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Abstract 
In this paper the control ofpezible joint mnnippulators is 
studied in detail. A composite control algorithm U pm- 
posed for the penble joint robots, which consists of two 
main ports. Fast control, U,, which guarnntees that the 
fast dynamics remains asymptotically stable, and the c o m -  
sponding integral manifold remains invariant. Slow control 
,us, itself consists of a mbust PID designed based on the 
rigid model, and D comctiue t e n  designed based on the E- 
dueedpezible model. The stability ofthe ouemll closed loop 
system is proued to be UUB stable, by Lyapunov stability 
anolysis. Finally, the effectiveness of the proposed contml 
law is verified through simulations. It is shown that the 
pmposed control law ensure the robust stability and perfor- 
mance, despite the modeling uncertainties. 

I. Introduct ion 
After the inception of harmonic drive, multipleaxis flex- 
ible robot manipulators are widely used in industrial and 
space applications. In early eighties researchers showed 
that the w e  of control algorithms developed based on rigid 
robot dynamics on real non-rigid robots is very limited and 
may even cause instability [15]. To avoid this problem, 
many researchers have proposed control algorithms based 
on slow and fast dynamics of the system. Among them, 
in adaptive methods many algorithms are developed for 
FJR's, in most of which a term due to the fast subsystem 
is added to the adaptive algorithm based on rigid models 
[3, 41. In robust methods by considering model uncertain- 
ties the stability of the fast subsystem is first analyzed and 
by the use of robust control synthesis, a robust controller 
is designed for the slow subsystem [1, 71. Hence, most 
of the research on FJR's are concentrated on nonlinear 
control schemes. In this paper we propose a new method 
based on the simple form of PID, and analyze the robust 
stability of the uncertain closed-loop system in the pres- 
ence of structured and unstructured uncertainties. In this 
analysis we introduce an integral manifold plus a compos- 
ite control law in order to  restrain the integral manifold 
invariant and to  satisfy asymptotic stability requirement. 
The control effort consists of three elements, the fist ele 
ment is designed for the fast subsystem, the second term 
is a robust PID control designed for the rigid subsystem 
and the third term is a corrective term designed based on 
the first order approximation of the reduced flexible sys- 
tem. Based on the Lyapunov stability theory the complete 
closed-loop system is proven to be UUB stable. In order to 
verify the effectiveness of the proposed design method, and 
to  compare its results to that presented in the literature, 
simulation of single and two link flexible joint manipulators 

-. 
Fig. 1. Two-link Flexible Joint Manipulator. 

are examined. It is shown in this study that the proposed 
control law ensure the robust stability and performance, 
despite the modeling uncertainties. 

11. Flexible Jo in t  Robot Modeling 
Spang [13], has derived a nonlinear dynamical model for 
FJR using singular perturbation, in which the slow states 
are the position and velocities of the joints and the fast 
states are the forces and their derivatives. In order to  
model an N-axis robot manipulator with n revolute joints 
assume that: @< : i = 1,2, ..., n denote the position of i'th 
link and 8. : i = n + 1, n + 2, ..., 2n denote the position 
of the i'th actuator scaled by the actuator gear ratio. If 
the joint is rigid ti = @.+;Vi. For flexible joint, if the 
flexibility is modeled with a linear torsional spring with 
constant ki, the elastic force z, is derived from: 

(1) *. - l e . ( " .  1 - , 4. -@"+i) 

The spring constants k,'s are relatively large and rigid- 
ity is modeled by the limit ki + m. Let 'ui denotes the 
generalized force applied by the i'th actuator and use the 
notation: 

T T T T  4 = (81 , . . . ,B ,@"+~ ,  ..., B Z " )  = (41 142) (2) 

The equation of motion of the system can be written in 
the following form using Euler-Lagrange formulation. 

M(ql)iil +N(4l,@l) = W n z - 4 1 )  { J b  = K(qi - 42) - Dqz + TF + U (3) 

in which, 

N(qi,qi) =V, (q iq i )q ,+G(q i )+Fdq~+F. (q~)+Td  (4) 

and K is the joint stiffness matrix, A l ( q 1 )  is the m a s  
matrix, V,(qlq~) is the matrix of Coriolis and centrifugal 
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terms, G(q1) is the vector of gravity terms, Fd is the vis- 
cous friction matrix, h ( 4 1 )  is the Coulomb friction vector, 
T d  is the vector of the joint bounded unmodeled dynam- 
ics, J is the actuator moments of inertia matrix, D is the 

This representation introduces a 2n dimension manifold, 
MO, which is called the rigid manifold. If e # 0 the pro- 
duced manifold M,, which is a function of E represents the 
flexible system. To define flexible manifold M, mume:  

actuator viscous friction matrix, and T.n is the actuator 
bounded unmodeled dynamics. For all revolute manipula- E = H ( q , d , u , r )  qcR",utR",zfR" (18) 
tors, it is shown in [Z, IO], that i = H(q ,  r j ,  U, e )  qsR", ueR", rrR" (19) 

(9) Now, the reduced flexible model can be derived by replac- 
mg z , i  with H . H  in Equation 11. " 

in which q = 91 and Mt is a positive definite matrix. This 
model is the model of FJR where It --t m verifying that 
the FJR model is a singularly perturbed model of rigid 
system. Assume that spring constants are equal the 
elastic forces of the springs can be calculated by: 

('') 2 = k(qi - q 2 ) ,  K = h l  

in order to use a small quantity for sinaular perturbation 

The of this equation is equal to the rigid system, 
however, this model includes the effects of flexibility in 
form of an invariant integral manifold embedded in itself. 
Hence, this reduced order model is not an approximation 
of the FJR model, but it represents its projection on the 
integral 

or the fast dynamics be asymptotically stable. This can 
be satisfied using a composite control scheme 161. In  this 
framework the control effort U consists of two main parts, 
us the control effort for slow subsystem, and uf the control 
effort for fast subsystem, as: 

(11) { @,= a1(q ,q  '! + A i ( d +  
ei = ~ z ( q ,  q, €2) + Az(q)z + B ~ u  

in which, 

A ,  = -M- ' (y )  ; a1 = - M - ' ( q ) N ( q , d )  (12) 
u = u s ( q , 9 > 4 + ~ / ( 9 l i l )  (23) 

= - r ~ - ' ~ i + ~ - ' ~ q -  J - ' T ~  - ~ - ' ( q ) ~ ( q , q )  (13) 
in which uf(q,rj) is designed such that the fast dynamics 
hecomes asvmototicallv stable. R denotes the deviations (14) A2 = - ( M - ' ( q )  + J - ' )  , BZ = -J-' 

Equation 11 represents FJR as a nonlinear and coupled 
system. This representation includes both rigid and flexi- 
ble subsystems in form of a singular perturbation model. 

111. Reduced Flexible Model 
The singular perturbation model of the FJR is given in 
Equation 11, This model represents the flexibility in the 
joints, however, the reduced order model is the model of 
rigid system, which can be easily derived from Equation 11 
by setting e = 0. With some matrix manipulation it can 
be shown that: 

" .  
of fast state variables from the integral manifold. 

9 = - W q , Q  , u s , c )  (24) 

q = i - B(q, B,U,.€) ( 2 5 )  

The slow component of the control effort, ur (q, 1, e ) ,  is also 
designed based on the reduced flexible model. We describe 
the design technique for uf and us in the next subsections, 
respectively. 

A. Fast Subsystem Dynamics and Control  

Recall Eouation 2 4  hence 

. . . . . . . . . 
Rewrite this equation in this form: 

Substitute the value of a2 and use fast time scale r = 5 
with some manipulations we reach to [5]: M r ( q ) i +  Nt(q, U )  = u o  (I5) 
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The flexible modes are not stable since the'eigenvalues are 
on the imaginary axis. Hence, uf must be designed such 

By factoring the equal powers o f t  we reach to: 

that the eirenvalues are shifted to the men left half "lane U, = BT1(Ho - Aazo) (36) - 
in order to guarantee stability. 
~h~~~~~ 1: ~h~ diagonal and definite matrices 

and K,, exist such that the closed loop system includ- 
ing the subsystem 27 with the control effort U /  = K p / q  + 
K,pj becomes globally asymptotically stable. (Proof in 

The only condition on robust control design is that uo must 
be at least twice differentiable. Finally, the control law for 
slow subsystem has the form: > 

(37) I& = U0 + tu, 
In which u~ is called the corrective term which is derived 
through this subsection and uo is the robust control based 
on the rigid model &borated in the next section, 

C. Robust PID Control  for Rigid model  

(171) 

B. Control  of Reduced Flexible Model  

The reduced flexible model represents the effect of flexi- 
hility in the form of the flexible integral manifold. In this 
section a robust control algorithm is proposed for thc sys- 
tern based on this model. -In order to accurately derive a 
robust control law ur(q, ¶ , e )  for the system, manipulation 
of partial differential equation is necessary. To avoid com- 
plex manipulations, we propose deriving the robust control 
law ua(q, 6, e )  to any order of e from the series expansion 
of the integral manifold to the same order of E. 

H ( q , d , U a , e )  = Ho(q,9.,up) + d f I ( q , 4 , U n )  + . - .  (29) 

and implement the controller u.(q, i ,e)  in the same form 
as: 

ua(q ,  4, E )  = uo(q, Q) + rui(q, 4) + .. . (30) 

in which the functions If,(q,4,us),ui(q,4), i = 0 > ,  1 ... 
are calculated iteratively without need to solve the partial 
differential equations. It is important to  note that as 6 + 
0, us tends to rigid control, and H tends to rigid integral 
manifold. uo is designed using a robust design technique 
based an the rigid reduced order model ( e  = 0), and Ha is 
calculated from: 

Ho = -A-'(a 2 ~ + B Z U O )  (31) 

in which: 

azo = az(q,4,0) = J-'Dd - J-'TF(q,d) - M - ' ( q ) N ( q , q )  
(32) 

Let: 

as(q, i ,ek)  =azo+cAai+O(r*)  

in which azo is given in Equation 32, and compare to  Equa- 
tion 13 we reach to: 

Aa, = - J -  'DH, { Aasa = - J-'DHo 

Hence, 

e H o  = uzo+AzHo+Bzuo+e(Aazo+A*H1 + B ~ U I ) + O ( C * )  

and, 
(33) 

(34) H u  = Aazo + AzHi + Bzui 

H I  = A;' (& - A a x  - BZUI) 

Therefore, 

(35) 

To calculate u1 refer to reduced flexible model 
approximate it to the first power of c: 

22 and 

q=a,(q,d)+A,(q)Ho+fAl(q)A;'(Hu-Aazo-B2u1) 

In this section we first propose a robust PID controller 
based on the rigid model of the system and then prove its 
robust stability with respect to the model uncertainties. 
Recall the rigid model of the system from Equation 15, 
choose a PID controller for U O :  

uo = Kvd + K p e  + Kr e(s)ds = K z  (38) 1, 
in which 

e = q d - q  
K = [ K ,  K P  Kv] 
5 = [$eT(s)ds  eT eT]r 

Similar to [2, 111 and [12], assume: 

m,I 5 Mt(q) 5 r n t l  (39) 

and put some limits on: 

IlNtll 5 Po +biIILlI + P ~ l l ~ I l '  ; 
in which ( 1 . 1 1  is the Euclidean norm and L = [er 
Implement the control law uo in 16 to get: 

llvmll 5 03 +P411Lll (40) 

dT]. 

i = Az + B A A  (41) 

where 

A = [  0 -M;'K" M;' 
0 I" 0 1, 0 ] B = [  " 1  

-M;'K,  - M r ' K p  

AA = Nt + MtBd 

To analyze the system robust stability consider the follow- 
ing Lyapunov function: 

(42) 

~ ( z )  = zTpz = -[a2 e ( s ) d s  + m e  + e ] T . ~ t .  : I "  
[a2 l ' e ( s ) d s  +ale  + til + w ~ ~ u r  (43) 

in which 
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ovmuc I( Des#?- TII.IECoW Since hit is a uositive definite matrix. P i s  uositive definite. 5 ,  . .  
if and only if, PI is positive definite. 
Lemma 1: Assume the following inequalities hold 

I 
s 0 2  0.4 o a  0.8 &, 12 1.1 1.6 > . e  2 
4 ' ,  ' ,  ~ ' a , > n  a z > n  a l + a z < i  

SI = a z ( k p  - k") - (1 - a , ) k ,  - az( l+ a ,  - a*)rn* > 0 

5 2  = kP + ( a ,  - 0Z)k" - k, ~ a,( l  +a2 - a1)rniit > 0 
. . . .. 

~ 

Then P is positive definite and satisfies the following in- 
equality (Rayleigh-Ritz)[S]: 

-, 

A(p)ll~llz 5 V(I) 5 X(P)l1412 

- A(P) = min{ zs,,T3T} 
0 0.2 O A  0.e 0 8  1 1.2 3 . 4  >.e l a  z in which, 

Fig. 2. Poor tracking performance of the closed lbop system for 

V. Stabili ty Analysis of t h e  Comple te  Closed-loop 

1 - a ,  -a*  s, 32 

perturbed model; Spong algorithm 

System 

- 1 +a1 +a*- Sa 34 
A(P) = maz{ m"T2'T) 

and 

s3 = a& + k") + (1 + a1)k, + (1 + a ,  + a*)azrnc 

sa = LYlrniil(1 + a1 + aa) + (a ,  + 0Z)kV + kP + kr 
Proof is based on Gershgorin theorem and is similar to 
that in [ll]. with some manipulations we can show [SI: 

7 = m i n { a z k , , a ~ k ~ - o l z k v - k 1 , k v )  

Now considering Equations 40, 42 and IlLll 5 /Jzll then, 

( 0  = a;'X,po +a; 'XMii i i t  

(1 = y - Ad33 - A Z r n t  - a;'X,P, 
F z  = xlPa+a;LAIP* 

X I  = X m a m ( I h )  
Xz = X m z ( R 2 )  

in which 

XI = SUPlI&Il 

and AM,. ,  X u o z  are the least and largest eigenvalues, re- 
spectively, and 

a:r a1a*I a d  

a z l  a,r I 
alazl a:I 0111 

1 a; I a lad  
azr 2a,azI (a:+az)r 

alad (U: +az) l  a l l  

According to the result obtained so far, we can proof the 
stability of the error system based on the following theo- 
rem. 
Theorem 2: The error system 41 is stable of the form of 
UUB, if CL is chosen large enough. 
The conditions are: 

(1 > 2m 

These conditions can be simply met by making (1 large 
enough by choosing large enough control gains Kp,K, ,  
and Kr. (Proof in [17]) 

The stability of the fast, and slow subsystems are sepa- 
rately analyzed in previous sections. However, the stability 
of the complete closed-loop system may not he guaranteed 
through these separate analysis [SI. In this section the 
stability of the complete system is analyzed. Recall the 
dynamic equations of the FJR Equation 11. ,The integral 
manifold and the control effort are chosen as: 

q = z - H  
H = Ho + rH1 

U = U r  + U ,  = U0 i LUl + U, 
Combine these eauations to Eauation 11, 35. 31 and 38. . .  
and consider, I = [Jo*e(s)Tds eT d T I T  ; 31 = 
[q' qTIT then, 

~ = A z . + B A A + C [ I  0131 (45) 
qj = Ay (46) 

in which, 

A = [  0 M;' 
0 I 0 0 I I;.=[ ' 1  

-M;'Kr -hf;'Kp -M;'K" 

AA = Nt + Mtph 

Theorem 3: There exist diagonal and positive definite ma- 
trices K,, and K,, such that the closed loop system 46 
becomes globally asymptotically stable. (Proof in (171) 
Theorem 4: The closed-loop system of Equations 45 and 
46 is UUB stable if KD,, K",, and (1 ?e chosen large 
enough. (Proof in [17]) 
The detail conditions on the PID controller .parameter 
bounds to preseve the closed-loop stability, are given in 
[17]. However, the stability conditions met if the controller 
gains are selected high enough. 

VI. Simulations 
In order to verify the effectiveness of the algorithm a simu- 
lation study has been forwarded next. In the following sim- 
ulation study, the results of the closed loop performance 
of a single, [14], and a two link flexible joint manipulator, 
[I], examined in the literature is compared to that of the 
proposed control algorithm. 
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4 . 5  I 
g , o , o . z  0.4 0.8 Oec~",m,m,m" 1.1 > e  I S  2 

. .. . . .  . . . .  
. .  1 

D 0.2 o *  0.B 0.11 1 1.2 1. 1.6 ,.e 2 
-1 

Fig .  3. Suitable tracking performance of the closed loop aystem for 
perturbed model; Proposed algorithm 

A. Single Link Flexible Jo in t  Manipulator  
Consider the single link flexible joint manipulator intro- 
duced in [14].The dynamic equation of motion of this sys- 
tem is as fallowing: 

i1 = 1 2  
i2 = -sin(xi) - M g L  . - - ( X I  K - 23) (47) 

I 
53 = 2 4  

K 1 
J J 

x 4  L -(XI - 1 3 )  + -u 
in which 21 = q1 and xz = 42. By choosing q1 = q and 
z = K(q1-4%) as the elastic farce, the model of the syst,em 
can be rewritten in a singular perturbation form: 

q = -  1 -? sin(q) - -2 

& = __ I sin(¶) - (- + - ) z  - -U (48) 
I 

- M g L  1 '  1 1 
I J  J 

in which e = I 
Spong has proposed a composite control law for this sys- 
tem, in which there exists two control components c o r -  
sponding to the fast and slow dynamics. As it is illustrated 
in [14], the closed loop system became unstable, provided 
that only the corresponding rigid control effort u g  is ap- 
plied on the system. Moreover, the system becomes stable 
and the desired trajectory 9.j =sin(%) is well tracked, im- 
plementing the proposed composite control on the nominal 
model of the system. However, this algorithm is not ro- 
bust to the model parameter variations. As illustrated in 
Figure 2 the tracking performance is getting quite poor 
for the maximum perturbation values for the parameters 
I ,  J ,  M ,  and L .  For the sake of comparison, the proposed 
robust PID controller may be now applied on the same 
system. The proposed control law is composed of three 
terms, in which the rigid control law is a PID controller 
whose coefficients satisfies the robust stability conditions 
elaborated in Theorem (4) as following: 

X '  

= 2006 + 500e + 100 

The integral manifold would be: 

e ( s ) d s  l 
1 
2 

H,  = -4.9sin(q) - -uo 

and the corrective term corresponds to  

ul = H a  

Fig. 4. Tracking performnn~e of the closed loop system and per- 
turbed model; Proposed algorithm ' 

The fast control law is a simple PD controller satisfying 
the robust stability conditions such as: 

U, = 5q +5$ 

in which q indicates the variation of z from the integral 
manifold H .  
It is observed that by implementing the proposed control 
law, not only the system is well tracking the desired tra- 
jectory for the nominal parameters of the model 151, hut 
also the robust stability and tracking performance of the 
system with maximum variation in its model parameters 
are preserved (Figure 3). 

B. Mult iple  Link Flexible Joint Manipulator  
Consider the two link Flexible Joint manipulator illus- 
trated in Figure 1. In this manipulator Joint flexibility 
is modeled with a linear torsional spring with stiffness k. 
The equation of motion of this system and its parameters 
is given in [l]. Our proposed algorithm is applied to the 
system for comparison of the results. Hence, the reduced 
order first order model is evaluated as following: 

2.25 0.5cos(cHi;) ] [ 
14.7cos(81) + 0.58; sin(eH,O) 

] + [ HI + rH: ] 
0.5 cOs(cH,O) 1.25 H i  + € H i  [ 

[ 4.9cas(02) - 0.58: sin(eHl) ] = [ ] 
In order to evaluate the fast dynamics caused by the joint 
flexibility, the normalized time variable T = is used. 
Hence, 

J; 

H P = 8 1 - u ?  ; H,O=&t& (49) 

H: = -Hf - U: . , H t  = -Hi - ui  (50) 

H: = -0.58: HP ; H i  = -0.58: HP (51) 

With expanding Equation 49 to the first order of e we have: 

And from Equation 50 we get: 

(52) 
' 2  

U: = -0.58: HP - ; u: = -0.50, N; - Hi 

Finally, the slow part of the control law will he calculated 
from: 

7Ll" = U? + a; ; uts = U; +tu: (53) 

The $,U; are the rigid part of the control law and as 
elaborated before is robustly designed as a PID controller. 
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... 
Fig. 5. Tncking perfoimance of the  closed loop system for nominal 

In here we design the PID gains as following which satisfies 
the robust conditions: 

model; AI-Ashoor et a1 algorithm 

U: = 5 0 0 e + 5 0 i + 5 0  e(s )ds  (54) 6: 
U; = 200e + 506 + 5 0 1  e(s)ds 

The fast control law is also designed as a PD controller as: 

U 1 1  = ill + 711 i 7121 = $2 + 72 (55) 

Finally the control law is composed from the east and slow 
parts: 

U,  = U,. + U , /  ; U2 = U*. +U*,  (56) 

To have simulation results compared to [I], the reference 
signal is considered as: 

8. = 1.57 + 7.8539eCt - 9.428eC""2 2 = 1 , 2  (57) 

in which the joint angles reach to a final value of 8i = f 
from zero initial state. Figure 4 illustrates the response of 
the perturbed system to our proposed composite control 
law. The system becomes stable, and the tracking per- 
formance is quite desirable, despite the 50% variation in 
model parameters. The control is limited to a maximum 
allowable bounds by adding a saturation block in the sim- 
ulation. AI-Ashoor et al have used a robust-adaptive con- 
trol law in addition to the composite law we introduced 

AI-Ashoor et a1 algorithm 

subsystem, and it is proven that the fast subsystem be- 
comes asymptotically stable. The slow subsystem itself is 
controlled through a robust PID controller designed based 
on the rigid model, and a correction term designed based 
on the reduced flexible model. The stability of the com- 
plete closed-loop system is analyzed and it is shown that 
the proposed controller is capable of robustly stabilizing 
the uncertain flexible joint manipulator. Finally, the ef- 
fectiveness of the proposed control law is verified through 
simulations. are compared to that given in the literature, 
and the effectiveness of preserving the robust stability, and 
performance of the system is verified and compared rela- 
tive to them. 
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In this paper the control of flexible joint manipulators is 
examined in detail. In order to achieve the required per- 
formance a composite control algorithm is proposed, con- 
sisting of corresponding control law for fast and slow sub- 
systems. A simple PD control is proposed for the fast 
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