi is derived from�

zi � ki��qi � �qn�i� ���

The spring constants ki�s are relatively large and rigidity is modeled by the limit ki � �� Let

ui denotes the generalized force applied by the i�th actuator and use the notation�

q � ��q�� ���� �qn� �qn��� ���� �q�n�
T � �qT� jqT� �T ���

The equation of motion of the system can be written in the following form using Euler	Lagrange



Fig� �� Two�link Flexible Joint Manipulator�

formulation� �
M�q���q� �N�q�� �q�� � K�q� � q��

J �q� � K�q� � q���D �q� � TF � u
���

in which�

N�q�� �q�� � Vm�q� �q�� �q� �G�q�� � Fd �q� � Fs� �q�� � Td �
�

and K is the joint sti�ness matrix� M�q�� is the mass matrix� Vm�q� �q�� is the matrix of Coriolis

and centrifugal terms� G�q�� is the vector of gravity terms� Fd is the viscous friction matrix�

Fs� �q�� is the Coulomb friction vector� Td is the vector of the joint bounded unmodeled dynamics�

J is the actuator moments of inertia matrix� D is the actuator viscous friction matrix� and TF

is the actuator bounded unmodeled dynamics� For all revolute manipulators� it is shown in �
��

����

m�I �M�q�� � m�I � jjVm�q� �q��jj � �cjj �q�jj ���

jjG�q��jj � �g � jjFd �q� � Fs� �q��jj � �f� � �f�jjq�jj ���

j�I � J � j�I � d�I � D � d�I ���

Moreover� if the perturbations are bounded�

jjTdjj � �e � jjTF jj � �f� ���

in which �f�� �e� d�� d�� j�� j�� �f�� �f�� �g� �c�m��m� are positive real constants� If the joints are all

rigid�

Mt�q��q �Nt�q� q� � u� ���

in which q � q� and Mt is a positive de�nite matrix� This model is the model of FJR where

k � � verifying that the FJR model is a singularly perturbed model of rigid system� Assume

that all spring constants are equal� the elastic forces of the springs can be calculated by�

z � k�q� � q�� � K � kI ����

in order to use a small quantity for singular perturbation de�ne � � �

k by which for rigid system

�k � �� in this form we have � � �� Multiplying M�� to the both side of � and taking

�This assumption does not reduces the generality of the formulation� since by scaling z we reach to the same

conclusion�



z � k�q� � q�� � q � q�� and using �q� � �q� � � �z�

�
�q � a��q� �q� �A��q�z

��z � a��q� �q� � �z� �A��q�z �B�u
����

in which�

A� � �M���q� � a� � �M���q�N�q� �q� ����

a� � ��J��D �z � J��D �q � J��TF �M���q�N�q� �q� ����

A� � ��M���q� � J��� � B� � �J�� ��
�

Equation �� represents FJR as a nonlinear and coupled system� This representation includes

both rigid and �exible subsystems in form of a singular perturbation model�

III� Reduced Flexible Model

The singular perturbation model of the FJR is given in Equation ��� This model represents

the �exibility in the joints� however� the reduced order model is the model of rigid system� which

can be easily derived from Equation �� by setting � � �� With some matrix manipulation it can

be shown that�

�M � J��q �N � TF �D �q � u�

Rewrite this equation in this form�

Mt�q��q �Nt�q� �q� � u� ����

in which

Mt�q� � M�q� � J ����

Nt�q� �q� � N�q� �q�� TF �D �q �

Vm�q� �q� �q �G�q� � �Fd �D� �q � Fs� �q� � Td � TF ����

This representation introduces a �n dimension Manifold� Mo� which is called the rigid Manifold�

If � �� � the produced manifold M�� which is a function of � represents the �exible system� To

de�ne �exible manifold M� assume�

z � H�q� �q� u� �� q�Rn� u�Rn� z�Rn ����

�z � �H�q� �q� u� �� q�Rn� u�Rn� z�Rn ����

M� is an integral manifold for the �exible system if for each initial condition�
z�t� � �

�z�t� � �� and

�
q�t� � �

�q�t� � � �

in M� all trajectories of q�t� and z�t� for t � to remain in the manifold M�� In other words

�t � to�

z�t� � H�q�t�� �q�t�� u�t�� �� ����

�z�t� � �H�q�t�� �q�t�� u�t�� �� ����



Equations �� and �� are called the manifold conditions� An integral manifold for FJR exists if

A� � ��M�� � J��� is nonsingular �q � Rn ����� This is always true since the mass matrices

M � and J are positive de�nite� If the manifold condition are not satis�ed at initial time to� but

the fast dynamics are asymptotically stable� the initial transient will die down shortly� and the

manifold condition will be satis�ed after a short transient�

In order to derive the reduced �exible model� the �exible manifold is used in the formulation�

Assume that the function H is several time di�erentiable with respect to its arguments� Hence�

by di�erentiating Equations �� and �� and substitution in Equation ���

� �H�q� �q� u� �� � a��q� �q� � �H�q� �q� u� ��� �A��q�H�q� �q� u� �� �B�u ����

in which�

�H � �
�H

�q
�
�H

�u

�u

�q
� �q �

�H

� �q
�a� �A�H� �

�H

�u

�u

�t
����

Now� the reduced �exible model can be derived by replacing z� �z with H� �H in Equation ���

�q � a��q� �q� �A��q�H�q� �q� u� �� ��
�

The order of this equation is equal to the rigid system� however� this model includes the e�ects

of �exibility in form of an invariant integral manifold embedded in itself� Hence� this reduced

order model is not an approximation of the FJR model� but it represents its projection on the

integral manifold�

IV� Composite Control

In order that the reduced �exible model hold for the system� it is essential that the M� be an

invariant manifold� or the fast dynamics be asymptotically stable� This can be satis�ed using a

composite control scheme ���� In this framework the control e�ort u consists of two main parts�

us the control e�ort for slow subsystem� and uf the control e�ort for fast subsystem� as�

u � us�q� �q� �� � uf ��� ��� ����

in which uf ��� ��� is designed such that the fast dynamics becomes asymptotically stable� �

denotes the deviations of fast state variables from the integral manifold�

� � z �H�q� �q � us� �� ����

�� � �z � �H�q� �q � us� �� ����

The slow component of the control e�ort� us�q� �q� ��� is also designed based on the reduced �exible

model� In this section we describe the design technique for uf and us in the next subsections�

respectively�

A� Fast Subsystem Dynamics and Control

Recall Equation ��

��� � ��z � � �H �

a��q� �q� � �z� �A��q�z �B�u� �a��q� �q� � �H� �A��q�H �B�us�



or�

��� � �a��q� �q� � �z�� a��q� �q� � �H�� �A��q�� �B�uf ����

Substitute the value of a� and use fast time scale � � tp
�
with some manipulations we reach to

����

��� � A��q�� �B�uf ����

and in state space form�

�

�
��

��

�
�

� � �I

A��q� �

� �
�

��

�
�

� �
B�

�
uf ����

The �exible modes are not stable since the eigenvalues are on the imaginary axis� Hence� uf

must be designed such that the eigenvalues are shifted to the open left half plane in order to

guarantee stability�

Theorem �� The diagonal and positive de�nite matricesKpf andKvf exist such that the closed

loop system including the subsystem �� with the control e�ort uf � Kpf� � Kvf �� becomes

globally asymptotically stable� �Proof in ����

B� Control of Reduced Flexible Model

The reduced �exible model represents the e�ect of �exibility in the form of the �exible integral

manifold� In this section a robust control algorithm is proposed for the system based on this

model� In order to accurately derive a robust control law us�q� �q� �� for the system� manipulation

of partial di�erential equation is necessary� To avoid complex manipulations� we propose deriving

the robust control law us�q� �q� �� to any order of � from the series expansion of the integral manifold

to the same order of ��

H�q� �q� us� �� � H��q� �q� us� � �H��q� �q� us� � 	 	 	 ����

and implement the controller us�q� �q� �� in the same form as�

us�q� �q� �� � u��q� �q� � �u��q� �q� � 	 	 	 ����

in which the functions Hi�q� �q� us�� ui�q� �q�� i � �� �� 	 	 	 are calculated iteratively without need

to solve the partial di�erential equations� It is important to note that as �� �� us tends to rigid

control� and H tends to rigid integral manifold� By substitution of Equations �� and �� into

manifold condition �� we reach to�

� �H��q� �q� us� � �� �H��q� �q� us� � 	 	 	 � a��q� �q� � �H� � �� �H� � 	 	 	� �A��q��H� � �H� � 	 	 	��
B��u� � �u� � 	 	 	� ����

The right hand side of Equation �� can be expanded with respect to the powers of � and by

addition of equal powers of �� a set of equations for Hi� ui� i � �� �� 	 	 	 in term of � are resulted�

The �rst order approximation of Equation �� will result in�

� �H��q� �q� us� � a��q� �q� � �H�� �A��q��H� � �H�� �B��u� � �u�� �O���� ��
�

When � � � the equation relating u� to H� will be�

� � a�� �A��q�H��q� �q� u�� �B�u� ����



in which�

a�� � a��q� �q� �� � J��D �q � J��TF �q� �q��M���q�N�q� �q� ����

u� is designed using a robust design technique based on the rigid reduced order model �� � ���

and H� is calculated from�

H� � �A��� �a�� �B�u�� ����

The details of robust design technique is explained in the next section� Now� since u� and H�

are known� from Equation �
� H� can be similarly calculated in terms of u�� and the �rst order

manifold H� can be substituted into the reduced �exible model �Equation �
�� If higher order

terms are neglected� the �rst order corrected model for the system is derived� In order to calculate

H� from H� and u�� let�

a��q� �q� � �H� � a�� � ��a� �O����

in which a�� is given in Equation ��� and compare to Equation �� we reach to��
�a� � �J��D �H

�a�� � �J��D �H�

Hence�

� �H� � a�� �A�H� �B�u� � ���a�� �A�H� �B�u�� �O���� ����

Compare Equation �� to ���

�H� � �a�� �A�H� �B�u� ����

Therefore�

H� � A��� � �H� ��a�� �B�u�� �
��

To calculate u� refer to reduced �exible model �
 and approximate it to the �rst power of ��

�q � a��q� �q� �A��q�H� � �A��q�A
��
� � �H� ��a�� �B�u��

By factoring the equal powers of � we reach to�

u� � B��
� � �H� ��a��� �
��

The only condition on robust control design is that u� must be at least twice di�erentiable�

Finally� the control law for slow subsystem has the form�

us � u� � �u� �
��

In which u� is called the corrective term which is derived through this subsection and u� is the

robust control based on the rigid model elaborated in the next section�

C� Robust PID Control for Rigid model

In this section we �rst propose a robust PID controller based on the rigid model of the system

and then prove its robust stability with respect to the model uncertainties� Recall the rigid

model of the system from Equation ��� choose a PID controller for u��

u� � KV �e�KP e�KI

Z t

�

e�s�ds � Kx �
��



in which ���
��
e � qd � q

K � �KI KP KV �

x � �
R t
�
eT �s�ds eT �eT �T

Similar to �
�� ���� and ��
�� assume�

mtI �Mt�q� � mtI �

�

and put some limits on�

kNtk � 	� � 	�kLk� 	�kLk� � kVmk � 	� � 	�kLk �
��

in which k�k is the Euclidean norm and L � �eT �eT �� Implement the control law u� in �� to get�

�x � Ax�B�A �
��

where

A �

�
	


� In �
� � In

�M��
t KI �M��

t KP �M��
t KV

�
�
 B �

�
	


�
�

M��
t

�
�


�A � Nt �Mt�qd �
��

To analyze the system robust stability consider the following Lyapunov function�

V �x� � xTPx �
�

�
�
�

Z t

�

e�s�ds� 
�e� �e�T �Mt��
�

Z t

�

e�s�ds� 
�e� �e� � wTP�w �
��

in which

w �

� R t
�
e�s�ds

e

�
P� �

�

�

�

�KP � 
�KI 
�KV �KI


�KV �KI 
�KV �KP

�

Hence�

P �
�

�

�
	


�KP � 
�KI � 
��Mt 
�KV �KI � 
�
�Mt 
�Mt


�KV �KI � 
�
�Mt 
�KV �KP � 
��Mt 
�Mt


�Mt 
�Mt Mt

�
�


Since Mt is a positive de�nite matrix� P is positive de�nite� if and only if� P� is positive de�nite�

Now choose� ���
��
KP � kP I

KV � kV I

KI � kII

such that� �

�kP � 
�kI 
�kV � kI


�kV � kI 
�kV � kP

�

becomes positive de�nite� The following Lemma gives the conditions where V can become

positive de�nite and upper and lower bounded�



Lemma �� Assume the following inequalities hold�


� � � 
� � � 
� � 
� � �

s� � 
��kP � kV �� ��� 
��kI � 
��� � 
� � 
��mt � �

s� � kP � �
� � 
��kV � kI � 
��� � 
� � 
��mt � �

Then P is positive de�nite and satis�es the following inequality �Rayleigh�Ritz������

��P �kxk� � V �x� � ��P �kxk� �
��

in which�

��P � � minf�� 
� � 
�

�
mt�

s�

�
�
s�

�
g

��P � � maxf� � 
� � 
�

�
mt�

s�

�
�
s�

�
g

and

s� � 
��kP � kv� � �� � 
��kI � �� � 
� � 
��
�mt

s� � 
�mt�� � 
� � 
�� � �
� � 
��kV � kP � kI

Proof is based on Gershgorin theorem and is similar to that in ����� Now when P is positive

de�nite then�

�V �x� � xT �ATP � PA� �P �x� �xTPB�A ����

�V �x� � �xTQx�
�

�
xT

�
	


�I


�I

I

�
�
 �Mt �
�I 
�I I �x� xT

�
	


�I


�I

I

�
�
�A ����

�
�

�
xT

�
	


� 
��I 
�
�I


�I �
�
�I �
�� � 
��I


�
�I �
�� � 
��I 
�I

�
�

�
	

Mt � �
� Mt �
� � Mt

�
�
 x

refer to ����

yT �Mty � �yTVmy

with some manipulations we can show ����

�V �x� � �
kxk� � ��kVmkkxk� � ��mtkxk� � 
��� ��kxkk�Ak

�V �x� � kxk��� � ��kxk� ��kxk�� ����

and


 �minf
�kI � 
�kP � 
�kV � kI � kV g

Now considering Equations 
�� 
� and �� and kLk � kxk then�

�� � 
��� ��	� � 
��� ����mt

�� � 
 � ��	� � ��mt � 
��� ��	�

�� � ��	� � 
��� ��	�



in which ���
��
�� � �max�R��

�� � �max�R��

�� � supk�qdk
and �Min� �Max are the least and largest eigenvalues� respectively� and

R� �

�
	



��I 
�
�I 
�I


�
�I 
��I 
�I


�I 
�I I

�
�


R� �
�

�

�
	


� 
��I 
�
�I


�I �
�
�I �
�� � 
��I


�
�I �
�� � 
��I 
�I

�
�


According to the result obtained so far� we can proof the stability of the error system based on

the following theorem�

Theorem �� The error system 
� is stable of the form of UUB� if �� is chosen large enough�

Proof� According to Equations �� and 
� and the Lemma ��� from ����� if the following

condition hold� the system is UUB stable with respect to B��� d�� where

d �
���

�� �
q
��� � 
����

s
��P �

��P �

The conditions are�

�� � �
p
����

��� � ��

q
��� � 
���� � ������� �

s
��P �

��P �
�

�� �
q
��� � 
���� � ���kx�k

s
��P �

��P �

These conditions can be simply met by making �� and the control gains KP �Kv � and KI large

enough�

V� Stability Analysis of the Complete Closed�loop System

The stability of the fast� and slow subsystems are separately analyzed in previous sections�

However� the stability of the complete closed�loop system may not be guaranteed through these

separate analysis ����� In this section the stability of the complete system is analyzed� Recall

the dynamic equations of the FJR Equation ��� The integral manifold and the control e�ort are

chosen as�

� � z �H

H � H� � �H�

u � us � uf � u� � �u� � uf

Combine these equations to Equation ��� 
�� �� and 
�� and consider� x � �
R t
�
e�s�T ds eT �eT �T

and y � � �T ��T �T then�

�x � Ax�B�A� C � I � � y ����

� �y �  Ay ��
�



in which�

A �

�
	


� I �
� � I

�M��
t KI �M��

t KP �M��
t KV

�
�
 � B �

�
	


�
�

M��
t

�
�


�A � Nt �Mt�qd

C �

�
	


�
�

�A�

�
�
 �  A �

� � �I

A� �B�Kpf ��J��D �B�Kvf

�

Theorem �� There exist diagonal and positive de�nite matrices Kpf and Kvf such that the

closed loop system �
 becomes globally asymptotically stable�

Proof� Substitute A�� B� from Equations �
 into �
� and de�ne�

M�� � J�� � J��Kpf � U

�J��D � J��Kvf � G

Where U and G are both positive de�nite� since M�J�Kpf and Kvf are all positive de�nite�

hence�

�

�
��

��

�
�

� � �I

�U �G

� �
�

��

�

Consider the following Lyapunov function�

VF � yTSy

in which y � �� ���
T

and�

S �
�

�

�
�

� I G��

G�� U��

�

In order to have positive de�nite S� according to Shur Complement we must have��
�

� I � �

U�� �G����� I�
��G�� � � �
 U�� � �

�
G�� � �

����

Now since U��� G�� are positive de�nite in order to satisfy �� the following condition must be

met�

� �
��min�U

���
�min�G���

in which �min is the smallest eigenvalue� Di�erentiate VF along trajectories of �


�VF � �yTSy � yTS �y � yT �Sy � ��

�
�TG��U� � ��T �

�

�
U��G� �

�
�G�� � �U������ �� � �

Since G is diagonal and positive de�nite� and limited q� �q will limit �U����� then by choosing

appropriate values for Kvf �Kpf � �VF becomes negative de�nite and it can be written as�

�VF � �yTWy



in which

W �
�

�

�
�

� �G
��U � UG��� �

� �

� �U
��G�GU���� �U���� �G��

�

Theorem �� The closed	loop system of Equations �� and �
 is UUB stable if Kpf �Kvf � and ��

are chosen large enough�

Proof� Consider the following composite Lyapunov function�

V �x� y� � xTPx� yTSy ����

where xTPx is the Lyapunov function candidated for slow subsystem� and yTSy is the Lyapunov

function of fast subsystem �
� Therefore� from Rayleigh	Ritz inequality�

��P �kxk� � xTPx � ��P �kxk�

��S�kyk� � yTSy � ��S�kyk�

in which � and � are the largest and smallest eigenvalue respectively� Adding the above inequal�

ities�

��S�kyk� � ��P �kxk� � V �x� y� � ��S�kyk� � ��P �kxk�

De�ne�

Zt � � kxk kyk �T ����

then�

� kxk kyk �
�
��P � �

� ��S�

� � kxk
kyk

�
� V �x� y�

� � kxk kyk �
�
��P � �

� ��S�

� � kxk
kyk

�

Again apply Rayleigh	Ritz inequality�

�kZtk � V �Zt� � �kZtk ����

where

� � Minf��P �� ��S�g
� � Maxf��P �� ��S�g

Now di�erentiate �� along trajectories of �� and �
�

�V � �xTP �x� xT �Px� �yTS �y � yT �Sy � �xTPC�I ��y�
��xTP �Ax�B�A� � xT �Px� � �yTS �y � yT �Sy

and consider Equations �� and ��� and de�ne 
� � �max�M
��� As it is shown in Theorem ����

�yTS �y � yT �Sy � ��min�W �kyk�



Hence

�V � � � kxk kyk �
�

�� �
���P �

�
���P � �min�W �

� � kxk
kyk

�

���kxk� ��kxk�

And according to ��

�V � �ZT
t RZt � ��kZtk� ��kZtk�

where�

R �

�
�� �
���P �

�
���P � �min�W �

�

In order to have positive de�nite R

�� � ���min�W �� 
���
�
�P � � �

or�

�min�W � �

���

�
�P �

��
����

Condition �� is met by choosing appropriate Kpf and Kvf for fast subsystem� hence�

�V � kZtk��� � �min�R�kZt � ��kZtk�� ����

Now� according to Equations �� and �� and the Lemma ��� of ����� if these conditions are met

then the closed	loop system is UUB stable with respect to Y ��� d��� where

d� �
���

�min�R� �
q
��min�R�� 
����

s
�

�

and the stability conditions are�

�min�R� � �
p
����

��min�R� � �min�R�
q
��min�R�� 
���� � ������� �

r
�
��

�min�R� �
q
��min�R�� 
���� � ���kZt�k

r
�
�

These conditions are simply met by increasing �min�R�� through appropriate choice of large ���

and �min�W �� �� is a function of the robust PID gains Kp�KI and KV � and �min�W � are a�ected

by the fast subsystem gains Kpf and Kvf � Therefore� by the choice of the controller gains such

that the above conditions are met the robust stability of the closed	loop system is guaranteed�

VI� Simulations

In order to verify the e�ectiveness of the algorithm a simulation study has been forwarded next�

In the following simulation study� the results of the closed loop performance of two �exible joint

manipulators examined in the literature is compared to that of the proposed control algorithm�

First a single joint manipulator examined in detail by spong et al ����� has been simulated� and

the closed loop performances are compared� Then� the two link manipulator which has been

studied by Al�Ashoor et al ���� is examined in detail and a robust PID controller is designed for

each joint� Moreover� the closed loop performance of this system is presented� The simulation

results show the e�ectiveness of the proposed algorithm� despite the simplicity of its structure�

and the convenience of its online implementation�



A� Single Link Flexible Joint Manipulator

Consider the single link �exible joint manipulator introduced in �����The dynamic equation of

motion of this system is as follows�

�x� � x�

�x� �
�MgL

I
sin�x��� K

I
�x� � x�� ����

�x� � x�

�x� �
K

J
�x� � x�� �

�

J
u

in which x� � q� and x� � q�� In the limit of k �� the rigid model of the system is given by�

�x� � x�

�x� �
�MgL

I � J
sin�x��� �

I � J
u ����

in which x� � q� � q�� By choosing q� � q and z � K�q� � q� as the alastic force� the model of

the system can be rewritten in a singular perturbation form�

�q �
�MgL

I
sin�q�� �

I
z

��z �
�MgL

I
sin�q�� �

�

I
�

�

J
�z � �

J
u ����

in which � � �

K �

Spong has proposed a composite control law for this system� in which there exists two control

components corresponding to the fast and slow dynamics� The slow dynamic component is

composed of a control law based on the rigid model of the system in addition to a corrective

term� which is a feedback linearization algorithm based on the rigid model of the system �����

According to the rigid model of the system given is Equation �� the feedback linearization control

signal can be chosen as�

u� � �I � J�v �Mgl sin�x�� ��
�

in which v is linear component of it� and can be given as�

v � �xd� � a��x� � xd��� a��x� � xd�� ����

In order to derive the corrective term� the integral manifold and the control law are expanded

as follows�

H � Ho � �H� �O����

us � uo � �u� �O����

Substitute these relation into Equation �� and equating the corresponding terms� we have�

Ho �
�MgLJ

I � J
sin�q�� I

I � J
uo ����

and similarly�

u� � �Ho ����
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Fig� �� Instability of closed loop system by applying only rigid controller term uo� Spong algorithm

Choose

uf � �� � � �� ����

in which � corresponds to the variation of z from the manifold H� Hence� the composite control

law is given by�

u � us � uf � Uo � �u� � uf ����

in which u�� u�� and uf are evaluated in Equation �
� Equation �� and Equation ��� respectively�

As it is illustrated in the Figure �� the closed loop system became unstable� provided that

only the corresponding rigid control e�ort u� is applied on the system� However� as illustrated

in Figure � the system becomes stable and the desired trajectory qd � sin��t� is well tracked�

implementing the proposed composite control on the nominal model of the system� However� this
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Fig� 	� Tracking performance of the closed loop system for nominal model� Spong algorithm
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� Poor tracking performance of the closed loop system for perturbed model� Spong algorithm

algorithm is not robust to the model parameter variations� As illustrated in Figure 
 the tracking

performance is getting quite poor for the maximum perterbation values for he parameters I� J�M �

and L�

For the sake of comparison� the proposed robust PID controller may be now applied on the

same system� The porpsed control law is composed of three terms as given in Equation ��� in

which the rigid control law is a PID controller whose coe!cients satis�es the robust stability

conditions elaborated in Theorem �
� as following�

uo � ��� �e � ���e � ���

Z t

�

e�s�ds�
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Fig� �� Instability of closed loop system by applying only rigid controller term uo� Proposed algorithm
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Fig� �� Tracking performance of the closed loop system for nominal model� Proposed algorithm

The integral manifold would be�

Ho � �
�� sin�q�� �

�
uo

and the corrective term corresponds to

u� � �Ho�

The fast control law is a simple PD controller satisfying the robust stability conditions such as�

uf � �� � � ��

in which � indicates the variation of z from the integral manifold H�

It is observed as before� that if only the rigid term of the composite control law is implemented

on the closed loop system� the system becomes unstable as illustrated in Figure �� However�

By implementation of the complete proposed control law� not only the system is well tracking

the desired trajectory for the nominal parameters of the model �re�g�g�spong��� but also the

robust stability and tracking performance of the system with maximum variation in its model

parameters are preserved �Figure ���

The simulation results show clearly the e�ectiveness of the proposed control algorithm to ro�

bustly stabilize the system� while achieving robust performance� The superiority of our proposed

algorithm compared to Spong algorithm is its robustness to the system model variations� and

the simplicity of its implementation� To quantitatively compare the tracking errors obtained

by these methods� note that the two	norm of the tracking error in Spong algorithm is ������

while its in�nity	norm is about ������ By our proposed method these values are reduce to �����

and ��

�� respectively� despite the similarity in the norm of the actuator e�orts� Hence� the

proposed algorithm is not only robust to the model variation� and quite simpler in structure� but

also improves the tracking performance quite signi�cantly�
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� Suitable tracking performance of the closed loop system for perturbed model� Proposed algorithm

B� Multiple Link Flexible Joint Manipulator

Consider the two link Flexible Joint manipulator illustrated in Figure �� In this manipulator

Joint �exibility is modeled with a linear torsional spring with sti�ness k� The equation of motion

of this system is as follows ����

m��
��� �m��

��� � C��
���
�
�G� � k���� � ��� � �

m��
��� �m��

��� � C��
���
�
�G� � k���� � ��� � �

N�
�Jm�

��� � k���� � ��� � u� ����

N�
�Jm�

��� � k���� � ��� � u�

in which mij are the elements of the following mass matrix�

M��� �� �

�

 m�l

�
c� �m�l

�
� � Jl� m�l�lc� cos��� � ���

m�l�lc� cos��� � ��� m�l
�
c� � Jl�

�

 ����

mi� Jli are the mass and the moment of inertia of the i�th link� while li� Lci are the link length

and the distance of the center of mass of i�th link to its joint� respectively� The other terms of

Equation �� are given as follows�

C�� � �m�l�lc� sin��� � ��� � G� � �m�lc� �m�l��g cos���� ����

C�� � m�l�lc� sin��� � ��� � G� � m�lc�g cos����

in which g is the gravity constant� ki is the sti�ness of i�th spring� Ji is the moment of inertia of

i�th link and Ni is the i�th gearbox ratio� The numerical parameters used for simulations are as

following ����

m� � m� � �� Jl� � Jl� � �� k� � k� � ���

N�
�Jm� � N�

�Jm� � �� l� � l� � �� lc� � lc� � ���



Borrowing this system from ���� our proposed algorithm is applied to the system for comparison

of the results� The equation of motion of the system can be reformulated in the standard form

of singular perturbation� using � � �

k�
� �

k�
� �

k � ���� as the singular perturbation parameter�

de�ning two new state variables z� � k��� � ���� z� � k��� � ��� as the elastic torques in the

compliant elements� then��

 ���� ��� cos��z��

��� cos��z�� ����

�


�

 ���

���

�

�

�

 �
�� cos���� � ��� ���� sin��z��


�� cos����� ��� ���� sin��z��

�

�

�

 z�

z�

�

 �

�

 �

�

�

 ����

�

 � �

� �

�


�

 ���

���

�

� �

�

 �z�

�z�

�

�

�

 z�

z�

�

 �

�

 u�

u�

�

 ��
�

The corresponding rigid model when k �� will be��

 ���� ���

��� ����

�


�

 ���

���

�

�

�

 �
�� cos����


�� cos����

�

 �

�

 �

�

�

 ����

As elaborated before the integral manifold for corresponding system can be de�ned as�

Z� � H����� ���� ��� ���� u�� u�� �� � Z� � H����� ���� ��� ���� u�� u�� �� ����

in which H��H� satisfy the manifold condition� Expand the manifolds up to �rst degree�

H� � Ho
� � �H�

� �O���� � H� � Ho
� � �H�

� �O���� ����

and expand the corresponding control e�orts as�

u�s � uo� � �u�� �O���� � u�s � uo� � �u�� �O���� ����

Hence the reduced order �rst order model is evaluated as following��

 ���� ��� cos��Ho

��

��� cos��Ho
�� ����

�


�

 ���

���

�

�
�

 �
�� cos���� � ��� ���� sin��Ho

� �


�� cos����� ��� ���� sin��Ho
��

�

�
�

 Ho

� � �H�
�

Ho
� � �H�

�

�

 �

�

 �

�

�



����

In order to evaluate the fast dynamics caused by the joint �exibility� the normalized time variable

� � tp
�
is used� Hence�

d���
d�� � �d

���
dt� � ��� � u

f
� ���� ���

d���
d�� � �d

���
dt� � ��� � u

f
� ���� ��� ����

�� � Z� �Ho
� � �� � Z� �Ho

�

in which Ho
� �H

o
� can be evaluated simply by replacing � � � in Equation �
�

Ho
� � ��� � uo� � Ho

� � ��� � uo� ����

In order to evaluate the integral manifold� and the control law for this system� Equation �
 is

used� substituting Zi � Hi and equating up to �rst order term with respect to �� This concludes

to�

H�
� � � �Ho

� � u�� � H�
� � � �Ho

� � u�� ����
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Fig� �� Instability of closed loop system by applying only rigid controller term uo� Proposed algorithm

With expanding Equation �� to the �rst order of � we have�

H�
� � ���� ���� Ho

� � H�
� � ���� ���� Ho

� ����

And from Equation �� we get�

u�� � ���� ���� Ho
� � �Ho

� � u�� � ���� ���� Ho
� � �Ho

� ��
�

Finally� the slow part of the control law will be calculated from�

u�s � uo� � �u�� � u�s � uo� � �u�� ����

The uo�� u
o
� are the rigid part of the control law and as elaborated before is robustly designed

as a PID controller� In here we design the PID gains as following which satis�es the robust

conditions�

uo� � ���e � �� �e� ��

Z t

�

e�s�ds ����

uo� � ���e � �� �e� ��

Z t

�

e�s�ds

The fast control law is also designed as a PD controller as�

u�f � ��� � �� � u�f � ��� � �� ����

Finally the control law is composed from the east and slow parts�

u� � u�s � u�f � u� � u�s � u�f ����

B�� Simulation Results

To have simulation results compared to ���� the reference signal is considered as�

�i � ���� � ������e�t � ��
��e�t���� i � �� � ����
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Fig� �� Tracking performance of the closed loop system for nominal model� Proposed algorithm

in which the joint angles reach to a �nal value of �i �
�
�
from zero initial state� As shown in

Figure �� the system reaches to instability if the rigid control is applied to the system� The main

reason for stability is the divergence of its fast dynamics�

Figure � illustrates the response of the system to our proposed composite control law� The

system becomes stable� and the tracking performance is quite desirable� despite the limited

control e�ort guaranteed with a adding a saturation block in the simulation �Figure ���� In

order to analyze the robustness of the response� the system parameters are varied ��"� Figures

�� and �� illustrate the robustness of the performance� and stability to the model variations�

In order to compare the e�ectiveness of our proposed control law� the simulation results are

compared to the results presented in ���� Al�Ashoor et al have used a robust	adaptive control law
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in addition to the composite law we introduced in this paper� By this means� in addition to the

corrective adaptive term used based on the integral manifold� another term is used for robustness

of the performance against the modeling uncertainties� Figure �� illustrates the results obtained

for the reference signal introduced in Equation �� in ���� This �gure illustrates the tracking

performance despite the bounded control e�ort illustrated in Figure �
� Comparing these results

to that obtained with our proposed control law �Figure � and Figure ��� it is clear that� despite

the simplicity of our proposed control law the results are quite similar� Hence our proposed

algorithm results into a much simpler implementation e�ort without loss of performance� The

only limitation exists in our proposed law compared to that in ���� is the amplitude of the

control law in the initial time of the simulation� The adaptive law have smaller control e�ort

in the beginning of the simulation� due to the adaptive nature of the algorithm� and using the
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Fig� �	� Tracking performance of the closed loop system for nominal model� Al�Ashoor et al algorithm

information of the identi�ed model of the system in the control law� This issue is under current

investigation� and promising results are obtained by a H� 	based robust performance synthesis

for PID design� in which the control e�ort can be limited to desirable bounds� �����

VII� Conclusions

In this paper the control of �exible joint manipulators is examined in detail� First the model

of N	axis robot manipulators are given and reformulated in the form of singular perturbations�

Rigid and �exible integral manifolds are de�ned for the singularly perturbed model of the sys�

tem� and fast and slow subsystems are partitioned by them� In order to achieve the required

performance a composite control algorithm is proposed� consisting of corresponding control law

for fast and slow subsystems� A simple PD control is proposed for the fast subsystem� and it

is proven that the fast subsystem becomes asymptotically stable and the �exible manifold is in�

variant� The slow subsystem itself is controlled through a robust PID controller designed based

Fig� �
� Control e�ort for the closed loop system and nominal model� Al�Ashoor et al algorithm



on the rigid model� and a correction term designed based on the reduced �exible model� The

robust stability of the PID controller is analyzed by lyapunov theory� and has been proven that

the system is UUB stable� Then� the stability of the complete closed	loop system is analyzed

and it is shown that the proposed controller is capable of robustly stabilizing the uncertain �ex�

ible joint manipulator� Finally� the e�ectiveness of the proposed control law is veri�ed through

simulations� Single� and two link �exible joint manipulators are examined in this study� The

simulation results are compared to that given in the literature� and the e�ectiveness of preserving

the robust stability� and performance of the system is veri�ed and compared relative to them�
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