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Abstract— In this paper, a practical method to design a 
robust controller for a flexible joint robot (FJR) using 
quantitative feedback theory (QFT) is proposed. In order 
to control fast and slow dynamics of the FJR separately, 
composite control scheme is considered as the basis for 
the design.  A simple PD controller is used to stabilize the 
fast dynamics, and a QFT controller is used in addition to 
an integral manifold corrective term to perform on the 
slow dynamics. Because of the nonlinear dynamics of 
FJR and the proposed controller scheme, linear time 
invariant equivalent (LTIE) technique is used to assign a 
nominal model for the system with uncertainties 
templates. Design of the QFT controller, as slow part of 
the composite control law, is performed to compromise 
between the required bandwidth and the controller order. 
Comparisons with previous works on FJR, such that 
robust PID and composite H∞, illustrate the effectiveness 
of the proposed controller to reduce the tracking errors 
despite actuator limitations. 

Keywords: Composite control, flexible joint robot, 
nonlinear control, nonlinear QFT, quantitative 
feedback theory, integral manifold. 

1. Introduction 
Multiple-axis robot manipulators are widely used 

in industrial and space applications. The success in 
reaching high position accuracy in robots is due to 
their rigidity, which make them highly controllable. 
After the inception of harmonic drive in 1955, and 
its wide acceptance, the rigidity of the robot 
manipulators is greatly affected. In early eighties 
researchers showed that the use of control algorithms 
developed based on rigid robot dynamics, on real 
non-rigid robots is very limited, and may even cause 

instability [1]. Since then a large number of 
researchers have been working on the development 
of control algorithms for flexible joint robots (FJR). 
The singular perturbation theory is used as the basic 
method to encapsulate the flexible joint robot 
dynamics. By this means and through the use of two-
time scale behavior, FJR dynamics is divided into 
fast and slow subsystems [2,3]. As shown in [4] for a 
three-axis flexible robot the system is not feedback 
linearizable, and the use of methods such as 
computed-torque methods for flexible manipulators 
is not directly implementable. By neglecting the 
effects of link motion on the kinetic energy of the 
rotor, Spong has derived a mathematical model for 
such systems in which the system is feedback 
linearizable [5]. However, in order to linearize the 
system acceleration and jerk feedback is required 
whose measurements are costly. To avoid the need 
of acceleration and jerk in this method the idea of 
integral manifolds is employed. In this method 
instead of using the zero order approximation of the 
model extracted from the singular perturbation 
theory, higher order models can be used, and hence, 
a series of corrective terms is added to the control 
algorithm [1, 6]. In adaptive methods many 
algorithms are developed for FJR, in most of which a 
term due to the fast subsystem is added to the 
adaptive algorithm based on rigid models [6, 7]. In 
robust methods by considering model uncertainties 
the stability of the fast subsystem is analyzed, and 
through robust control synthesis, a robust controller 
is designed for the slow subsystem [5, 8], [9, 10]. 
In this paper nonlinear QFT approach is applied for 
controller design of FJR. It is first observed that the 

13th ICEE2005,Vol. 3
Zanjan,Iran, May 10-12, 2005.



use of a single QFT controller for the system causes 
large templates such that lop shaping within the 
bounds is infeasible. Hence, the use of a composite 
controller similar to that in [7, 10] is proposed, but 
with a nonlinear QFT controller for slow subsystem. 
It is observed that this proposed structure is 
insensitive to structured plant variation, and only one 
design is sufficient for the full envelope and there is 
no need to verify plants lying inside the templates. 
Moreover, any design limitations and the structure of 
the controller are apparent up front, and there is less 
development time for a full envelope design. 
Furthermore, one can determine what specifications 
are achievable early in the design process, and the 
changes in the specifications can be accomplished 
quickly in the redesign. 

2. FJR Modelling And Control Background 

Modelling 
To model a FJR, the link positions are assumed 

as the state vector similar to the case with solid 
robots. Actuator positions must be also considered in 
the state vector, for these are dynamically related to 
the link positions through the flexile element. 
Assume that the position of the i’th link is shown 
with θi : i = 1,2,…,n and the position of the i’th 
actuator with  θi+n : i=1,2,…,n , It is usual to arrange 
these angles in a vector as follows: 
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Using this notation and taking into account some 
simplifying assumptions, Spong has proposed a 
model for FJRs as follows [12]: 
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where, I is the matrix of the link inertias and J is that 
of the motors, C is the vector of all gravitational, 
centrifugal and Coriolis forces and torques and u is 
the input vector. Furthermore, without loss of 
generality it is assumed that all flexible elements are 
modeled by linear springs with the same spring 
constant k [12], and the matrix K = k I3x3 . The inertia 
matrices are non-singular so the model can be 
changed to the following singular perturbation 
standard form: 
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in which: 1qq vv = , )( 21 qqKz vvv −=  and ε=1/k. 

As seen from the model, dynamics of FJR 
possess a two-time-scale behavior due to the 
presence of the small parameter ε as a multiplier in 
the second differential equation. This causes the 
system to have fast and slow variables. In the sequel 

we will use the concept of integral manifold and 
composite control to design a suitable controller with 
this requirement [12]. 

Composite Control 
It is shown in [12], for FJR with any given input 

us there exists an integral manifold in the (q, z) 
space, described as follows: 

 ),,,( 11 εss uqqhz &=  (4) 

by which the fast dynamics becomes asymptotically 
stable. The above condition, if initially violated, will 
be nearly satisfied after the decay of the fast 
transients, i.e. z will approach to the zs. The unknown 
function h can be found by solving the following 
partial differential equation which is obtained by 
substitution of h and its derivatives in equation (3): 

 suqBqqGhqBqAh )(),())()(( −−+−= &&&ε  (5) 

This equation referred to as the manifold condition is 
hard to solve analytically. Spong et al. have 
proposed a method to solve this equation 
approximately to any order of ε by expansion of 
terms as done in equations (8) and (9), [12]. Using 
the concept of composite control a fast term could be 
added to the control input to make the fast dynamics 
to be asymptotically stable [13]: 

 ),( fffs zzuuu &+=  (6) 

where zf =z-zs, represents the deviation of the fast 
variables from the manifold. The fast control is 
designed such that uf(0,0)=0 so on the manifold u=us 
and no more modification is needed to be applied on 
the manifold condition (5). By subtracting (5) from 
(3) the fast dynamics derived as: 
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Hence, a PD controller can be used to stabilize the 
fast dynamics. To solve the manifold condition and 
simultaneously design a corrective term in the 
controller, expansion of  h and  us can be used as 
follows: 
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Substituting these in the manifold condition and 
equating the terms with the same order will result in: 
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By substitution of these results in the differential 
equation of q we will have: 
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Now if we choose: 
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then, the his will vanish except for h0 and equation 
(11) will reduce to the solid model. Therefore, using 
the corrective term u1 will enable us to design the u0 
as usual as that for solid robots.  

3. Quantitative  Feedback  Theory 
As a robust controller design method QFT has 

been an    ordinary method during recent two 
decades. According to its name in this method all 
demands, including robust stability and robust 
performance, are quantized and translated into some 
limitative bounds in Nichols chart; while 
uncertainties (structured and unstructured) are 
translated into areas in Nichols chart called 
templates. Finally the controller results from loop 
shaping of nominal loop transfer function 
Lo(s)=G(s)·Po(s), such that satisfies the sketched 
bounds.  One of exceptional specifications of QFT is 
that we are able to specify certain upper and lower 
tolerances for desired output in time domain and 
ensure that the final output of the system will be 
between these two tolerances. To satisfy this 
characteristic, there are specific bounds on Nichols 
chart which guarantee that the variation in the 
closed-loop transfer function is  less than or equal to 
that allowed. Therefore a pre-filter, F(s), is required 
to bring the response within the area between upper 
and lower tolerances. Hence, QFT is a two degree of 
freedom (2 DOF) design algorithm[14]. 

     QFT is inherently a linear method, for the design 
is eventually performed in Nichols Chart. Thus, in 
nonlinear plants like FJR, nonlinearities have to be 
translated into defined concepts in QFT like 
templates or bounds. For this purpose, literature on 
QFT offers two different techniques [15], namely 
Linear Time Invariant Equivalent (LTIE) of 
nonlinear plant, and Non-Linear Equivalent 
Disturbance Attenuation (NLEDA) techniques. 
      In both techniques, limited accepted output is the 
main tool to translate nonlinearities of the plant into 
templates for the first technique, or disturbance 
bounds for the second technique. In this paper the 
first technique is used as follows. The main idea in 
this technique is to substitute the nonlinear plant with 
a equally family of LTI plants [14]. Consider the 
nonlinear and/or time varying plant with a general 
nonlinear function w∈Ψ such that all acceptable 
plant outputs to be achieved is ya∈Y. The equivalent 
plant family is defined by: 
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Where, L[ · ] denotes the  Laplace transform. It is 
useful to add that, Y contains all desired output of 
the system to be delivered, and Ψ contains all system 
uncertainties and plant variations. Once the 
acceptable plant outputs are selected by the designer, 
the family of equivalent transfer functions could be 
generated analytically or numerically from the plant 
mathematical model. In this case since a specific 
nonlinear model for FJR (Spong model) is 
considered, the LTI family is easily achieved. For 
this means first, the acceptable plant input-output 
sets for a finite time interval [0,T] are determined. 
Then the Golubev method [16] is applied for each 
input-output set, in order to reach directly to a linear 
time-invariant transfer function, relating acceptable 
plant input-output data set. Once the equivalent 
family is derived, QFT method can be employed to 
develop a single robust controller. If a controller 
provides an acceptable response for the equivalent 
family, then it is claimed that the same controller 
provides an acceptable response for the original 
nonlinear plant (for proof see [17] and [18]).   

4. QFT Controller Synthesis 
Consider the single link flexible joint manipulator 

introduced in [12] and illustrated in figure 1, with 
ordinary nominal values of m=1, 
I=1,J=1,L=1,g=9.8,k=100. 

 
Figure 1.  The single degree of freedom FJR 

Consider the desired control objectives are assigned 
experimentally as follows: 

 (i) - Closed-loop robust constraint is given by 
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(ii) - For tracking performance requirement, the 
controller should satisfy the following inequality: 
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and 
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These transfer functions are derived from the desired 
step response bounds for the system with suitable 
rise time and overshoot. Some factors are considered 
to choose these transfer functions are: 
(1)- format: FJR model equations show that it is 
equivalent to a 4 order transfer function.  

(2)- frequencies: Previous works on FJR show that 
its desired maximum bandwidth is about 8 rad/sec. 
Fixing 4 poles around 20 rad/sec will result in a 
bandwidth of about 8 rad/sec if a variable and 
suitable zero between 10 and 200 rad/sec is added to 
the system. 
(3)- templates: In addition to the above analytical 
factors there is another condition to find suitable 
tolerances for output which tunes the domain 
iteratively. The acceptable outputs should be chosen 
such that templates in Nichols Chart are small 
enough to permit desired loop-shaping.     
As described before the composite control strategy is 
proposed for the system with the following control 
signal: 

10 uuuu f ε++=  

where, 

01 hu &&=  

and h0 is integral manifold: 
h0 = -4.9 sin(q) + 1/2 u0 

and the fast control law is a simple PD controller 
satisfying the robust stability conditions such as: 

ηη &+=fu  

in which η indicates the variation of z from the 
integral manifold h. The overall control system for 
an FJR using composite control with a corrective 
term is shown in figure 2.  

After adding these terms to the model we can 
achieve the equation relating u0 as our modified 
input and q as our output. Therefore if we choose the 
acceptable plant outputs for unit step reference input 
as:   

 
Figure 2.  The FJR Composite Control Topology  

 
Figure 3.  Area of acceptable outputs in time domain  
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where, these outputs are drawn in time domain in 
figure 3, the LTI family can be obtained by 
calculating control signals for these outputs and 
getting Fourier Transform of these pairs. Note that 
Tu(s) and Tl(s) are upper and lower bounds of: 

s
sR

sR
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Sketching the templates for test frequencies of 
w={.1,1,5,8,20,50,100,200,500,1000}, 

the other steps of QFT design are just like linear 
cases. Eventually, with the experience of the 
designer as usual, the loop-shaping is performed, 
where the designed nominal loop has shown in 
figure 4, and is given bellow. 

577.2)+(s 1861)+(s 
36.63)+(s 69.3)+(s 2889567.08)( =sG  

In design of the pre-filter, it is designer’s choice to 
decide, in which frequencies transfer function should 
locate between two bounds. One choice is to locate 
transfer function between bounds in all frequencies. 
The resulted pre-filter of this choice is as following. 

 
Figure 4.  Loop-shaping in Nichols chart 

13th ICEE2005,Vol. 3
Zanjan,Iran, May 10-12, 2005.



13.87)+(s 28.29)+(s 47.84)+(s 53.91)+(s
1012079.)(1 =sF  

  Figure 5 shows step response and control effort of 
the system with these controllers. As shown the 
output is between two tolerances, with much smaller 
control effort compared to that to previous designs 
[5], [10]. To evaluate the robustness of controller in 
presence of uncertainties, up to 10% uncertainty in 
the following parameters of the model is considered:   
I, J, m, L, 1 kε = . The controllers are quite robust to 
the parameter perturbations and the tracking 
performance is preserved despite the parametric 
uncertainties. 

 
Figure 5.  Step response and control effort of system with G(s) and 

F1(s) 

In order to fairly compare the proposed controller 
performance to that of the other proposed controllers 
for FJR, composite PID controller [12], and 
composite H∞ controller [11] are nominated. 
Simulations are conducted to reproduce the tracking 
performance and control effort of them for a sin(8t) 
reference command as proposed in [11]. Since QFT 
design considers unit step as reference command and 
this command includes all high frequencies without 
emphasizing a limited bandwidth, suitable response 
for a 8 rad/sec bandwidth is not obtainable with this 
method. In other words, if we apply F1(s) as the pre-
filter response delay is too much as expected, and 
therefore tracking errors are much higher than 
required. However, the pre-filter can be designed 
such that to tune only low frequencies up to the 
required 8 rad/sec bandwidth. Since in this case, this 
requirement is automatically satisfied for frequencies 
less than 10 rad/sec, the pre-filter can be chosen as a 
pure gain F2(s) = 0.9803. 

Figure 6 shows the tracking error for the 
proposed closed loop system compared to that of the 
robust PID [10], and composite H∞ [5]. These results 
are more elucidated in Table(1), where 2-norm and 
infinity-norm of tracking error and infinity-norm of 
control effort, are numerically given. As clarified, in 

QFT design tracking performance is excellent, with 
only high peaks of control at first moments. This is 
caused clearly by high frequencies components of 
the controller, and therefore, this drawback can be 
remedied by suitable tuning of the pre-filter.  

 
Figure 6.  Tracking error comparison of robust PID, composite H∞ and 

QFT (with F2(s)) 

In the final design of the pre-filter, these high 
frequencies must be attenuated without affecting low 
frequencies, particularly, frequencies less than 8 
rad/sec. The final design is: 

( )43
100

8109965
+

=
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This design is performed using a low pass filter 
structure with 4 poles at 100. Experimentally the 
tuning of the pre-filter poles in this case causes 
rejection of high frequency components of the 
control effort without effecting low frequencies up to 
8 rad/sec. Although, poles with larger values can be 
used to reduce the effect on low frequencies, but 
more poles is required which makes the order of 
controller not pleasant.  According to our 
engineering judgment, this pre-filter is a good 
compromise between the order of controller and the 
obtained performance, among the many trials 
performed in this case.  

 
Figure 7.  Tracking error comparison of PID, H∞ and QFT (with F3(s)) 
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Figure 8.  Control effort comparision of composite PID, H∞ and QFT 

(with F3(s)) 

The obtained closed loop results with this pre-filter 
are illustrated in Figures 7 and 8. As it is illustrated 
the tracking performance is better than that of the 
composite H∞, with better control effort. However, 
the tracking error of the proposed controller is almost 
twice as that in robust PID but with almost 100 times 
less control effort. These results are quantitatively 
given in the Table 1. The results reveals that infinity-
norm of control effort with this design gets about 5 
times lower than that of composite H∞. 

TABLE I.  CLOSED LOOP PERFORMANCE COMPARISON 

CONTROL METHOD 2
e ∞

e ∞
u 

Robust PID 0.232 0.153 70.106 10×

Composite H∞ 0.586 0.399 710005.0 ×

QFT(with F2(s)) 0.014 0.041 71099.1 ×

QFT (with F3(s)) 0.507 0.323 7100010 ×.

5. Conclusions 
In this paper the ability of quantitative feedback 

theory to design a well performed controller for an 
uncertain FJR in presence of actuator limitations is 
thoroughly investigated. In order to control fast and 
slow dynamics of the FJR separately, composite 
control scheme is considered as the basis for the 
design. A simple PD controller is used to stabilize 
the fast dynamics, and a QFT controller is used in 
addition to an integral manifold corrective term to 
perform on the slow dynamics. It is shown how the 
nonlinear model of an uncertain FJR in this structure 
can be encapsulated into a family of LTI models 
using linear time invariant equivalent (LTIE) 
technique. By this means and by use of Glubev 
method in obtaining LTI models which relates plant 
input-output data set, usual linear loop shaping 
method in the QFT can be performed for the FJR. It 
is observed that the characteristics of QFT make it 
feasible to obtain suitable tracking performance 

through a design compromise between the control 
effort and the controller order. Although loop 
shaping technique used in this paper requires design 
experience like all QFT designs, the obtained QFT 
controller provides an appropriate and practical 
solution for the system. The comparison of the 
proposed closed loop system performance to that of 
other reported results in the literature reveals the 
effectiveness of the controller to reduce the tracking 
error of the closed loop system, in the presence of 
actuator limitations.  
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