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Abstract— In this paper a new and completely linear algo-
rithm is proposed for composite robust control of flexible joint
robots. Moreover, the robust stability of the closed loop system
in presence of structured and unstructured uncertainties is ana-
lyzed. To introduce the idea, flexible joint robot with structured
and unstructured uncertainties is modelled and converted into
singular perturbation form. A robust linear control algorithm
is proposed for the slow dynamics and its robust stability
conditions are derived using Thikhonov‘s theorem. Then the
robust stability of the total system considering the porposed
composite controller is analyzed, and sufficient conditions for
robust stability of system is obtained. Finally the effectiveness
of the proposed controller is verified through simulations. It is
shown that not only the tracking performance of the proposed
controller is very suitable, but also the actuator effort is much
smaller than previous result.

Index Terms— Flexible joint robots, harmonic drive, singular
perturbation, robust PID, Thikhonov’s theorem, UUB Stability,
Lyapunov analysis, simulations.

I. INTRODUCTION

Joint flexibility is one of the main reasons of robotic
systems complexities. As it is shown [10] for practical
applications, in order to achieve better tracking performance,
joint flexibility must be taken in to account in both modeling
and control.
The most important reason of joint flexibility is power
transmision system flexibility. Mechanical arms need
actuators capable of generating high torque in low speeds.
On the contrary, electric motors provide robots with
necessary torques only in high speeds. Therefore, many
robots moved by by electric motors, use a power transmision
system (gear box) for increasing torque and decreasing
speed. among power transmision systems, harmonic drives
have becomed more attractive to robot designers due to
their special features. Unusual performance of harmonic
drives theeth engagement give rise to achive high torque
performance, high efficiency and - - - in a small volume [14].
However, joint flexibility and nonlinearity, in addition to
increasing complexity of arms modeling, is a potential factor
of system uncertainty that can affect favorable features of
system and even in some case, leads to instability.
Due to existing joint flexibility, actuators’ position (for
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example angle of motors’ shaft) depends not directly to the
driven arms’ position. This is not favorable for applications
with high precision. Moreover, unwanted oscillations due
to joint flexibility, imposes bandwith limitation on all
algorithms designed base on rigid robots and may create
stability problems for feedback controls that neglect joint
flexibility.

A large number of control schems have been proposed for
compensating joint flexibility including singular perturbation
theory [6], feedback linearization [10], adaptive control [3],
[4], robust control [5], [12], [13] and intelligent methods
[15]. Given slight joints flexibility, singular perturbation
theory is applied as the base theory for modeling of robots.
In this method, by applying Two-Time scale behavior,
these systems are divided into slow and fast subsystem,
and provides the initial means for corresponding control
algorithms. As it is shown for a three axis model with
flexible joints [1], such system are not always feedback
linearizable. Thus usual methods such as computed torque
can not be applied. By neglacting effect of axis movement
on rotors kenimatic energy, a mathematicall model of these
robots is derived in [10]. Considering this simplification
system is feedback linearizable, although it should be noted
that for appling this method, measurment of accelleration
and jerk is required which is quite expensive.

In this paper, a linear control algorithm (PID with corrective
term) is proposed the system. The robust stability of the
closed loop system against structured and unstructured
uncertainties is analyzed in detail. In order to develop this
study, after a brief review of robot dynamics and PID control
algorithm, an uncertain FJR with structuredand unstructured
uncertainties is introduced in a singular perturbation form.
Then with the aid of Thikhonov’s theorem, by seperation
of slow and fast variables, an algorithm for designing PID
controller for corresponding rigid model and corrective
term for flexible joints compensation is represented. Total
stability of system is demonstrated then, and sufficient
condition for its stability is presented. Simulations illustrate
the effectiveness of the proposed control law, despite its
very simple structure.

2936



II. PID CONTROL OF RIGID ROBOT
Dynamic model of a n axis rigid robot is [2]:

M(q)§ + Ni(q,4) = uo oy
where,

{Mt(Q) =M(q)+J @
Ni(q,4) = Vim(q,4)4 + G(q) + Fag + F5(4) + Ta

in which, M(q) is n x n mass matrix,V,,(q,q) is n X n
matrix consisting of coriolis and centrifugal terms, G(q) is
n x 1 vector of gravity terms, F; is diagonal n x n matrix of
Viscous friction, Fs(¢) is n x 1 vector of Coulomb friction,
Ty is n x 1 vector of disturbance or unmodelled but bounded
dynamics and J is n x n diagonal matrix of actuators masses.
As it is demonstrated in [2], [9], in spite of uncertainty in
all parameters, we have:

myI < My(q) < mi I
[ Nell < Bo + BullLl| + Bl L]I? ®)
1Vinll < B3 + BallL]|

that m,, ™y, Bo, f1.52, B3, B4 are real positive constants and

L =[eT ¢éT],]|.| is stands for eculudian norm. By choosing
Uug as

t
uoszé+er+K1/ e(s)ds =Kz 4)
0

where,

€=dqa— ¢
K = [K] KP Kv] (5)
T = [fot el (s)ds el &T|T

and by appling it in (1) we have:

i = Az + BAA (6)
in which,

0 I, 0

A= 0 0 I, @)
~-M'K; -M'Kp -M;'Ky
0
B=| 0 |, AA= N;+ Mija ®)
M

A. Choosing Lyapunov Function and Proof of Sability

We nominate a lyapunov function for the closed loop
system as follows:

1 t
V(z) =a" Pz = 5[042/ e(s)ds + are +€]”
0
t
My - [os / e(s)ds + are + €] + wT Piw 9)
0

[“22& 85 Sy ixp] (10)

w= [fgeos)ds] P =

N | =

agKy + Ky + ajagMy  a1Ky +Kp +ant a1 My

[azKp +a1 Ky + ath asKy + K5 +ajagMy agMg
ag My ay My My
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Since M, is a poisitive definite matrix, P is positive definite
if and only if Py is positive definite matrix. if

Kp=kpl
{ Ky = kyl (11)
K=kl

then, the following lemma shows that by proper choose
of controller coefficients, P becomes positive definite with
lower and upper bounds.

Lemma(1): we suppose that following inequalities are true:

ar >0 ary >0 ar+ax<l1
s1=as(kp —ky) — (1 —a1)kr —as(l4+ a1 —a2)m, >0
sy = kp + (Oél — ag)kv —kr — Oq(]. + Qo —al)mt >0

then P is a positive definite and satisfies this condition
(Rayleigh-Ritz) [7]:

AP)|l|” < V() <P« (12)
where,
1— — a .
A(P) = Min{—3—"m,, 5. 5}
_ l+a1 +as_ s3 s
A(‘P) = Max{%mta 337 54}
and

S3 = Oéz(kp =+ kv) + (1 =+ Oél)k[ =+ (]. + (651 + a2)a2mt
sa = arm(l+ ay + as) + (a1 + an)ky + kp + kr

proof of this lemma is like that in [9], by appling gershgo-
rian’s theorem. By proving the fact that P is positive definite

V(z) =2T(ATP + PAI P)z +2:TPBAA
Qi

:—mTQ:v+%:vT ol Mt[agl ol Tlx+

I
@ Oé%] Oélagl
2T | aol 212l (@ +ax)I | -

aranl  (af + ag)l arl

ERI
0 M, 0 laz+zT oI} AA

Lo o o 7]

since we have [8]:

M

y My =2y Viy (13)

i
. 1 o
V()= —a"Qu+ 52" | anl | (Vi + Vi) [aal enl T
I
ajasl
2c101 (@} + ) | -
(a} + as)I

OézI
z4+zT | gl

azl
Oéll

ajasl

M, 0 0
0 M, 0

0
T+ %ZL’T [ asl

AA

0 0 M, I

kil 0 0 ]
@ (qup — a2]€v — k[)I @
0 0 ko1 |

(14)



so we have:

V(@) < =llz)l” + Ml Vi ll|]l* + Aomre] 2>+

. ay M|zl AAll (15)
= V(z) < ||z]|(é0 — & ll=]l + &ll2]*) (16)
Y= Min{agk[, qup — agkv — k[, kv} (17)

Now according to (3), (8), (15), (16) and ||L|| < ||z|| we
have:

& = a;1A1BO + a;1A1A3mt (18)
&1 =7 —MBs — Xty —ay '\ By (19)
€ = MBs+ a3 M B (20)

in which: Al = )\Maz(Rl) , Ay = )\MGI(RZ) , A3 =
sup||dal| and Aasin, Aaaz are the greatest and smallest eigen
values respectively and

a2l ajasl  asl
R1 = a1a2I CK%I CK1I
0421 OqI I
1] ail ajasl
R2 = % OézI 20[10[2[ (a% + CKQ)I]
ajasl (a2 + ap)l ol

According to the derived results, following theorem which
demonestrats the UUB stability of the error system (6), can
be stated:

Theorem 1. Error system (6) is UUB stable if &; is
choosen sufficiently large.

Proof: According to (12), (16) and lemma 3.5 of [8], if

these conditions are met, the system is UUB stable against
B(o0,d), that

28 A(P)
6+ /8 — 166 | AP) @)
and
&1 > 2V &2 (22)
4+ &/ — 466 > 266 (1 + %) (23)
&+ VE — 46k > 2llnll| /3B (24)

By enlarging &, these conditions are met easily and ¢ is
enlarged by raising Kp , Ky , K;. ]

I11. FLEXIBLE JOINTS RoBOT
Practical results from industrial robots using harmonic
drive as power transmision system show the great impact of
joints flexibility on systems dynamic. By assuming that joint
rigidity is large with respect to other systems parameters and
damping factor of joint is small, dynamic model of n axis
flexible joint robot can be written as follow [3]:

{ M(q1)G1 + N(q1,¢1) = K(g2 — 1)

Ji = K(q1 —q2) + u (25)

N(q1,41) = Vin(q1, 41)d1 + G(q1) + Fadr + Fs(q1) + Ta (26)

q1 and ¢, are angles of shaft and motor and K is n x n
diagonal matrix representing joints stiffness. By assuming

that all joints stiffness are the same (This assumption does
not reduce the generality of problem, for the general case can
be easily reached by variable scaling) and since it is assumed
to be large with respect to other systems parameters, it can
be reduced in the form of O(1/€?). Notice that by assuming
the presence of uncertainty when all joints are rotational, we
have [2], [8]:

Vi (g1, @111 < Celldal]
I1G(a)]] < ¢

mil < M(qr) < meol
{ (27)

and
|Fagr + Fs (@)l = Cro + Cpllanll
nI <J <ol
By assuming the disturbance to be limited we have:

||Td|| SC&

im which <€7j27j17 Cfl: Can Cga CC: ma,my are real pOSitive
constants. In case that all joints are rigid, then the model of
system reduses to:

Mi(q)d + Ni(q,4) = uy (30)

in which ¢ = ¢1 , M, is a positive definite mass matrix. This
model is a special case of FJR model when K — co.

This fact is due to that flexible joint model is a singular
perturbation model which can be extracted from rigid model.
[11].

(28)

(29)

A. Control

In this section, the modification required to use the rigid
model control low (4) for flexible joint manipulators. First
consider adding a corrective term to the the control law in
the form of
(31)

Here u,. is the same PID controller given by (4) and K 4 is
a constant diagonal matrix whose elements are of order of
O(1/e).

By appling control low (31) in equation (25) and defining
variable z as:

u=uy + Ka(d1 — 42)

z2=K(g2—q1) (32)
the closed loop dynamic equation reduces to:
JE+ Kz + Kz=K(u.—Jg) (33)

Considering the assumptions on K and choosing K ;4 of order
O(1/e):
K = 521 ; Kd = &
€ €
here K, and K, are of order O(1). Equation (33) can be
restated in following form:

(34)

EJi+ eKoz + K12 = K1 (uy — Jij1) (35)
Now equation (25 ) can be stated as follow:
€2J: + eKoz + K12z = Ky (uy — Ji1)

System (36) is a singularly perturbed system, whose slow
variables ¢; and ¢; are shaft parameters and z and 2 are fast
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parameters. From the results of singular perturbation theory,
flexible system (36) can be approximated by two quasi-steady
state system and boundary layer system. Considering € = 0,
for equation (36) we have:

zZ=1u,—Jq

37)

In which the variables with (-) are defined when e = 0. The
dynamic equation is then reduced to:

(M(q1) + D)y + N(q1,q1) = @

This equation resembles the rigid robot model with g4, is
known as quasi-steady state system. To use Thikhonov’s
theorem [6], notice that elastic force of joints z(t) and shaft
angle q(t) for ¢ > 0,nmeet these conditions:

{ z(t) = 2(t) + n(7) + O(e)
a1 (t) = q(t) + O(e)

in which 7 = t/e, is fast scale time and 7 is the the boundary
layer fast state variable:
d*n dn
Jd—z + K2 d
Considering these results, flexible joint systems can be
approximated up to order of O(e) as follows:

(M(ql) + J)fh + Nlqr, q1) = ur +n(t/e)
Jdr2 +K2 dn +K17]—0

Hence, K, can be chosen suitably such that boundary layer
system (40) becomes asymptatically stable. Therefore, with
sufficiently small values of ¢, the composite control consist-
ing of the rigid control u, (PID) and the corrective term
K4(q1 — ¢2), resembles the flexible joint robot response to
that of rigid system controlled by only u ., after some initially
damped transient of fast variables 7(t).

(38)

(39)

+Kin=0 (40)

(41)

IV. ANALYSIS OF ROBUST STABILITY OF TOTAL SYSTEM

PID control of rigid model and its stability is discussed in
previous section, also it is demonstrated that boundary layer
system is asymptatically stable, due to the corrective term.
As it is known in general, seperate stability of boundary
layer and quasi-steady state subsystems does not guarantee
total system stability [6]. In this section total system UUB
stability is analyzed, based on the results of previous section.
To begin, reconsider the governing dynamic equations of
FJR:

(M(g1) + J)ir + N(qr, q1) = ur +1(t/€)
TG 4+ K84 Ky =0

By placing u, from (4) and noticing that e = g4 — ¢1:

(42)

e 0 I 0
é| = 0 0 I
é ~-M'K; -M'Kp -M;'Ky

[foe(s)ds] [ 0 ] [ 0 ]
e + @ (Nt + Mtdd) + @ n
é Mt !
Henc&
ny_
i
{ ]

since = = [ [ e(s)Tds e eT]", y =

have:
= Az +BAA+C[I 0]y (44)
= Ay (45)
in which,
0 I 0
A= 0 0 I (46)
-M'K; -M;'Kp —M,'Ky
0
AA=N,+ Mg, , B=| 0 (47)
Mt
0]
N 70 I
C— [_]StlJ ) A_|:—J1K _Jle:| (48)

Theorem 2: There is a positive definite matrix K4 such
that closed-loop system described with (45) is asymptotically
stable.

Proof: The lyapunov function candidate is as follow:
1 Keg+K J
_ T _ 1 d
In order for S to be positive definite, it is sufficient that
Ky > J, now by differentiation of V along system trajec-
tory (45), we have:

Ve =97 Sy +y"Sy=-—n"Kn-nT(Ks— J)j <0 (50)

(49)

since K, K4, J are diagonal positive definite matrices, hence,
Vr becomes negative defenite.

(51)

VFZ—Z/TWZ/aW:{K 0 ]

0 Kgq—J
[ |
Theorem 3: Closed loop systems (44) and (45) is UUB
stable if K, and &; are chosen sufficiently large.
Proof: Consider the following lyapunov function can-
didate:

V(z,y) = 2T Pz +yT Sy (52)

zT Pz is the considered as the lyapunov function for rigid
system and y” Sy is that in theorem (2). According to
Rayleigh-Ritz inequality:
{A(P)Ilwll2 < 2" Pz <X(P)||z|]?
AS)yII* < y"Sy < AS) |yl
in which )\, X are the smallest and largest eignvalues, respec-
tively. By adding these inequalities:

ASIyll? + APz ]* <V (z,y) <

(83)

XSyl + MP)|||?

(54)
Defining
Zy ==l Iyl (55)
we have:
ell 1 |25 3| el < v
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<thall 1 |[* 5 | [Iof] oo
By appling Rayleigh-Ritz inequality again, we have:
AMZell <V (Ze) < NI Zl| (57)
in which
A= Min{A(P),A(5)} (58)
X = Maz{X(P),X(S)} (59)

Now by deriving from (52) in direction of (44) and (45) we
have :

V =22TPi + 2T Pz +2y7 Sy

= 22T P(Az + BAA) + 27 Px]

+22TPC[I Oy + 29T Sy (60)

According to (16) it can be concluded that:
227 P(Az + BAA) + 2" Pr < ||z]| (¢ — & |l + &l2()

(61)
and also by defining v1 = Aoz (M:) we have:
2eTPC[T 0y < 27 A(P)||l[lyl (62)
as we saw in theorem (2):
29" S5 < —Amin (W) [lyl1? (63)
Hence,
y & _'YIX(P)
V< S
S B P
] + el + ol (64)
According to (55) we have:
V < —ZI'RZ, + &||Z4]| + &1 24| (65)
in which ¢ )
R= L o 66
{—WM(P) Amin(W) (66)
For R to be positive definite it is required that
o2
A7) > 250 (67)
1

By meeting condition (67) accomplished by suitable choise
of K, for fast subsystem, we have:

V < N1Zel|(€o — Amin (R Zel| + E211Z6)1%)

Now according to (57), (68) and lemma 3-5 from [8], system
is UUB stable against Y (0, d'), in which:

(68)

U 250 X
d = — 69

if these conditions are met:

)\min (R) > 2 V 5052
Ain (R) 4 Amin (R)\/ XZ,;,, (R) — 4&0&2 > 26062 (1 + \/K)

Amin(R) + 4/ A2 in(R) — 4862 > 2£2||Zt0||\/7

TABLE |
ARM PARAMETERS (ALL UNITS ARE IN SI)

Parameters Nominal Values
Mass M =2

Joint stifness k =100
Length(2L) L=1

Gravity coeff. | ¢ =9.8

Inertia I=1.5

Motor inertia J=1.5

These conditions are simply met by increasing A,,in(R),
through appropriate choice of large &, and A\, (W). &
is a function of the robust PID gains K,,K; and Ky,
and A, (W) are affected by the corrective term gains K ;.
Therefore, by the choice of the controller gains such that the
above conditions are met the robust stability of the closed-
loop system is guaranteed. [ ]

V. SIMULATIONS
For demonestrating effectiveness of the proposed control
algorithm, the simulation of the closed loop single axis
arm with flexible joint is performed. Governing equation of
motion of this system are as follows [10]:

j?l = T2

. —MgL . k

Ty = sin(z) — T(:Cl —x3)
i’g = T4

Ty = j(arl —x3) + ju

in which z3 = ¢2 , xz1 = ¢, by choosing: z = k(¢1 —
q2), @1 = gq, the equations of motion of system stated in
the form of singular perturbation are:

—MgL 1
g sin(q) — =z
. —MgL 1 1, 1
€ = sin(q) (I+ J)z Ju

The composite controller « is designed in the form of:

u=1us+ Kq(dr — ¢2) (70)
in which,
t
us = 50é+ 60e+ 30/ e(s)ds
Ks = 50 0

It can be shown that the controller gains are sufficiently
high enough to satisfy the theorem’s stability conditions. For
sake of comparison in the simulations, assume the desired
trajectory in the form of:

0 = 1.57 4 7.8539 exp(—t) — 9.428 exp(—t/1.2)  (71)

In this curve, joint angle reaches final value of § = =/2
from initial value of # = 0 with a soft transient. By applying
rigid control u s, system becomes unstable. The main reason
for rigid controller instability is ignoring flexibility effects in
the system. But by applying the proposed algorithm, system
remains stable possesing a good tracking as it is seen in
figure (1). Figure (2) illustrates the output of system with
the composite controller proposed in [12] with the same
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Output & Desired Trajectory
2 T T T

15+ : B

1k 4

0.5 1

o

Error
0.6

0.4 1

0.2 —

o]

—0.2 L L L L L L L L L

[o] 2 4 6 8 10 12 14 16 18 20
Control Action

50

ok 4

50 4

~100 L L L L L L I L I
o] 2 4 6 8 10 12 14 16 18 20

Fig. 1. Suitable tracking performance of the close loop system to a smooth
reference trajectory; Proposed algorithm.

PID control coefficients. This controller consists of three
parts, and an integral manifold first corrective term with
order approximation is considered to preserve the system
total stability. Despite the simple structure of our proposed
controller, the tracking performance is even better, and the
actuator effort is much less than that in [12] (Figure (2)).
In order to verify the reachable bandwith for the system,
¢ = sin(4t) is considered as the next reference trajectory
of the closed loop system. As it is illustrated in figure (3),
the tracking performance is very well, with a suitabe control
effort. In this case also the controller effort is much less than
that reported in [12].

VI. CONCLUSIONS

In this paper a new algorithm is proposed for robust
composite control of flexible joint robots. Despite similar
natare of the proposed controller to that reported in [12]
by authors, this controller is very simpler in structure and
completely linear. It consists of only two terms, stabilizing
the fast dynamics, and shaping the tracking performance with
slow subsystem controller. To develop the idea, first flexible
joint robot encapsulating its uncertainties is modelled and
converted into singular perturbation form. The robust stabil-
ity of the closed loop system is analyzed using Thikhonov‘s
theorem. It is shown that similar to the controllers reported in
[12] by authors, and despite the simpler structure proposed in
here, the total closd loop system is UUB stable, only if, the
controller gains are selected higher than a critical limit. The
effectiveness of the proposed controller is verified through
simulations, and the tracking performance is compared to
the previous results. It is shown that not only the tracking
performance of the proposed controller is very suitable, the
actuator effort is much smaller than previous result. Finally,
this simple structure controller, having its stability guranteed
through the theorems, seems to be promising for further
future development.
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