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Abstract — In this paper the design of an optimal nonlinear 
H∞ controller for flexible joint robot (FJR) is presented. An 
approximate solution based on Taylor Series expansion is 
considered for the Hamilton-Jacobi-Isaac (HJI) inequality. A 
two-degree-of-freedom controller combined of optimal 
nonlinear H∞ controller and inverse dynamics controller is 
proposed to tackle the regulation as well as tracking problem 
in FJR. The proposed optimal nonlinear H∞ controller 
attenuates the disturbance with a minimum achievable control 
effort, despite system parameter uncertainty. Simulation 
comparisons for single and multiple joint manipulators, show 
that the proposed controller yields to superior performance 
such as larger domain of attraction and smaller control effort 
as well as better tracking characteristics, compared to that of 
the others. 

Keywords: Robot control, flexible joint robot, nonlinear H∞ 
control, multi objective optimization. 

1.  Introduction 
The desire for higher performance from the structure and 
mechanical specifications of robot manipulators has been 
spurred designers to come up with flexible joint robots 
(FJR). Several new applications such as space 
manipulators [1], and articulated hands [2], necessitate 
using FJRs. This necessity has emerged new control 
strategies needed, while the traditional controllers used 
for FJRs have failed in performance [3,4]. Since 1980’s 
many attempts have been made to encounter this problem 
and now, several methods have been proposed including 
various linear, nonlinear, robust, adaptive and intelligent 
controllers [5,6]. Among these controllers, the robust 
controller possesses some advantages such as acceptable 
performance [7], and robust stability imposed to 
parameters and input uncertainties [8]. One of the 
drawbacks of the aforementioned algorithms is their 
relatively high control efforts needed to accomplish a 
good performance.  
In this paper the optimal nonlinear H∞ controller design 
for the FJR is studied in detail. The nonlinear H∞ control 
theory is a newly emerging nonlinear design approach in 
practical applications. Since in most physical systems 
nonlinear nature is observed, one of main advantage of 
nonlinear H∞ theory over the linear control theories is the 
systematic consideration of  system nonlinearities and 
uncertainties together, and thus robust stability and 

performance can be analyzed over a large operating region 
[9]. Therefore, the nonlinear H∞ controller provides great 
potentials for handling uncertain nonlinear control 
problems [10, 11]. Since the optimal nonlinear H∞ 
controller doesn't support tracking requirements, a 
combinational method is proposed to accommodate this 
requirement. Moreover, the minimization of the control 
effort that is needed for regulation as well as tracking, is 
systematically put into controller synthesis. 
In this paper first the modeling procedure for an uncertain 
FJR is elaborated. Next through a short overview of 
nonlinear H∞ control methods, suitable controllers are 
designed and simulated for FJR. The obtained results show 
the effectiveness of the proposed controller in tracking 
performance, despite model uncertainties and external 
disturbances. 

2. FJR Modeling 
To model an FJR the link positions are chosen as state 
vector as is the case with rigid robots. Actuator positions 
must be also considered in the state vector, however, since 
in contradiction to rigid robots these variables are 
dynamically related to the link positions through by the 
flexile element. Consider that the position of the i’th link is 
shown with θi: i = 1,2,…,n and the position of the i’th 
actuator with  θi+n: i=1,2,…,n. It is usual in the FJR 
literature to arrange these angles in a vector as follows: 
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Using this notation and taking into account some 
simplifying assumptions, Spong has proposed a model for 
FJRs [12] as following: 
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where I is the matrix of the link inertias and J is that of the 
motors, C is the vector of all gravitational, centrifugal and 
Coriolis torques and u is the input vector. Further without 
loss of generality [12], it is assumed that all flexible 
elements are modeled by linear springs with the same 
spring constant k and the matrix K = k I3x3. 

3. Nonlinear H∞ Control 

3.1. Problem formulation 
We consider a system of the form  
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),,(),,,( uwxZzuwxXx ==&  (3) 
with x defined in a neighborhood of the origin in nR  and 

121 ,, pmm RzRuRw ∈∈∈ . It is assumed that X and Z are 
smooth mapping of class Ck, while k being sufficiently 
large. In addition to smoothness, the following is 
assumed: 
A1: The linear H∞ controller must exist. 
A2: For any bounded trajectory of system (3) with input 
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The controller has to achieve two goals: it must stabilize 
the closed-loop system and attenuate the influence of the 
exogenous input signal w on the controlled signal z, i.e., 
it has to limit its 2L  gain by a given value γ . The 
disturbance attenuation property can be characterized by 
dissipativity [13,14]. 

State Feedback Controller 
In this section, a feedback law )(2 xau =  is sought, 
which renders the closed-loop system 

))(,,( 2 xawxXx =& , ))(,,( 2 xawxZz =  
(locally) dissipative with respect to the supply rate 
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By which, the system equations read 
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and, the Hamiltonian function for this differential game 
can be found to be [11,13] 
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ine a smooth, nonnegative function RRV n →:  in a 
neighborhood of 0=x  such that 0)0( =V and the 
Hamilton-Jacobi-Isaacs inequality 
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holds for each x in a neighborhood of zero. Then, 
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yields a closed-loop system satisfying 
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Which means that, a system which has the required 
dissipativity property in a neighborhood of )0,0(),( =wx . 
 Due to the Assumption A2, the feedback law (6) locally 
asymptotically stabilizes the system if )(xV  is positive 
definite. This can be seen by a Lyapunov type of 
argument. For 0=w , expression (5) reads 
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where, ),0,( *uxZ can only be zero for asymptotically 
stable trajectories of x (Assumption A2). Thus, )(xV  
being positive definite and 
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being negative proves asymptotic stability of the closed-
loop system. 

Design of approximate controller 
The HJI inequalities cannot be solved explicitly, in 
general. However, it is possible to compute an 
approximated solution based on Taylor Series expansions, 
which can be used for finding an approximate control law 
[14]. First order approximation corresponds to the linear 
H∞ problem. It yields an approximation of first order for 
the control law and of second order for the storage 
function )(xV . Higher order approximations lead to 
optimal nonlinear H∞ controller [10,16]. 

3.2. Incorporation of uncertainties in the FJR model 
To incorporate the effects of the uncertainties due to 
imprecise of parameters, one may rewrite (3) in the form: 

( )wuxfx ,,=&  (7) 
where, w is a vector of uncertainty that represent the 
deviation of parameters from their nominal values. To 
consider the uncertainty one may assume that: 

( )iioi wPP += 1  (8) 
where Pi stands for parameter in the system having 
uncertain values and Pio is the nominal value of the 
parameter. wi is an L2 bounded disturbance. The suitable 
design approach considered for FJR is the nonlinear H∞ 
technique where the objective is to attenuate the 
disturbances on the controlled output so that the exogenous 
inputs are selected to have bounded energy. Therefore, any 
bounded signal support can enter the system as a 
disturbance. Consequently, in the model (7) with respect to 
the exogenous input w, all deviation must be L2 bounded. 
It should be noted, however, that not all the parameter 
perturbations are necessarily L2 bounded. Constant 
deviation from the nominal values of the parameters is 
very common in practice. Obviously, constant deviation is 
not L2 bounded. As a matter of fact model (7) cannot 
handle constant deviation from the nominal values of the 
parameters. To circumvent this difficulty the system 
equation can be modified to the following form: 

( ) ( ) ( )x f x f x G G u= + ∆ + + ∆&  (9) 
where ∆f, ∆G denote the deviations of  f and G from their 
respecting nominal values ,f G . Equations (9) can be 
rewritten in the form  

( )x f x Gu ν= + +&  
where, the plant uncertainties due to parameter deviation 
are handled as a part of the disturbed input 
signal uGf ×∆+∆=ν . Note that this signal can be 
expressed as: 
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These model perturbations due to parametric uncertainties 
are schematically illustrated in figure (2) as pointed out in 
[10]. It follows from the small gain theorem that the closed 
loop system in figure (2) will be stable (in the sense of L2) 
for all perturbations ∆P with 1γ γ∆ < . The H∞ control 
problem requires that disturbance ν be L2e signal. 
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Figure 1.  Controller with two structural degrees of freedom 

 

Figure 2.   Control structure under model perturbations 

3.3. Tracking Controller Design  
The nonlinear H∞ controller described above can only 
regulate the system to the equilibrium point (origin). 
However, in robotic applications, tracking of a desired 
trajectory is required, and therefore, it is important to 
reconfigure the controller to provide such control action. 
To this end, we use a two step procedure:  
1. Linearize the system about a trajectory that satisfies 

the state equations. 
2. Design a control strategy to generate incremental 

control in response to small deviations from the 
trajectory. 

To do this, suppose that state space equations of the 
system are as follow: 

( )uxfx ,=&  (10) 

For *u u= , the desired trajectory *x  should be tracked, 
provided that:  

( )*** ,uxfx =&  (11)
To design the tracking controller for any arbitrary 
trajectory, we rewrite equation (10) for incremental 
variables, i.e., for deviations from desired trajectory. Let  
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Substitution in equation (10) yields: 
( )uuxxfxx ∆+∆+=+∆ *** ,&&  (13) 

Considering a stabilizer with u=α(x), we can use block 
diagram shown in Figure (1) to solve the tracking 
problem for the system that involves such stabilizer. As it 
is shown in this figure the controller consists of two 
parts; the first part u=α(x) stabilizes the system forcing 
∆x to zero by corresponding ∆u. The second part uses the 
inverse dynamic equations of the plant and produces 
proper control signal u for following the desired 
trajectory. By designing a more robust stabilizer in the 
first part, the closed loop performance of the system is 
improved, since the dependence of the inverse dynamics 
to the plant uncertainties are reduced.  
Note that the control input, which will be minimized by 
the optimal nonlinear H∞ controller design process, is 
only the ∆u, and not the total amount of control input. 

However, the control signal needed for tracking u* is 
uniquely calculated and is not related to the control strategy 
used in the stabilizer. Hence, the total control effort, 
u=u*+∆u, is optimal for the tracking objective as well. This 
is promising for the applications where actuator saturation 
is a practical limitation. This combined topology of the 
inverse dynamic controller and robust nonlinear H∞ 
controller is not previously proposed in the literature for 
robotic applications. The details of implementation and the 
effectiveness of the proposed method are evaluated through 
computer simulations on FJR in the proceeding sections. 

4. Simulations Analysis 
The effectiveness of the proposed method is verified 
through some simulations on a typical FJR. First, a single 
degree-of-freedom FJR is considered as shown in figure 3. 
The parameter values are selected as in [12], to be: m=1, 
I=1, J=1, L=1, g=9.8, k=100. 

 
Figure 3.  The single degree of freedom FJR 

The reference input is chosen as qd=Sin (8t), which is the 
largest bandwidth required in such applications [8]. The 
state variables are considered as follows 

44332211 ,,, qxqxqxqx ====  
The design of the controller consists of three parts. First 
the nominal model of the system and its uncertainty is 
encapsulated of the form of Figure 2. Then the inverse 
dynamics equations are calculated from the nominal model 
and the desired trajectory by analytical solution of 
Equation 11. Finally, the nonlinear H∞ controller is derived 
through approximate solution of corresponding HJI 
inequality depicted in Equation 5 [14]. Considering the 
penalty variable as Z=[x u]T, the results for both linear and 
3rd order nonlinear controllers starting from initial 
condition xo=[0 5 0 4.24]  which is calculated from inverse 
dynamics equation 11, are shown in figures 4 and 5. As it 
can be shown in figure (4), the error is converging to zero 
with a robust performance in both cases, while nonlinear 
H∞ shows a relatively better performance, despite even 
smaller control effort illustrated in figure (5). 
To make a qualitative assessment of the control effort and 
the tracking errors, L2 and L∞ norms of theses variables are 
given in Table I. As it is clear from these results, nonlinear 
controller provides relatively better tracking performance 
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with lower control effort. However, the difference is 
relatively small. In order to further investigate the 
performance of the controllers, consider larger 
deviations in initial conditions illustrated in figure (6). 
This simulation result is achieved considering initial 
condition as xo= [0 0 0 0]. 

 
Figure 4.  state convergence to the origin for small initial condition 

 
Figure 5.  Control effort and cost function for small initial condition 

 
Figure 6.  Tracking error for initial condition xo= [0 0 0 0] 

TABLE I.  TRACKING ERROR AND CONTROL EFFORT MEASURES 
FOR LINEAR VS NONLINEAR CONTROLLER 

e
∞

 
2

e  u
∞

∆  
2

u∆  CONTROLLERS 

1.52 27.74 1.79 25.86 L H∞ 
1.44 24.03 1.63 23.02 NL H∞ 

The difference of two controllers are apparently 
illustrated in this figure, and in fact for this initial values, 
the linear controllers becomes unstable, while the 
nonlinear controller preserves its tracking performance. 
On the other hand, from a robotic tracking requirement, 
the settling time of this system is too slow. In order to 
remedy this draw back, we propose an optimal factor 

algorithm for this application. In this method, the 
controlled output is weighted with respect to the 
disturbance for obtaining a faster response. Since the cost 
function is of quadratic type, increasing the weighting on 
the output should result in a more damped response. 
Weighted penalty variable is chosen so that fast modes of 
system, i.e. x3 and x4, will be damped rapidly and a great 
amount of emphasis be taken on x1 
. By this means, the fast mode damping advantage of the 
composite control strategies proposed for FJR in the 
literature [7,8], is used into our design, without need of 
adding any composite structure to the controller. More 
emphasis on rise time, however, may result in a smaller 
region of attraction. By increasing the weighting on the 
output, the algebraic Riccati equation for the linearized 
model may have not a positive semi-definite solution, and 
in this case, the attenuation factor γ must be increased. 
Moreover, the higher the attenuation factor γ, the smaller 
the reign of attraction is obtained. Hence a practical 
compromise shall be found through simulation for 
performance and stability.  
Figures 7 and 8 illustrate the results obtained using the 
proposed correction for linear and nonlinear 3rd order 
controllers with the following weighted penalty variable: 

[ ]uxxxxz ,100,100,100,10000 4321=  
As it is shown in the obtained results, faster response can 
be obtained with the expense of higher control effort. 
Comparing this response with the similar controllers for the 
FJR proves the effectiveness of this method for reaching to 
the desired performance. On the other hand, the difference 
of the linear vs. nonlinear controller is diminished in this 
case, and the results show that the performance of these 
two cases is practically identical. This is due to the linear 
weighting of the variables in the penalty variable. The 
nonlinear algorithm provides us with the ability to make 
these weightings in a nonlinear fashion, and therefore shape 
the output more tractable. As an example the penalty 
variable is chosen as:  

[ ]uxxxxxxz ,100,100,100,15000120005000 432
3
1

2
11 ++=  

and, the result are illustrated in figures (9) and (10). 
It is quite clear from these simulations that relatively better 
performance is achievable, using nonlinear controller with 
nonlinear weightings. The quantitative norms of control 
effort and tracking errors are given in table (2), which 
shows the significant reduction of control effort upper 
bound. To investigate the robustness of the controller in 
presence of uncertainties, we considered up to 10% 
uncertainty in the following parameters of the model: I, J, 
m, L, 1 kε = . The controllers are quite robust to the 
parameter perturbations and the tracking performance is 
preserved and quite similar to figure (9) despite the 
parametric uncertainties. There is only a slight increase in 
tracking error, in which the 2-norm of the error is increased 
to the amount of 0.17, and the infinity norm of it is equal to 
0.44. Different desired trajectories are simulated for the 
perturbed system, and similar results are obtained, which 
provides confidence on the robust performance of the 
system. 
TABLE II.  TRACKING ERROR AND CONTROL EFFORT MEASURES FOR 

CONTROLLERS DESIGNED FOR PERFORMANCE 

e
∞

 
2

e  u
∞

∆  
2

u∆CONTROLLERS

0.42 0.137 5375 362 L H∞ 

0.41 0.132 4030 353 NL H∞ 
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Figure 7.  The effect of the linear weight and γ on the performance  

 
Figure 8.  The effect of the linear weight and γ on the cost function  

 
Figure 9.  The effect of the nonlinear weight and γ on the 

performance  

 
Figure 10.  The effect of the nonlinear weight and γ on the cost 

function 

Finally, in order to compare the proposed controller 
performance to that of other controllers for FJR, composite 
PID controller [7], and composite H∞ controller [8] are 
nominated. Simulations are conducted to reproduce the 
tracking performance and control effort of them for a 
sin(8t) reference command as proposed in [8]. The 
quantitative measures of tracking errors and control efforts 
are given in table (3).  
The results reveal that the proposed algorithm in this paper 
provides superior tracking performance with much smaller 
control effort compared to that of composite H∞. As it is 
clearly illustrated in figure (11) the general tracking 
performance of the nonlinear H∞ controller is better than 
that of the others, except for the initial transient, with much 
smaller control effort. Although the tracking error infinity 
norm is relatively higher than that in composite PID, the 
need of much smaller control input, the superior energy 
norm of the tracking error, and the surprising steady state 
tracking performance, makes the application of the 
proposed controller in the presence of actuator saturation 
much favorable. This promising result emerged from the 
fact that not only the nonlinear model of the system 
encapsulating uncertainties are considered in this method, 
optimal solution for controller is also achieved through the 
controller synthesis. The only drawback of the proposed 
system is the requirement of more complicated offline 
algorithms to determine the controller. However, the 
nonlinear approach to the controller design makes is 
suitable for the case of multiple degrees of freedom. 

 
Figure 11.  Ttracking error comparision of composite PID, composite H∞ 

and nonlonear H∞ 

 
Figure 12.  control effort comparision of composite PID, composite H∞ 

and nonlonear H∞  
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This is accomplished for a two-degrees-of freedom FJR, 
and in order to have a fair comparison, the resulting 
closed loop performance is compared to that of reference 
[17], with the same model and conditions. The model of 
the system has the form of Equation (2) with nonlinear 
coupled terms in mass matrices I, and J  as well as the 
term C. The system parameters are as following [17]: 

2
1 2 1 2

2
1 2 1 2

1 , 1 , 9.8 ,
0.1 , 100

m m kg l l m g m s
J J kg m k k Nm rad

= = = = =

= = − = =
 

With these parameters, the flexibility of the typical FJRs 
is exaggerated and the natural frequency of the model is 
lower than that in a practical system. Moreover, since no 
structural damping is considered into the model, the 
control of this model is more challenging. The same 
procedure is considered to design the nonlinear H∞ for 
this system as explained in the beginning of section IV, 
with the difference of assuming the reference command 
for the joints as the following [17]: 

)sin(4.02.1,)sin(5.01
21

tqtq ll −=−=  
The closed loop performance of both joints is given in 
figure 13. In this figure, first the performance of the 
proposed nonlinear adaptive scheme [17] is illustrated, 
and the resulting closed loop performance of our system 
is given with the same scale for the ease of comparison. 
The nonlinear H∞ tracking performance proved to be 
much faster than that in [17]. Moreover, because of the 
robustness properties of our proposed method no 
instability drawbacks are observed in our system such as 
what has been reported in case of adaptive in [17].  

TABLE III.  TRACKING ERROR AND CONTROL EFFORT MEASURES 
FOR DIFFERENT CONTROL ALGORITHMS 

CONTROL METHOD 2
e  ∞

e  ∞
u  

Composite PID 0.21 0.152 5107.10 ×  
Composite H∞ 0.52 0.39 51054.0 ×  
Nonlinear H∞ 0.132 0.41 51004.0 ×  

 

 

  
Figure 13.  The tracking erors of two link manipulators a) Nonlinear 

adaptive control [17] , b) The proposed method 

5. Conclusions 
In this paper, the performance of an optimal nonlinear H∞ 
controller for tracking objective of an FJR under 
parametric uncertainties is thoroughly investigated. A 
two-degree-of-freedom controller combined of optimal 
nonlinear H∞ controller and inverse dynamics controller 

is proposed to tackle the tracking problem in FJR. It is 
observed that nonlinear feedback controller provides a 
larger domain of attraction than its linear counterpart. It is 
also shown how the level of the required performance can 
be adjusted through relative linear and nonlinear weighting 
of the controlled output with respect to the disturbance, and 
how the above factors can influence the region of 
attraction. Therefore, it is concluded that achieving a 
desired performance can be accomplished through a 
compromise between perfor-mance requirement and 
stability. This compromise is performed for a single and 
multiple joint manipulators, and simulation results 
illustrated the superiority of the nonlinear H∞ controller 
over linear H∞, composite H∞, and composite PID 
controllers, respectively. 
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