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ABSTRACT 
 In this paper a method of controller design for FJRs considering actuator saturation 
and other practical limitations is proposed. In the proposed method the need of powerful 
actuator is skipped over by decreasing the bandwidth of the fast controller during critical 
times. In order to accomplish this, a supervisory control is employed which uses fuzzy 
logic to adjust the proper forward path gain. This prevents instability caused by saturation 
without a great change in performance. All other practical considerations to make the 
controller implementable are taken into account and finally the performance of the 
proposed controller is verified through simulation. 
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Introduction 
 The desire for higher performance from the structure and mechanical specifications of 
robot manipulators has been spurred designers to come up with flexible joint robots (FJR). 
Several new applications such as space manipulators [1] and articulated hands [2] necessitate 
using FJRs. This necessity has emerged new control strategies needed, while the traditional 
controllers used for FJRs have failed in performance [3,4]. Since 1980’s many attempts has 
been made to encounter this problem and now, several methods has been proposed including 
various linear, nonlinear, robust, adaptive and intelligent controllers [5,6]. Among these, only 
a few researchers have been considered practical limitations, for example, actuator saturation 
as a real practical drawback to achieve a good performance has become limited attention [7]. 

On the other hand actuator saturation has been considered by the control community 
from early achievements of control engineering. During 50's and 60's at the beginning era of 
optimal control, researchers have been working on saturation, introducing bang-bang control 
methods. Over the last decade the control research community has shown a new interest in the 
study of the effects of saturation on the performance of systems. In fact it can be said that in 
the past, researchers were encountered a drawback identified as actuator saturation and 
developed methods to avoid it, while now, researchers develop methods to achieve a desirable 
performance in the presence of actuator saturation seen as a limitation.

It can be said that saturation may cause two types of performance degradations: 1) 
Inevitable limitations such as slow responses, undesirable transitions, etc. 2) Removable 
problems such as instability, bad steady state performance, etc. The goal in considering 
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saturation at design step is to decrease or remove the latter. A common classical remedy for 
systems with bounded control is to reduce the bandwidth of the control system such that 
saturation seldom occurs. This is a trivial weak solution because even for small commands 
and disturbances, the possible performance of the system is degraded. This idea (reduction in 
bandwidth by reduction in the closed loop gain) is practical and “easy”, so this motivates 
some researchers to propose an “adaptive” reduction in bandwidth consistent with the 
actuation levels [8]. The “adaptation” process is done under supervision of a supervisory loop,
and as proposed in [8] is accomplished through complex computations which practically 
seems not to be implementable. In order to come up with an online implementable controller 
for FJRs, in this paper a fuzzy logic supervisory control is proposed. In this manner, the fuzzy 
logic is set to be “out of the main loop”, at a supervisory level, at the aim of preserving the 
essential properties of the main controller. This idea is first. 
published by the authors in [9] and is modified to use with composite controller for FJRs in 
this paper. It is shown that a model free implementable supervisory control can be embedded 
in a composite control structure to cope with actuator saturation. 
 This paper is organised as follows: Section 2 presents the modelling procedure for an 
FJR; Section 3 describes the details of the composite control method; Section 4 is devoted to 
description of the new method; Section 5 is allocated for simulation studies and finally, the 
conclusions are presented in Section 6.  
 
FJR Modeling 

To model an FJR the link positions are let to be in the state vector as is the case with 
solid robots. Actuator positions must be also considered because in contradiction to solid 
robots these are related to the i’th position through the dynamics of the flexile element. When 
the position of the i’th link is shown with θi : i = 1,2,…,n and the position of the i’th actuator 
with  θi+n : i=1,2,…,n , It is usual in the FJR literature to arrange these angles in a vector as 
follows: 
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Using this notation and taking into account some simplifying assumptions, spong has 
proposed a model for FJRs [10] as follows: 
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where I is the matrix of the link inertias and J is that of the motors, C is the vector of all 
gravitational, centrifugal and coriolis forces and torques and u is the input vector. Further 
without loss of generality [11] it is assumed that all flexible elements are modelled by linear 
springs with the same spring constant k and the matrix K = k I3x3 .

The inertia matrices are non-singular so the model can be changed to the following 
singular perturbation standard form: 
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in which 1qq vv = , )( 21 qqKz vvv −= and ε=1/k.
As seen from the model, FJRs show a two-time-scale behaviour due to the presence of 

the small parameter ε as a multiplier on derivative term in the second differential equation. 
This means that the system will have fast and slow variables. In the sequel we will use the 
concept of integral manifold and composite control to design a suitable controller with this 
requirement [11]. 
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Composite control 
It is shown in [11] that for FJRs for any given input us there exists an integral manifold 

in the (q, z) space, described as follows: 
),,,( 11 εss uqqhz &= (4) 

When the fast dynamics are asymptotically stable, the above condition, if violated 
initially, will be nearly satisfied after the decay of the fast transients, i.e. z will approach to the 
zs. The unknown function h can be found by solving the following partial differential equation 
which is obtained by substitution of h and its derivatives in equation (3): 

suqBqqGhqBqAh )(),())()(( −−+−= &&&ε (5) 
This equation referred to as the manifold condition is hard to solve analytically. Spong 

et al. have proposed a method to solve this equation approximately to any order of ε by 
expansion of terms as done in equations (8) and (9) [11]. Using the concept of composite 
control [12] a fast term could be added to the control input to make the fast dynamics to be 
asymptotically stable: 

),( fffs zzuuu &+= (6) 
where zf =z-zs represents the deviation of the fast variables from the manifold. The fast 

control is designed such that uf(0,0)=0 so on the manifold u=us and no any modification is 
needed to be applied on manifold condition (5). By subtracting (5) from (3) the fast dynamics 
can be shown to be: 

fff uqBzqBqAz )())()(( −+−=&&ε (7)
 So a PD controller can be used to stabilize the fast dynamics. To solve the manifold 
condition and simultaneously to design a corrective term in the controller, expansion of h and 
us can be used as follows: 
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substituting these in the manifold condition and equating the terms with the same order will 
result in: 
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by substitution of these results in the differential equation of q we will have: 
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then the his will vanish except for h0 and equation (11) will reduce to the solid model. So 
using the corrective term u1 will enable us to design the u0 as usual as that for solid robots.  

Using a simple PD controller for the u0 has the benefits: 1) no need for rate 
measurements, 2) no need for offline computations (specially derivations of the reference 
input) 3) guaranteed robust stability by the conditions detailed in [13], the three main requests 
for implementation purposes.  

The overall control system for an FJR using composite control with a corrective term is 
shown in figure 1 by which very good performance can be achieved in the expense of high 
actuator effort. This is mainly remedied in this paper and will be explained in the next section. 
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Figure 1: The FJR control system 

 
The Supervisory loop 

In this part we will first describe the idea of error governor as it is first proposed by the 
authors [9]. Then the developments needed to use it with the FJR model are elaborated. 
Without loss of generality one can assume that each element ui(t) of the control vector has a 
saturation limit of 1. In other words the saturation function can be defined as follows: 
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The proposed method is twofold, first the compensator is designed without considering 
any saturation limit, then a time varying scalar gain 0<λ(t)≤1 is added which modifies error 
and is adjusted via a supervisory loop (figure 2) to cope with saturation. 
 

K(S) Saturation G(S)
e(t) u(t) u (t) y(t)r(t) s

plantcompensator

λ(t)I

error governor
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Figure 2: The closed loop system with error governor 

Intuitively one can state the logic of adjustment as follows: 
 

• If the system is to experience saturation make λ smaller, 
• Otherwise increase λ up to one. 

 
This logic decreases the bandwidth when the system is to experience saturation and in 

normal conditions the effect of error governor is diminished by making λ=1. This 
configuration reduces the amplitude of the control effort as is done by saturation itself but 
there are some important differences: 1) this is a dynamic compensator and not a hard 
nonlinearity as is the case with saturation; 2) this approach limits the control effort by 
affecting the controller states while saturation will limit the control effort independent of the 
controller states, in other word it acts in a closed loop but saturation acts open loop. It is 
difficult to implement this logic with a rigorous mathematical model and if done it will not be 
implementable. However with fuzzy logic this can be easily employed. To sense the value of 
nearness to saturation the absolute value of the amplitude of the control effort |u(t)| is a good 
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measure. To give a kind of prediction to the logic, )t(u& is also taken into account. The above 
logic thus can be interpreted to the fuzzy notation as follows: 
 

• If |u(t)| is NEAR to one and )t(u& is POSITIVE make λ LESS than one, 
• When |u(t)| is OVER one, make λ SMALL if )t(u& is negative and VERY SMALL if )t(u&

is not negative, 
• Otherwise make it ONE (see table 1). 

 
Fuzzy sets are defined as shown in figures 3 to 5. 

Table 1: Fuzzy Rules 

 u&
|u|

Small Near Over 

Neg One One S

Zero One One VS 

Pos One L VS 
Figure 3: Fuzzy sets for )t(u&

Figure 4: Fuzzy sets for u Figure 5: Fuzzy sets for λ

To use this strategy for the FJR some modifications should be made as follow: 
a. The supervisor is used for the fast subsystem only which mainly causes the instability 

when limited by saturation. 
b. In simulations where the desired reference input is a sinusoid and so is the control 

effort, use of |u(t)| is meaningless and the amplitude of the sinusoid must be 
considered instead. Practically a low pass filter is used to estimate this amplitude. 

c. The saturation limit is not 1 in the FJR configuration, so the control effort u(t) must be 
attenuated by this factor before feeding to the supervisor. 

The modified supervisory loop for the FJR is shown in figure 6. a filter is used to estimate 
)t(u& from u(t) so the only measurement is u(t).

Simulation 
Simulation conditions and measures 

The effectiveness of the proposed method is verified through simulations. A single 
degree of freedom FJR is considered as shown in figure 7. The numerical values are selected 
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as the benchmark problem in the literature [10, 14, 15] to be: m=1, I=1, J=1, L=1, g=9.8, 
k=100.

Figure 6: Fuzzy supervisor for the FJR Figure 7: The single degree of freedom FJR 

The reference input is selected to be qd = Sin(8t). This is the largest bandwidth desired 
for this benchmark in the literature. With this input the control effort at the steady state will 
have amplitude of about 80, so a saturation limit between 100 and 150 is reasonable. As the 
error has not a zero steady state value, to be accurate the, L2e norm of the error which is the L2

norm of the truncated signal eτ(t) is considered [16]: 
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To have a quantitative measure of performance the following definition will be helpful: 
 
Definition: a minimum acceptable limit, δmin is defined as the saturation limit that preserves 
stability itself but a reduction of 5 percent in it will cause instability. 
 
Simulation results 
A. Original system. The desired output, qd(t) and the simulated output, q(t) for the original 
system (without fuzzy supervisor) in the absence of saturation are shown in figure 8. 

If saturation is added to the model, for the values of saturation limit that are not large 
enough instability will occur. The instable output for the saturation limit δ = 830 is shown in 
figure 9. 

Figure 8: Tracking, no saturation, no 
supervision 

Figure 9: Instability due to saturation for δ =
830 

 

The minimum acceptable limit for this case is δmin = 870 (table 2). The error norms are 
shown in the upper shaded rows of table 3. 
B. Supervised system. If the supervisor is added to the system the minimum acceptable limit 
will reduce to δmin = 145 (table 2) which is a reasonable value. The tracking graph for this case 
is shown in figure 10 with comparable axes as in figure 8.  



Design of Composite Control For  ... 81 

Figure 10: Tracking with δ = 830 in presence of supervisor 

The value of λ for this case is shown in figure 11. Its value is near to zero during “take 
off” of the system and after decay of the transients it will reach to the value of one at time 
t = 4, omitting the supervisor effects from the system and returning to the wide bandwidth 
which has been designed. 

Figure 11: The value of λ with δ = 830 

The error norms for this case (i.e. with supervisor) are shown in the lower rows of table 3. To 
have quantitative criteria to judge about these norms the norm of error during a period of the 
reference input for zero output may be useful. This value could theoretically found to be  
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Allowing for the tracking graphs and taking into consideration the values of the norms 
one can deduce that the supervisory loop could reject the instability problem and to reduce the 
minimum acceptable limit while preserving a satisfactory tracking behaviour. In fact the main 
reason of instability which is limiting the fast (flexible) term in the control effort is attenuated 
by the supervisor in the beginning, in order to let the system to deal with inertias. On the other 
hand the fast term could not be fully omitted because ignoring flexibility will cause the 
controller to fail and may cause instability itself, so the supervisor will release the fast term 
when the system is settled down. 

Table 2: minimum acceptable limit for two cases 

 Original 
system 

Supervised 
system 

δmin 870 145 

table 3: error norms (shaded: original system

δ ∞ 103

0.210 0.302 
e

te
24 )( L 0.210 0.350 

0.15 0.55 
∞

)(te
0.15 0.75 

Conclusions 
In this paper the problem of implementable controller design for flexible joint robots in 

presence of actuator saturation is considered in detail. The singularly perturbed model of the 
system is first introduced and the composite control strategy is explained briefly. It is shown 
that using a three term composite controller, good performance can be achieved in the absence 
of actuator saturation. In order to remedy the instability caused by actuator bounds, a 
supervisory loop is proposed. It is shown that a model free fuzzy supervisor makes it possible 
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to reduce the minimum acceptable saturation limit, without great loss in performance. The 
used configuration will add a dynamic reduction in the control effort instead of the clipping 
action of the saturation. The supervisor will affect the signals before the controller so 
affecting the controller states dislike the saturation which will be placed after the controller  

Moreover the method of composite control with PD terms for solid and flexible (fast) 
controls is used to skip over the offline computations and to omit the rate measurements. 
These all considerations have been enabled us to offer a practical controller for an FJR.  
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