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Abstract— This paper discusses application of an intelligent 
system in order to navigate in real-time a small size, four 
wheeled, indoor mobile robot accurately using ultra-light 
(160 gr), inexpensive laser range finder without prior 
information of the environment. A recurrent neural 
network is used to find the best path to the target of the 
robot. An accurate grid-based map is generated using a 
laser range finder scene and location found by a modified 
dead reckoning system. Finally a motion control method is 
presented. These approaches are implemented and tested in 
Resquake mobile robot. 

I. INTRODUCTION

In some hazardous environment where attendance of 
human force might be threatened by an incident, a mobile 
robot can be used to manipulate a specific operation. In 
chemical, gas, oil or other harmful arenas, a mobile robot 
will be very helpful especially if it can operate 
autonomously. The application of autonomous robots 
extends to rescue, fire fighter, space robots, mine sweeper 
and many other applications [6]. 

There are three challenges in navigation of autonomous 
mobile robots in an unknown environment. First, the robot 
decides a target location according to sensor data and the 
aim of the robot. For instance, as a rescue robot, carbon 
dioxide of breathe, body temperature, sound, movement, 
etc. can be assumed as the victim signs. Second, the robot 
finds a way to go there using current position of the robot, 
generated map of obstacles and target location. Finally, 
the robot is controlled in the obtained path by the motion 
control strategy. In this paper, last two challenges have 
been focused on, including localization, map generating, 
path planning, and motion control of a mobile robot in an 
unknown environment. 

Varieties of methods have been developed for 
navigation of a mobile robot. Some robots are equipped 
with a GPD or DGPS. However, for an indoor mobile 
robot other localization sensors are used such as dead 
reckoning, SLAM [12, 17, 18], inertial navigation [19], 
beacons, vision sensor [20, 22], geometric [9, 10] or 

hybrid topological and metrical [7]. Laser range finders 
(LRF) are widely used for both mapping and localization 
in two last decades. Geometric methods had more 
accuracy rather than the probabilistic approaches. Instead 
probabilistic approaches [8] such as Monte Carlo [13, 14] 
or Markov [11] ones have more robustness but need a map 
of the environment and spend plenty of time. 

In this paper, mobile robot navigation problem has been 
broken down to four sub-problems. An autonomous robot 
first should know its current position (Localization). Then 
the robot should perceive the environment (Mapping). 
After that, the robot should find its way between obstacles 
(path planning) and finally the robot should be 
automatically tracked the obtained path. Practical issues 
and experiences in implementation of selected approach 
has been mentioned and emphasized in this paper. 
Experimental results are tested on the mobile robot of 
Resquake team who won the second place of the best 
design award in Rescue Real Robot league of the 
International RoboCup Competition 2005 in Osaka, Japan.  

Localization of mobile robot is discussed in the next 
section and proposed four methods to reduce error in a 
dead reckoning system. Section 3 concerns about accurate 
and robust map generating using a laser range finder. 
Recurrent neural network is presented in section 4 and 
then it is used to find a path from the current position of 
the robot to the final goal. Section 5 intended to simplify 
the path to make it easy to be followed by the robot. 
Section 6 discusses motion control of the robot in the 
simplified path and in the final section conclusions are 
stated.

II. LOCALIZATION

There are so many ways for positioning of a mobile 
robot including GPS[23], Sonar[15.16], gyroscope[19,23], 
dead reckoning[19,23] or sensor fusion[21,23]. For a 2D 
indoor mobile robot, a modified dead reckoning method is 
chosen using rotary encoder for measuring traveled 
distance of left and right side of the robot. Straightforward 
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formula suggested in [1] is used to calculate the 
differential variation of x-y-  in a short period. 

Localization result has been used in the map generator. 
Since any error in the localization affects the accuracy of 
the map, four easy, inexpensive and efficient 
modifications have been applied in addition to the usual 
method of dead reckoning to minimize the localization 
error in Resquake robot [5]. 

First, a free wheel is added to reduce effect of slippage 
of the main wheel on measurement of displacement. This 
new wheel will not transmit the power. So robot 
displacement is measured rather than the shaft rotation 
which will be slightly inaccurate during the slipping. 

Second, in this four wheels robot, encoders have been 
installed very close to the drive wheels otherwise, the 
maximum acceptable obstacle height may reduce to 1 cm 
from the current 7 cm. 

Third, for detecting obstacles errors, two other rotary 
encoder and free wheeling have been added in order to 
find mismatches and compensate detected errors by the 
other couple of encoders. 

Finally, to minimize the error that is the actual 
displacement of the robot and measured data, the free 
wheels of the dead reckoning system are pushed to the 
ground with two springs which will be maximized the 
friction between the free wheel and ground surface and 
minimize the likelihood of slippage of the free wheel on 
the ground. 

As a results of the above four solutions, localization 
error of the robot reduces to an acceptable value for our 
experiments when it moves straight. However when it 
turns some more error is appeared which will be 
compensated as explained in the next section. 

III. MAP GENERATING

There is no prior information about the environment and 
the robot needs a method to avoid collisions with the 
obstacles. Very light, inexpensive and accurate Laser 
Range Finder [5] is used to find the surrounding objects 
of the robot. It measures the distance of the nearest object 
to the robot in each angle as a polar coordinate. Raw data 
of the LRF that is shown in Figure 1 depicted the output 
of the sensor in the environment of Figure 2. LRF is 
attached to the front of the robot. 
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Figure 1 – Raw data coming from the HOKUYO brand LRF 

Figure 2 – Real robot and the environment where the LRF observes 

Global map is represented as a binary value for each cell. 
The cell value is one if there is an obstacle in the cell and 
is zero if there is no obstacle on it. This map can be 
outdated with every scene of the LRF knowing the exact 
location of the robot in the map. The LRF data is 
converted to Cartesian coordination and is put at the robot 
position in the global map. 
After a while, when robot moves to unknown areas and 
sees what could not see before, the map of the 
environment will be completed step by step. 
Figure 3 shows the raw data of Figure 1 in dot format. It 
is clear that there are some extra points in Figure 3 that 
are appeared when we connect sequential points to each 
other. 
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Figure 3 – Raw data coming from LRF in dot representation 

This phenomenon is mainly caused by the sensor when 
two surfaces have a small gap between each other. It’s 
important to exclude these points because if they exist in
the global map, the map will be unclear and inaccurate. 
This error should be filtered by a pre-filter on LRF data. 
Equation 1 is applied to the raw LRF data to omit extra 
points. 

Min(|ri-ri+1|,|ri-ri-1|) < rThreshold  (1) 

Where ri is the i-th distance in the polar coordinate and 
rThreshold is the threshold distance. This equation means 
that points, which are alone or far from other point must 
not be selected. Filtered points are omitted from the 
vector and replaced by unknown distance. Figure 4 shows 
the map of Figure 3 after omitting the extra points of 
Figure 3. 
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Figure 4 – Pre-filtered data of the LRF, noise has been omitted 
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Figure 5 – Global map when the robot move around the room 

In Figure 5 the resulting map is depicted when the robot 
turned 360 degree and different scenes of the laser range 
finder is put on the robot location in the map. Direction of 
the robot is taken account to rotate the scenes and then put 
them on the appropriate position. 

The second map is very similar to the first map but 
localization error effect can be seen in Figure 5 where two 
walls below the figure are not superposed to each other. 
This figure and other experimental results show that the 
localization error is significant when the robot turns and 
negligible when the robot go straight.  

IV. PATH PLANNING

In this section the generated map, current location and 
target location are used to find the best path that the robot 
should travel to achieve the target without collision with 
obstacles. Before using the map, there is a slight point 
about the robot volume and obstacles that must be 
considered in an experimental design. It is clear that the 
robot has a volume and cannot be assumed as a point in a 
map. The obstacle avoidance strategy should take account 
the robot width to find out whether the ways is wide 
enough for robot to pass the narrow aisle. 

Since considering the robot shape for path planning will 
be complicated, another way is proposed. In this way, 
each cell of the obstacle is expanded to half of the robot’s 
wide. The expanded obstacles map of Figure 5 is shown in 
Figure 6.  

Figure 6 – A map with expanded walls 

Now, the robot can be represented as a small point that 
should not enter to this gray area and there is no other 
constraint on the robot position which should apply to the 
robot movement to avoid obstacle collisions. There is 
lateral result of the obstacle expansion that the localization 
error due to turn movement can be eluded. It can be easily 
seen that the duplicated walls of Figure 5 are mixed in 
Figure 6. 

The radius of expansion of obstacles is very important 
parameter that should choose cautiously. It should be large 
enough to make sure that the robot will not collide with 
the obstacle. But it can not be too large because this may 
close some ways to the robot while it can go through 
them. As a rule of thumb, it can be half-wide of the robot 
plus 5cm (For the presented robot), totally 25 cm. 

In the generated map the position of the robot, target 
and obstacles are specified. A neural map is suggested in 
[2] for path planning. Each cell in the global map is 
assigned to a neuron of a recurrent neural network. For 
example in the map of Figure 6, a 200 by 200 occupancy 
grid map generates a neural network with 40000 neurons. 
Activation function of each neuron is a one-side sigmoid 
function:
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Output of each cell is applied to every other cell with a 
weight w.

Figure 7 – (i,j)th neuron of the Neural network 

The structure of a neuron is shown in Figure 7. V’s are 
the output of the network and are assigned to each cell of 
the global grid map. b’s are the bias of cells and w’s are 
weights that determine the effect of each cell to others. 
Target cell that assigned to the target neuron have positive 
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infinite bias. Obstacles have negative infinite bias and 
other cells have zero bias: 
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A weight function determines the effect of each neuron 
to others and has chosen as Equation 4. 
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where f is a descending function and d is the distance 
function. f assumed to be f(x)=1/x and d assumed to be a 
Cartesian distance of two neurons. So the weight function 
will be a large value for closed neurons and will be a small 
value for far neurons. It means that farther neurons have 
smaller effect and nearest neurons have the most 
significant effect on a cell. Also, each neuron has no effect 
on itself. Neurons farther than a specified radius have no 
effect.

The aim of the network is to find the best path in order 
to reach the target position. The network is unsupervised 
and training of this network means to recalculate the 
output of the network according to the current outputs. An 
incremental way is used to train the network. After 
training the network, output of the target neuron will be 1 
because of its positive infinite bias passed through the 
sigmoid function. For the obstacle, negative infinite bias 
will have the output to be zero. Neurons near the target 
neuron affected by the target neuron and their output value 
will be higher than others. By going far from the target 
neuron, outputs will be decreased and near the obstacles, 
the neuron output will be forced to be declined to zero.
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Figure 8 – Trained neural network output 

An output of a generated neural map is shown in Figure 
8. The target cell is the darkest point in Figure 8 and 
obstacles are bright white. Output values of far neurons 
from target one are very small but not zero. However, 
these small values can not be seen in this figure.  

Process time for training the neural network is 
proportional to the number of neurons and training 

iterations. To minimize process time, three methods are 
used. First, the train radius is limited. Effect of far neurons 
is very small. This effect is descending according to the 
function f(x)=1/x and for big distances the effect is 
negligible. Therefore, training of neuron (i,j) can be 
started at (i-r,j-r) and ended at (i+r,j+r). So the training 
time will be reduced highly. However, it is very important 
not to reduce it very much which will cause the far 
neurons to be unaware about the target neuron. So the 
train radius can not be very small. In the practical 
experiments, the train radius is chosen 5 and the number 
of iterations is 12. 

Second, the train region can be limited. Those neurons, 
which need to be train are limited because neurons before 
the target neuron have not initially been affected by the 
target neuron and have the zero value. So, there is no need 
of training in some regions because all neurons in the 
region have the same value of zero. This is occurred in the 
primary iterations when the target neuron just affects very 
close neurons and training of far neurons can be skipped. 

Finally, target effect should distribute uniformly in all 
direction, otherwise neurons after the target neuron will be 
affected more than other neurons. The direction of training 
alters every second iteration. Thus, the number of 
iterations needed to cover all the area is decreased 
numerously. 

After training the network, it is shown in [2] that 
wherever the robot is located in the map, if it chooses the 
maximum slope when it wants to decide where to go, a 
path can be obtained. Result of this algorithm for path 
planning is shown in Figure 9. 
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Figure 9 – Path planning result 

In Figure 9 the initial robot direction is shown by an 
arrow to determine the robot orientation. Unexpanded 
walls are shown in as a black areas and obtained path is 
shown in gray line.  

V. SIMPLIFYING THE PATH

Path planning algorithm of the last section derives a 
curve as a feasible robot trajectory to the target. Motion 
control in a general case and in an arbitrary curve needs to 
control each motor of the robot. Furthermore, localization 
error increases in robot turning movement that means that 
tracking a curve will increase the localization error 
incredibly. To avoid too many turnings, the following two 
techniques are implemented. 
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A. In every corner of the path, the robot must turn. As 
explained above, this makes some localization error. To 
avoid too many corner points in the path, the latest 
direction in the path is amplified with a coefficient larger 
than one during steepest ascend algorithm of path 
planning. In Figure 9, the amplification gain is 1.5 and, as 
a result, the number of the corners is reduced significantly. 
This simplification will be appreciated in the robot motion 
control when the robot tries to follow the path. The 
coefficient should not be so large because this 
amplification means that the decision on the direction will 
not be fair and the robot may approach the obstacles. 

B. Let’s divide the obtained trajectory to some straight 
lines. The robot moves from a start point of a line to the 
end point of it which will be the start point of the next 
line. Let’s call these points corners. The robot should 
follow the corners to achieve the final target position. 

To simplify the path, distance between each two 
corners are considered and if it is less than a threshold 
value, the line between them is absorbed to its neighbor 
line by eliminating the common corner of lines. 

Also, a corner which is in the same orientation with 
some others can be eliminated. In this approach, for each 
corner the next and previous corners are connected with a 
straight line. If the distance of the corner to the line is less 
than a specified threshold, the corner can be left out.  

The result of this approach to simplify the path is 
illustrated in Figure 10 where the blue line is the path, 
which is obtained from the neural map and the red circles 
are the final corners where the robot has to follow. 
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Figure 10 – The result of simplification of the path 

In Figure 10 both distance thresholds are assumed to be 
10cm. This value is chosen in a trade off. Larger value 
will increase the probability of collision of robot to 
obstacles and small values will increase the number of 
corners and path complication. 

VI. MOTION CONTROL

The simplified path is easily applied to the robot as 
local destinations and the robot goes to each of these 
corners by two separate modes. First, it turns until the 
head of the robot points to the next corner and second it 
goes straight until the robot reaches to the next corner. 
Passing all the corners, the robot reaches the final target. 

VII. CONCLUSION

In this paper, four effective and easy-to-use approaches 
are proposed to minimize the localization of dead 

reckoning system with rotary encoders. Laser range finder 
data is filtered and used on a global grid-base binary map. 
A recurrent neural network assigned to the map, which 
obtained the value of each cell of the map. Three proposed 
approaches reduce the process time of training to one 
second, programmed by C# on a 1.8 MHz Intel Centrino, 
which was suitable in online implementation. Three 
simplifications in the path make it more feasible to the 
robot to move with less localization error and the robot 
pursued corners to reach to the final target. 
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