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Abstract 
In this paper, a quasi-closed solution method is presented 
to solve the forward kinematics of a three DOF actuator 
redundant hydraulic parallel manipulator. It is shown, 
that on the contrary to series manipulators, the forward 
kinematic map of the parallel manipulators involves 
highly coupled nonlinear equations, which are almost 
impossible to solve analytically. The proposed method 
uses a combination of analytical and numerical schemes 
to solve the problem. A simulation study is performed 
using a sample trajectory to identify the advantages and 
disadvantages of the proposed method in computing the 
forward kinematic map of the given mechanism. The 
results show that the proposed method provides us with a 
relatively fast solution and good tracking performance 
although being dependent on the initial conditions used 
in the solution process.    
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1. Introduction 

Over the last two decades, parallel manipulators have 
been among the most considerable research topics in the 
field of robotics. These robots are now applied in real-life 
applications such as force sensing robots, fine positioning 
devices, and medical applications [1, 2]. 
In general robot manipulators with the end effector 
connected to the ground via several parallel-actuated 
legs, will have great load carrying capacity, high rigidity 
and good positioning capability. These interesting 
features as well as high speed and accuracy have led its 
main drawbacks, namely: smaller workspace and 
kinematic complexity, to be challenged. Kinematics is 
definitely of fundamental importance in design and 
control of robotic manipulators since the performance of 
a typical manipulator is achieved through the movement 
of the legs so the study of the geometry of leg motions 
would be crucial. As in the case of conventional serial 
robots, kinematics analysis of parallel manipulators is 
also performed in two phases. In forward or direct 
kinematics the position and orientation of the mobile 
platform is determined given the leg lengths. This is done 

with respect to a base reference frame. In inverse 
kinematics we use position and orientation of the mobile 
platform to determine actuator lengths. This kind of 
kinematics analysis is sometimes referred to as position 
kinematics or kinematics in the position level. It is 
known that unlike serial manipulators, inverse position 
kinematics for parallel robots is usually simple and 
straightforward. In most cases joint variables (actuator 
displacements) may be computed independently using 
the given pose of the movable platform. The solution to 
this problem is in most cases uniquely determined. 
But forward kinematics of parallel manipulators is 
generally very complicated. Its solution usually involves 
systems of nonlinear equations which are highly coupled 
and in general have no closed form and unique solution. 
This topic has been of real interest to the robotics 
researchers and even mathematicians. Most of the 
research regards solving the forward kinematics in 
Gough-Stewart platform which has become a benchmark 
for both analytic and numerical computation schemes [3]. 
Different approaches are provided to solve this problem 
either generally or in special cases. There are also 
numerous cases in which the solution to this problem is 
provided for a special or novel architecture. In general, 
different solutions to this problem can be placed in one of 
the following [4]: 
 
• Numerical approaches 
• Analytical approaches 
• Closed-form solution for special architectures 

 
Most of the research regarding the closed form solution 
to the forward kinematics problem of parallel 
manipulators has assumed simplified or special 
conditions under which a closed form solution to the 
problem could be found [5].   Some researchers have 
focused on a special or a novel architecture [6, 7, 8]. 
Also, in [9] a closed form solution has been provided for 
parallel manipulators with planar base and mobile 
platform which is based on the use of three linear extra 
sensors to provide additional information. 
In this paper, a quasi-closed form solution method is 
tested to solve the kinematics problem in a 3DOF 
actuator redundant hydraulic parallel manipulator. The 
paper is organized as following. Section 2 contains the 
mechanism description. Kinematic modeling of the 
manipulator is discussed in section 3, where inverse and 
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forward kinematics is studied in detail and the need for 
appropriate method to solve the forward kinematics is 
justified. In section 4, the proposed method to solve the 
forward kinematics problem is discussed.  
 Finally, in section 5, in order to identify the benefits and 
drawbacks of the proposed scheme, the method is 
simulated regarding the problem in hand. 

2. Mechanism Description 

A three DOF actuator redundant hydraulic parallel 
manipulator is used as the basis of our study. The 
mechanism is designed by Dr. V. Hayward [10, 11, and 
12], borrowing design ideas from biological manipulators 
and specially the biological shoulder. The interesting 
features of the mechanism and its similarity to human 
shoulder have made it a unique design, which can serve 
as a basis for a good experimental setup for research. A 
schematic of the mechanism is shown in figure (1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig (1): A schematic of the hydraulic shoulder 
manipulator 

 
The mobile platform is constrained to spherical motions. 
Four high performance hydraulic piston actuators are 
used to give three degrees of freedom in the mobile 
platform. Each actuator includes a position sensor of 
LVDT type and an embedded force sensor (Hall Effect). 
Simple elements are used in the structure like spherical 
and universal joints. A complete analysis of such a 
careful design will provide us with good results regarding 
the structure itself and its performance. However, such an 
analysis requires a comprehensive study conducted in a 
systematic way as done for all robotic structures, namely 
kinematics (structural properties), kinetics and then 
identification and control problem must be regarded 
separately.  
From the structural point of view, the shoulder 
mechanism which, from now on, we call it "the 
Hydraulic Shoulder" falls into an important class of 
robotic mechanisms called parallel robots. In these 
robots, the end effector is connected to the base through 
several closed kinematic chains. The motivation behind 
using these types of robot manipulators was to 
compensate for the shortcomings of the conventional 
serial manipulators such as low precision, low stiffness, 
error accumulation and load carrying capability. Parallel 

structures are usually lighter and simpler than their serial 
counterparts. However, they have their own 
disadvantages, which are mainly smaller workspace and 
many singular configura-tions. Recently, hybrid 
structures are designed which combine the advantages of 
both serial and parallel robots. 
 The hydraulic shoulder, being a parallel structure, has 
the general features of these structures. It can be thought 
of as a shoulder for a light weighed seven DOF robotic 
arm, which can carry loads several times its own weight. 
Simple elements, used in this design, add to its lightness 
and simplicity. The workspace of such a mechanism can 
be considered as part of a sphere surface. The orientation 
angles are assumed to vary between -π/6 and π/6. Such 
an assumption is reasonable regarding the mechanism 
features, such as maximum actuator displacements and 
other mechanical constraints. 

3. Kinematics 

The hydraulic shoulder is kinematically over constrained. 
The inverse kinematics problem is easily solved, given 
the orientation of the mobile plate. This is also the case 
for general parallel robots. The inverse kinematics 
problem has a unique solution, in our case meaning that, 
the hydraulic shoulder cannot be optimized by choosing 
between inverse kinematics solutions. But, in contrast to 
serial structures, the forward kinematics is very 
complicated and there is no closed form solution in 
general. Figure (2) depicts a geometric model for the 
mechanism which will be used for its kinematics 
derivation.  

 
Fig (2): A geometric model for the hydraulic shoulder 

manipulator 
 
The parameters used in kinematics can be defined as:  
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:α The angle between 4CA  and 0y  
:C Center of the reference frame 
:C1 Center of the moving plate 
:iρ Actuator lengths i=1, 2, 3, 4 
:Pi Moving endpoints of the actuators   
:Ai Fixed endpoints of the actuators 
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Two coordinate frames are defined. The base frame 
X0Y0Z0 is centered at C (rotation center) with its Z0-axis 
perpendicular to the plane defined by A1A2A3A4 and an 
X0 axis parallel to the bisector of angle ∠A1CA4. The 
second frame, namely X1Y1Z1 is centered at C1 (center of 
the moving plate) with its Z1 axis perpendicular to the 
line defined by the actuators moving end points (P1P2) 
and horizontal Y axis along C1P2.  

3.1. Inverse kinematics 

In modeling the inverse kinematics of the hydraulic 
shoulder we must determine actuator lengths ( ρ i ) as the 
joint space variables given the task space variables, 
namely θx, θy and θz as the orientation angles of the 
moving platform. First we note that the fixed end points 
of the actuators (Ai) can be written in the base frame as: 
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These must be transferred to the base frame using the 
rotation matrix R0
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Where: 
0
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As a result the rotation matrix components are computed 
as following: 
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The final step is to translate the resulting vectors  P0

i   by  
lp   along the Z axis. Having P0

i and 0
jA  in hand, the 

actuator lengths jiAP   can be easily computed as: 

2
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Equations (6)-(7) completely model the IK of the 
hydraulic shoulder. As it is obvious from the equations 
the actuator lengths will be uniquely computed given the 
orientation angles θx, θy and θz. So the manipulator 
doesn't have any kinematics redundancy, meaning that 
reaching a specific point in the task space can't be 
satisfied through different combinations of the actuator 
lengths.  

3.2. Forward kinematics 

Equations (6)–(7) can also be used for the forward 
kinematics of the hydraulic shoulder but with the actuator 
lengths as the input and orientation angles θx, θy θz as the 
unknowns. In fact, we have four nonlinear equations to 
solve for three unknowns. Obviously, solving such a 
system of nonlinear equations for a unique closed-form 
analytic solution to the FK problem is very complicated, 
although three equations of the four could be used. 
Several inconclusive attempts have been made in this 
direction; therefore, we propose using a combination of 
the numerical and analytic schemes to solve the FK 
problem as a basic element in modeling and control of 
the manipulator. This is studied in detail in the next 
section. 

4. Forward Kinematics Solution 

 We introduce a quasi-closed form solution method to 
estimate the forward kinematic map of the hydraulic 
shoulder manipulator. 
The kinematic equations of the mechanism can be 
rewritten as: 
 

3332232213121 GsFsEsDsCsBsAρ −−−−++= 

3332232213122 GsFsEsDsCsBsAρ −−−−++= 

3332232213123 GsFsEsDsCsBsAρ −−−−++= 

3332232213124 GsFsEsDsCsBsAρ −−−−++= 

 
 
 

(8) 

 
Where parameters A, B, C, D, E, F and G depend on the 
geometric features of the mechanism and are measured as 
follows: 
 
A=.0268m, B=.0045m, C=.0083m, D=.0026m, 
E=.0048m, F=.0092m, G=.0169m 
 
The ijs ’s are the nine entries of the rotation matrix which 
represent the orientation of the moving platform, and 

ρ,ρ,ρ,ρ 4321  are the actuator lengths. It is fairly easy to 
obtain the forward kinematic equations having the 
rotation matrix S in hand. 
So, the problem reduces to solving for the rotation matrix 
instead, with nine entries as the unknowns. Noting that 
these entries are not independent, there would be no need 
to compute all nine unknowns. 



Furthermore, The elements in the first column of S, 
namely: 11s , 21s  and 31s  are not present in the kinematic 
equations, which simplifies the problem as we can find 
the 2nd and 3rd columns of  S and the 1st column will be 
simply computed as their cross product. 
Hence, the problem is solving the kinematic equations 
(8) for the rotation matrix with the following constraints: 
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Col (2) and Col (3) are defined as the second and third 
columns of the rotation matrix S, respectively. 
We must note that S is an orthonormal matrix so the 2nd 
and 3rd columns must be orthogonal with unit lengths. As 
the cross product of two orthonormal vectors would also 
be orthonormal, the other constraints on the rotation 
matrix entries would be trivial. 
From equations (8), we can solve for s,s 1312  as: 
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These equations are in the form of an analytic closed 
form solution. Unfortunately the high coupling of the 
forward kinematic equations makes the closed form 
computation of other entries of S complicated. Several 
inconclusive attempts were made to find an analytic 
solution for these entries; therefore we tried a new 
approach combining the analytic and numerical methods 
to solve for the remaining entries of the rotation matrix in 
a quasi-closed form. 
We can relate the four remaining unknowns with the 
following equations: 
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Or much simpler: 
sβαs 3322 += 
ηsγs 3223 += (14) 

Where: 
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Using constraint equations (9)-(10) we have: 
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The remaining problem will be to determine s,s 3332  using 
the above system of nonlinear equations, given s,s 1312 . 
Having s,s 3332  in hand, we can easily find the remaining 
entries s,s 2322  to obtain the 2nd and 3rd columns of the 

rotation matrix S, from which the first column would be 
determined by a cross product. 
The two entries s,s 3332  were obtained numerically from 
equation (16) solving a constrained optimization 
problem. In the next step the rotation matrix S was 
determined from which the orientation angles were easily 
obtained. Hence the forward kinematics problem was 
solved using the rotation matrix of the end effector as a 
means of simplifying the equations. 
It should be noted that the degree of accuracy of the 
numerical optimization scheme to find an orthonormal 
rotation matrix is considered very important. The 
accuracy of the proposed method will definitely depend 
on the initial conditions used in the optimization process. 
We should also note that the proposed method uses a 
combination of analytic and numerical computation 
schemes, hence called a quasi-closed form solution 
method.    
 
5. Simulation Results 
 
To show how the results of the previous section apply in 
practice to estimate the forward kinematics map of the 
hydraulic shoulder manipulator, a simulation study was 
performed in which a sample trajectory was considered 
in the reachable workspace of the manipulator. The 
provided method was tested along such a trajectory and 
the results were compared. By this means, a good 
judgment could be made considering the advantages and 
the drawbacks of the proposed method. 

5.1. Sample Trajectory Generation 

We consider a smooth motion specified in terms of a 
desired pose of the moving platform of the hydraulic 
shoulder manipulator. We know that for the motion to be 
smooth, at least four constraints must be met[13].The 
first two constraints involve the selection of the initial 
and final points and also the time to reach the final point, 
namely: 

θ)tθ( ff = , 0θθ(0) = (17) 
The other two constraints ensure that the function is 
continuous in velocity so that: 

0)t(θ f = , 0(0)θ = (18) 

A cubic polynomial of the form  
tαtαtαα 3

3
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is considered to meet the above constraints by choosing 
the coefficients αi  as follows:[13] 
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Thus, the sample trajectory is easily defined given the 
initial and final points and the time to reach the final 
point. This has been done to generate a sample trajectory 
in the reachable workspace of the hydraulic shoulder 
manipulator. Figure (4) shows this trajectory for each 
orientation angle in the task space. 



 Note that the actuator lengths profile corresponding to 
the desired task space trajectory could be easily obtained 
through the inverse kinematics map of the manipulator. 
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Fig (4): Sample Trajectory for Orientation Angles 

5.2. Quasi-Closed Method Simulation 

Figures (5-a)-(5-c), show the simulation results for the 
Quasi-Closed method applied to follow the sample 
trajectory along each orientation angle. The tracking 
performance is seen to be really good which shows the 
efficiency of the proposed method.  
Table (1) summarizes different measures of estimation 
errors along the test trajectory in which PE stands for 
Prediction Error, SSE stands for sum of square of error, 
MSE stands for mean square error, and MAE stands for 
mean absolute error.  
 

 Max PE SSE MSE MAE 
       θx  .086 .225 .0011 .0193 
       θy  .014 .0072 3.6e-5 .0041 
       θz  .025 .0171 8.5e-5 .0053 

 
Table (1): Measures of Prediction Errors  

6. Conclusions 

In this paper, a new quasi-closed approach was presented 
to solve the forward kinematics problem in a three DOF 
actuator redundant hydraulic parallel manipulator. The 
method used the rotation matrix of the end effector to 
determine the corresponding orientation angles needed to 
solve the forward kinematics map. The proposed method 
uses a combination of analytic and numerical 
computation schemes; hence called a quasi-closed form 
solution method. The degree of accuracy of the proposed 
method mainly depends on the numerical optimization 
scheme to find an orthonormal rotation matrix which is 
considered very important. Different measures were used 
for the prediction errors along the sample trajectory to 
test the tracking performance of the proposed method. In 

general, the method also provides us with some external 
erroneous solutions due to the nonlinear nature of the 
forward kinematics map. In a separate research the 
results obtained using numerical approaches to solve the 
same problem is presented [14]. 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
Sample Trajectory Tracking- X angle

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Sample Trajectory Tracking- Y angle

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Sample Trajectory Tracking- Z angle

 

Fig (5): Sample Trajectory Tracking  
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