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Abstract – In this paper, different approaches are presented to 
solve the forward kinematics of a three DOF actuator redundant 
hydraulic parallel manipulator. It is known, that on the contrary 
to series manipulators, the forward kinematic map of parallel 
manipulators involves highly coupled nonlinear equations, which 
are almost impossible to solve analytically. The proposed methods 
are using mainly numerical computations, with different ideas to 
solve the problem. The accuracy of the results of each method are 
compared in detail and the advantages and the disadvantages of 
them in computing the forward kinematic map of the given 
mechanism is discussed in detail. It is concluded that the 4th order 
Taylor series approximation has the best acceptable prediction 
errors for robotic applications, compared to that of the different 
structures of neural networks and the quasi-closed solution 
method considered in this paper. 
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I. INTRODUCTION 
Over the last two decades, parallel manipulators have been 

among the most considerable research topics in the field of 
robotics. These robots are now applied in real-life applications 
such as force sensing robots, fine positioning devices, and 
medical applications [1, 2]. 

As in the case of conventional serial robots, kinematics 
analysis of parallel manipulators is also performed in two 
phases. In forward or direct kinematics the position and 
orientation of the mobile platform is determined given the leg 
lengths. This is done with respect to a base reference frame. In 
inverse kinematics we use position and orientation of the 
mobile platform to determine actuator lengths. It is known that 
unlike serial manipulators, inverse position kinematics for 
parallel robots is usually simple and straightforward. In most 
cases joint variables (actuator displacements) may be computed 
independently using the given pose of the movable platform. 
The solution to this problem is in most cases uniquely 
determined. But forward kinematics of parallel manipulators is 
generally very complicated. Its solution usually involves 
systems of nonlinear equations which are highly coupled and in 
general have no closed form and unique solution. Different 
approaches are provided in literature to solve this problem 
either generally or in special cases. There are also numerous 
cases in which the solution to this problem is provided for a 
special or novel architecture. In general, different solutions to 
this problem can be found using numerical approaches, 
analytical approaches, and closed form solution for special 
architectures, [3, 4]. 
In this paper, representatives from the first class are being used 
to solve the kinematics problem in a 3DOF actuator redundant 

hydraulic parallel manipulator. The paper is organized as 
following. Section 2 contains the mechanism description. 
Kinematic modeling of the manipulator is discussed in section 
3, where inverse and forward kinematics is studied and the need 
for appropriate method to solve the forward kinematics is 
justified. In section 4, three different methods to solve the 
forward kinematics problem are discussed; First, two different 
but mostly common neural networks are used to estimate the 
forward kinematic map of the given mechanism. In the second 
method a quasi-closed form is provided for the same purpose 
which combines the numerical and analytical schemes. Finally, 
with a new approach, conventional Taylor Series expansion is 
considered to approximate the nonlinear map with required 
precision. In section 5, these methods are simulated and 
compared regarding the problem in hand in order to identify the 
benefits and drawbacks of each scheme. It is concluded that the 
4th order Taylor series approximation has the best approxima-
tion accuracy compared to that of other methods for robotic 
applications. 

II. MECHANISM DESCRIPTION 
A three DOF actuator redundant hydraulic parallel 

manipulator is used as the basis of our study. The mechanism is 
designed by Dr. V. Hayward [5, 6, and 7], borrowing design 
ideas from biological manipulators and specially the biological 
shoulder. The interesting features of the mechanism and its 
similarity to human shoulder have made it a unique design, 
which can serve as a basis for a good experimental setup for 
parallel robot research. A schematic of the mechanism, which is 
currently under experimental studies in ARAS Robotics Lab, is 
shown in Fig. 1. The mobile platform is constrained to spherical 
motions. Four high performance hydraulic piston actuators are 
used to give three degrees of freedom in the mobile platform. 
Each actuator includes a position sensor of LVDT type and an 
embedded force sensor (Hall Effect). Simple elements like 
spherical and universal joints are used in the structure. A 
complete analysis of such a careful design will provide us with 
good results regarding the structure itself and its performance.  

 
Figure1. A schematic of the hydraulic shoulder manipulator 
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From the structural point of view, the shoulder mechanism 
which, from now on, we call it "the Hydraulic Shoulder" falls 
into an important class of robotic mechanisms called parallel 
robots. In these robots, the end effector is connected to the base 
through several closed kinematic chains. The motivation behind 
using these types of robot manipulators was to compensate for 
the shortcomings of the conventional serial manipulators such as 
low precision, low stiffness, error accumulation and load 
carrying capability. Parallel structures are usually lighter and 
simpler than their serial counterparts. However, they have their 
own disadvantages, which are mainly smaller workspace and 
many singular configurations. The hydraulic shoulder, being a 
parallel structure, has the general features of these structures. It 
can be thought of as a shoulder for a light weighed seven DOF 
robotic arm, which can carry loads several times, its own 
weight. Simple elements, used in this design, add to its lightness 
and simplicity. The workspace of such a mechanism can be 
considered as part of a sphere surface. The orientation angles are 
limited to vary between -π/6 and π/6. 

III. KINEMATICS 
The hydraulic shoulder is kinematically over constrained. 

The inverse kinematics problem is easily solved, given the 
orientation of the mobile plate, similar to general parallel robots. 
The inverse kinematics problem has a unique solution, in our 
case meaning that, the hydraulic shoulder cannot be optimized 
by choosing between inverse kinematics solutions. But, in 
contrast to serial structures, the forward kinematics is very 
complicated and there is no closed form solution in general. Fig. 
2, depicts a geometric model for the mechanism which will be 
used for its kinematics derivation. The parameters used in 
kinematics can be defined as:  
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 :α The angle between 4CA  and 0y  
:C Center of the reference frame 
:C1 Center of the moving plate 
:iρ Actuator lengths i=1, 2, 3, 4 
:Pi Moving endpoints of the actuators   
:Ai Fixed endpoints of the actuators 

Two coordinate frames are defined. The base frame X0Y0Z0 
is centered at C (rotation center) with its Z0-axis perpendicular 
to the plane defined by A1A2A3A4 and an X0 axis parallel to the 
bisector of angle ∠A1CA4. The second frame, namely X1Y1Z1 is 
centered at C1 (center of the moving plate) with its Z1 axis 
perpendicular to the line defined by the actuators moving end 
points (P1P2) and horizontal Y axis along C1P2.  

 
A. Inverse Kinematics 

In modeling the inverse kinematics of the hydraulic shoulder 
we must determine actuator lengths ( ρ i ) as the joint space 
variables given the task space variables, namely θx, θy and θz as 
the orientation angles of the moving platform. First we note that 
the fixed end points of the actuators (Ai) can be written in the 
base frame as: 

 

 Figure2. A geometric model for the hydraulic shoulder manipulator 
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rotation matrix R0

1 ; 
PR P 1

i
0
1

0
i = , (3) 

Where: 
)(θ)R(θ)R(θRRS xxyyzz

0
133 ==×  (4) 

The rotation matrix components are computed as following: 
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The final step is to translate the resulting vectors  P0
i   by  lp  

along the Z axis. Having P0
i and 0

jA  in hand, the actuator lengths 

jiAP   can be easily computed as: 
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are defined in equations (6) and (1) respectively. From equations 
(7) and (8), the actuator lengths ( ρ i ) are exactly computable by 
the orientation angles of the moving platform, θx, θy and θz, and 
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hence the inverse kinematic map is analytically computed. 
Therefore, it is clear that the manipulator doesn't have any 
kinematic redundancy, meaning that reaching a specific point in 
the task space can't be satisfied through different combinations 
of the actuator lengths. 

B. Forward kinematics 
Equations (7)–(8) can also be used for the forward 

kinematics of the hydraulic shoulder but with the actuator 
lengths as the input and orientation angles θx, θy, θz as the 
unknowns. In fact, we have four nonlinear equations to solve for 
three unknowns. Obviously, solving such a system of nonlinear 
equations for a unique closed-form analytic solution to the 
forward kinematic problem is very complicated, although three 
equations of the four could be used. Several inconclusive 
attempts have been made in this direction; therefore, we propose 
using a combination of the numerical and analytic schemes to 
solve the forward kinematic problem as a basic element in 
modeling and control of the manipulator. This is studied in 
detail in the next section. 

IV. FORWARD KINEMATICS SOLUTION 
A. Neural Network Estimation 

1) Multilayer feed forward network 
A simple feed forward network with back propagation 

learning was used in the first step. The input layer has as many 
nodes as the number of inputs to the map namely four actuator 
lengths.  Similarly the output layer will have three nodes which 
represent the orientation of the moving plate ( θ,θ,θ zyx ). The 
number of neurons in the hidden layer was used as a design 
parameter. Sigmoid and linear transfer functions were selected 
for all hidden and output layer nodes respectively. Supervised 
learning scheme was used in which the manipulator is treated as 
a black box and the network is taught to learn the map by 
observing the inputs and outputs. Such a learning scheme will 
result in offline training. The target pattern for training, the three 
orientation angles, was randomly generated within the 
workspace of the robot and the input pattern, four actuator 
displacements, was found using the inverse kinematics model. 
The pair was then used to train the network and the weights 
were updated in a back propagation process. Random 
initialization was used for the weights. Different configurations 
of the feed forward network were tested by varying the number 
of neurons in the hidden layer between 5 and 35 and the 
performance of these networks was compared.  

Different performance indices could be used in this case, the 
best of which could be the sum of square output errors, though 
other indices such as mean square or mean absolute error may 
also be used. Networks with best performance as indicated 
would be selected, from which the network with fewer hidden 
layer nodes will be the best choice since the number of weights 
and also the training time of the network will increase with more 
neurons in the hidden layer. As another configuration, the same 
multilayer feed forward network was used with two hidden 
layers. The activation function of the second hidden layer was 
also sigmoid. Different networks from each configuration were 
trained: 

• About 30 multilayer feed forward networks with one 
hidden layer were trained by varying the number of 
neurons in the hidden layer from 5 to 35. 

• About 20 multilayer feed forward networks with two 
hidden layers were trained by varying the number of 
neurons from 10 to 25 in the first hidden layer and from 
5 to 15 in the second hidden layer. 

All these networks were trained over 1000 training epochs 
with Bayesian regularization training. Each network was 
evaluated by comparing the predictions to the true outputs, 
resulting in a prediction error for each orientation angle. The 
autocorrelation coefficients were also computed for the 
prediction error in each angle. Using the whole stated criteria, 
five networks with best performance were selected from each 
configuration. Table (1) summarizes the performance of these 
networks. It can be seen that networks with two hidden layers 
have a better performance in general. It should be also noted that 
the mean square of error is approximately equal to the square of 
the maximum error, so a mean square error of 1e-5 will 
correspond to about 0.18 degree of accuracy for the forward 
kinematics solution. All the trainings and simulations of the 
neural networks were done on a Pentium4, 2 GHz. 

TABLE (1): PERFORMANCE OF MULTILAYER FEED FORWARD NETWORKS 

Network 
Structure 

Multilayer Feed Forward 
One Hidden Layer 

No. of Hidden 
Layer Neurons

Training 
Time 
(sec) 

MSE SSE MAE 

S=27 7.3e3 2.8e-5 0.644 0.0037 

S=29 8.2e3 2.9e-5 0.66 0.0035 

S=30 8.6e3 1.9e-5 0.428 0.0028 

S=34 1e4 1.1e-5 0.242 0.0022 

Network 
Performance 

 

S=35 1.1e4 1.1e-5 0.26 0.0022 

Network 
Structure 

Multilayer Feed Forward 
Two Hidden Layers 

No. of Hidden 
Layer Neurons

Training 
Time 
(sec) 

MSE SSE MAE 

S1=10 
S2=15 9.5e3 6.8e-6 0.154 0.0018 

S1=12 
S2=15 2.9e4 2.8e-6 0.062 0.0011 

S1=17 
S2=15 6.1e4 8.1e-7 0.018 6e-4 

S1=17 
S2=9 1e4 5.6e-6 0.12 0.0016 

Network 
Performance 

 

S1=17 
S2=12 2.3e4 1.9e-6 .044 9e-4 

2) Radial Basis Function neural network  
Radial basis function (RBF) neural network architecture was 

tested as another choice for computing the forward kinematics 
of the hydraulic shoulder. In general, RBF networks require 
more neurons but much less training time than feed forward 
back propagation networks. Input and output patterns were 
generated in a same procedure as in the multilayer feed forward 
network. Supervised learning method was used in a way to 
reduce the estimated error of the network. Other specifications 
such as weight initialization, network evaluation and 
performance indices were just the same as the multilayer feed 
forward network. About ten different configurations with 
different spread parameters were trained and compared, from 
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which two networks with best performance were selected. The 
performance of these networks is shown in Table (2). 

TABLE (2): PERFORMANCE OF RBF NETWORKS 

Network 
Performance 

Training 
Time (sec) MSE SSE MAE 

RBF1 750 1.3e-5 0.1 0.0019 

RBF2 680 9.9e-6 0.074 0.0017 
From the comparison of the selected structure in table (1) 

and (2) which are highlighted in gray, the multilayer feed 
forward with two hidden layers provides better approximation, 
with a mean square error of 2.8e-6, and mean absolute error of 
0.0011. This corresponds to about 0.05 degree accuracy in 
forward kinematics, which is a generally suitable approximation 
in general applications. However, this accuracy may not meet 
the accurate robotic applications such as our redundant parallel 
manipulator, and for this means other methods are investigated 
and reported in next sections. 

B. Quasi-Closed Solution Method 
Next, we introduce a quasi-closed form solution method to 

estimate the forward kinematic map of the hydraulic shoulder. 
In this method analytic solution of the forward kinematics is 
pursued as far as possible and numerical approximation is only 
used to solve the remaining equations. To illustrate the structure 
of this method reconsider the kinematics equations of the 
mechanism as following: 

3332232213121 GsFsEsDsCsBsAρ −−−−++=

3332232213122 GsFsEsDsCsBsAρ −−−−−−=

3332232213123 GsFsEsDsCsBsAρ −++−−+=

3332232213124 GsFsEsDsCsBsAρ −++−+−= 

 
 
(9) 
 

Where parameters A, B, C, D, E, F and G are used for 
simplicity of notations and depend only on the geometric 
features of the mechanism described in Fig. 2 as follows: 
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The ijs ’s are the nine entries of the rotation matrix which 

represent the orientation of the moving platform, and 
ρ,ρ,ρ,ρ 4321  are the actuator lengths. It is fairly easy to obtain 

the forward kinematic equations having the rotation matrix S in 
hand. So, the problem reduces to solving for the rotation matrix 
instead, with nine entries as the unknowns. Noting that these 
entries are not independent, there would be no need to compute 
all nine unknowns. Furthermore, the elements in the first 
column of S, namely: 11s , 21s  and 31s  are not present in the 
kinematic equations, which simplifies the problem as we can 
find the 2nd and 3rd columns of  S and the 1st column will be 
simply computed as their cross product. Hence, the problem is 
solving (9) for the rotation matrix with the following 
constraints: 
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Col (2) and Col (3) are defined as the second and third 
columns of the rotation matrix S, respectively. We must note 
that S is an orthonormal matrix so the 2nd and 3rd columns must 
be orthogonal with unit lengths. As the cross product of two 
orthonormal vectors would also be orthonormal, the other 
constraints on the rotation matrix entries would be trivial. From 
(9), we can solve for s,s 1312  as: 
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These equations are in the form of an analytic closed form 
solution. Unfortunately the high coupling of the forward 
kinematic equations makes the closed form computation of other 
entries of S complicated. Several inconclusive attempts were 
made to find an analytic solution for these entries; therefore we 
tried a new approach combining the analytic and numerical 
methods to solve for the remaining entries of the rotation matrix 
in a quasi-closed form. We can relate the four remaining 
unknowns with the following equations: 
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Or with much simpler notation: 
sβαs 3322 += , ηsγs 3223 +=  (15) 

Where: 
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Using (10)-(11), we have: 
1s)sβ(αs 2

32
2

33
2
12 =+++ , 1sη)s(γs 2

33
2

32
2
13 =+++  (17) 

By this means from nine unknown parameters, using 
analytical manipulation, the problem is reduced to determine 

s,s 3332  using the above system of nonlinear equations, 
given s,s 1312 . Having s,s 3332  in hand, we can easily find the 
remaining entries s,s 2322  to obtain the 2nd and 3rd columns of the 
rotation matrix S, from which the first column would be 
determined by a cross product. The two entries s,s 3332  were 
obtained numerically from (17) solving a constrained 
optimization problem. This method is numerically implemented 
using optimization toolbox of Matlab, and in the next step the 
rotation matrix S was determined from which the orientation 
angles were easily obtained. Hence the forward kinematics 
problem was solved using the rotation matrix of the end effector 
as a means of simplifying the equations. 

It should be noted that the degree of accuracy of the 
numerical optimization scheme to find an orthonormal rotation 
matrix is considered very important. The accuracy of the 
proposed method will definitely depend on the initial conditions 
used in the optimization process. This can be remedied in our 
application, by using the results of previous step approximation 
as the initial condition for the next step.  We should also note 
that the proposed method uses a combination of analytic and 
numerical computation schemes, hence called a quasi-closed 
form solution method.  The detail simulation results of this 
method are given in Section 5, where the effectiveness and 
accuracy of approximation is compared to other methods. 
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C. Taylor Series Expansion 
As shown in section 3, the forward kinematic model of the 

hydraulic shoulder involves four nonlinear equations with 
actuator lengths ( 41 ,..., ρρ ) as the input and orientation angles 
of the end effector (θx, θy, θz) as the outputs, in other words:  

)ρ,ρ,ρ,ρ( 4321fθ = , (18) 
In which, f  represents the forward kinematics map, that is 

subject of solution. A basic numerical approach to solve this 
problem is to approximate the nonlinear function f  with a 
Taylor series expansion of arbitrary order: 
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The number of the coefficients in the expansion is 
determined by the required degree of accuracy. Solving the 
forward kinematics problem, will hence be equal to computing 
these coefficients. In order to accomplish this task, different 
trajectories were considered for the end effector and the 
corresponding actuator displacements were determined using the 
inverse kinematics. The data pair was then used to compute the 
coefficients of the Taylor expansion using least square 
estimation. The trajectories in the task space must consider the 
whole workspace of the manipulator so that the estimated 
function for the forward kinematics could be used equally in 
different points of the workspace. Different orders of expansion 
up to 4th ( O (n5)) were considered separately and the 
coefficients in each case were computed. The estimation error 
between the desired θ and its estimate θ̂ , namely: θθe ˆ−=  was 
used as a performance index of each scheme. The results of 
estimations for different orders of expansion are compared in 
table (3), in which PE stands for Prediction Error, SSE stands 
for sum of square of error, MSE stands for mean square error, 
and MAE stands for mean absolute error. It can be seen that the 
number of the coefficients in the expansion will increase with 
the order of approximation resulting in a better degree of 
accuracy but usually with a slight increase in the computation 
time. This result enables the designer to choose the appropriate 
order, according to the performance requirement. The accuracy 
sought by the 4th order approximation seems to be a good 
compromise for robotic applications.  

TABLE (3): MEASURES OF PREDICTION ERRORS   

Approximation Order 2nd 3rd 4th 
No.  of  Coefficients 15 35 64 

θx  0.058 0.0116 0.0033 

θy  0.292 0.0475 0.014 Max PE 

θz  0.025 0.0114 0.0011 

θx  20.8 0.67 0.012 

θy  41.8 1.77 0.028 SSE 

θz  3.9 0.18 0.0025 

θx  3.1e-4 1e-5 1.8e-7 

θy  6.3e-4 2.7e-5 4.2e-7 MSE 

θz  5.9e-5 2.8e-6 3.7e-8 

θx  0.011 0.0024 2.9e-4 

θy  0.016 0.0038 4.5e-4 MAE 

θz  0.0056 0.0012 1.5e-4 

V. SIMULATION RESULTS  

A. Sample Trajectory Generation 
We consider a smooth motion specified in terms of a desired 

pose of the moving platform of the hydraulic shoulder. The 
sample trajectory is easily defined given the initial and final 
points and the time to reach the final point. Fig. 3 shows the 
sample trajectory for each orientation angle in the task space of 
the hydraulic shoulder.  
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Figure (3): Sample Trajectory for Orientation Angles 

B. Simulations  
Fig.4 shows the simulation results using the trained neural 

networks of different structures. Best representatives from each 
structure, selected from tables (1) and (2) were tested with the 
sample trajectory along each orientation angle. Fig. 5 shows the 
simulation results for the quasi-closed method applied to follow 
the sample trajectory along each orientation angle. The 
simulation was performed using the following parameters, 
which are extracted from the geometrical configuration of the 
robot defined in equation (9). 

A=0.0268m, B=0.0045m, C=0.0083m, D=0.0026m,  
E=0.0048m, F=0.0092m, G=0.0169m 

Fig. 5 shows also the simulation results for the Taylor series 
method applied to follow the sample trajectory along each 
orientation angle. The tracking performance is seen to improve 
as the order of approximation increases, with the expense of 
larger numbers of parameters.  Table (4) summarizes the 
statistics of approximation errors, and the accuracies obtained 
by each method for the considered trajectory.  As it is observed 
through this simulation study for a typical robotic trajectory, the 
maximum approximation error reached by the suitable Neural 
network structures are limited to 0.03 radians (1.7 degrees) and 
0.086 (5 degrees) for quasi-closed method, which are way 
beyond required in an accurate robotic application. The 
maximum error of approximation in 4th order Taylor series is at 
least 10 times better that in other methods and typically about 
0.005 radians (0.14 degrees). 
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Figure 4. Tracking Performance for selected Structures of neural networks 
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Figure 5. Sample Trajectory Tracking for Quasi-Closed Method, and Taylor 
Series Method with 4th  Order Approximation 

TABLE (4): MEASURES OF TRACKING ERRORS (SI UNITS) 

                     Performance Index   
 

Solution Method                          

Emax SSE MSE MAE 

θx .0028 .0005 2.5e-6 .0013 
θ y .0056 .0018 9.1e-6 .0025 4th order Taylor 

Expansion 
θz .0017 .00015 7.5e-7 .0006 

θx .0548 .124 .00061 .017 
θ y .0453 .056 .00028 .011 

3 Layer Feed- 
forward Neural 

Net (s=34) θz .0295 .025 .00013 .0074 

θx .028 .032 .00016 .0091 
θ y .03 .069 .00034 .014 

4 layer FF 
Neural Net 

15s12,s 21 ==
 θz .032 .054 .00027 .012 

θx .018 .019 9.9e-5 .008 
θ y .017 .016 8.3e-5 .0074 RBF Neural 

Network 
θz .1 .53 .0026 .033 

θx  .086 .225 .0011 .0193 
θ y  .014 .0072 3.6e-5 .0041 

Quasi-Closed 
Solution 
Method 

θz  .025 .0171 8.5e-5 .0053 

V. CONCLUSIONS 
In this paper, three different approaches were presented to 

solve the forward kinematics problem in a three DOF actuator 
redundant hydraulic parallel manipulator. First, neural networks 
of different structures were introduced to solve the problem. 
Multilayer feed forward and Radial Basis networks were 
considered separately. Simulation results showed that multilayer 
feed forward networks with two hidden layers had a better 
performance compared to those with one hidden layer. The 
training time for RBF networks was shown to be much less than 
feed forward networks. Their tracking performance and 
estimation errors were also acceptable, but the weak point of 
such networks could be the big size leading to large number of 
neurons and weights. The main drawback of neural networks 
would be the long training times and the big size of the networks 
resulting in much more number of weights compared to the 
number of coefficients used in Taylor series expansion. 

Alternatively, a quasi-closed solution method was developed 
which used the rotation matrix of the end effector to determine 
the corresponding orientation angles needed to solve the forward 
kinematics map. Finally, The Taylor series expansion was used 
in a least square estimation problem to solve for the unknown 

coefficients of the map. It is observed that the 4th order Taylor 
series approximation is the best compromise with acceptable 
prediction errors for robotic applications compared to the 
different structures of neural networks or the quasi-closed 
solution method proposed. Furthermore, despite the number of 
parameters obtained in the 4th order Taylor series 
approximation, its online digital implementation is with ease. 
Further attempts to increase the order of approximation worth 
considering only, when higher required accuracy is demanded.  
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