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Abstract—In this paper the control of flexible joint manipulators is studied in detail. The model of
N-axis flexible joint manipulators is derived and reformulated in the form of singular perturbation
theory and an integral manifold is used to separate fast dynamics from slow dynamics. A composite
control algorithm is proposed for the flexible joint robots, which consists of two main parts. Fast
control, uf, guarantees that the fast dynamics remains asymptotically stable and the corresponding
integral manifold remains invariant. Slow control, ug, consists of a robust PID designed based on
the rigid model and a corrective term designed based on the reduced flexible model. The stability
of the fast dynamics and robust stability of the PID scheme are analyzed separately, and finally, the
closed-loop system is proved to be uniformly ultimately bounded (UUB) stable by Lyapunov stability
analysis. Finally, the effectiveness of the proposed control law is verified through simulations. The
simulation results of single- and two-link flexible joint manipulators are compared with the literature.
It is shown that the proposed control law ensures robust stability and performance despite the modeling
uncertainties.

Keywords: Flexible joint robots; integral manifold; UUB stability; Lyapunov analysis; two-link
flexible manipulator; performance stimulations; uncertainty.

1. INTRODUCTION

Multiple-axis robot manipulators are widely used in industrial and space applica-
tions. The high accuracy of these robots is due to their rigidity, which makes them
highly controllable. After the inception of harmonic drive in 1955, and its wide
acceptance and use in the design of many electrically driven robots, the rigidity
of robot manipulators was greatly affected. In the early 1980s researchers showed
that the use of control algorithms developed based on rigid robot dynamics on real
non-rigid robots is very limited and may even cause instability [1]. The singular
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perturbation theory is used as the basic theory to model the dynamics of flexible
joint robots (FJRs), in which, using two-time scale behavior, these systems are di-
vided into fast and slow subsystems [2]. As shown in Ref. [3] for a three-axis flex-
ible robot the system is not feedback linearizable and the use of methods such as
computed torque methods for flexible manipulators is not directly implementable.
By neglecting the effects of link motion on the kinetic energy of the rotor, Spong
derived a mathematical model for such systems in which the system is feedback
linearizable [4]. However, to linearize the system, acceleration and jerk feedback is
required, whose measurement is very costly. To avoid the need for acceleration and
jerk in this method the idea of an integral manifold is employed. In this method,
instead of using the zero-order approximation of the model extracted from the sin-
gular perturbation theory, higher-order models can be used and, hence, a series of
corrective terms is added to the control algorithm [1, 5]. In adaptive methods many
algorithms are developed for FJRs, in most of which a term due to the fast subsys-
tem is added to the adaptive algorithm based on rigid models [5]. In robust methods
considering model uncertainties the stability of the fast subsystem is first analyzed
and, by the use of robust control synthesis, a robust controller is designed for the
slow subsystem [6, 7]. Moreover, some controllers have recently been designed for
FJRs using the compliance control schemes [8, 9].

As has been shown, most research on FIJRs has concentrated on non-linear
control schemes. Using the singular perturbation and integral manifold concepts
for modeling combined with the composite control approach, and using two distinct
terms for slow and fast variables seems to be highly effective. However, since in this
method the global stability is not guaranteed, many efforts towards stability analysis
have been reported in the literature [10—12]. Qu has proposed a robust controller
with local stability in Ref. [13], as a generalization of his previous ideas about rigid
robots. Later, in Ref. [14], a robust controller has been proposed with guaranteed
uniformly ultimately bounded (UUB) tracking in the presence of small disturbances
and parametric uncertainty.

In this paper we propose a method based on a composite control structure and
thoroughly analyze the robust stability of the overall uncertain system. In this
analysis, similar to Refs [15, 16] the singular perturbation model of the FJR is used,
but in the presence of the modeling uncertainties, and the system is divided into
slow and fast subsystems. Then, an integral manifold in addition to a composite
control law is introduced in order to retain the integral manifold invariant and to
satisfy the asymptotic stability requirement. The control effort consists of three
elements — the first element is designed for the fast subsystem, the second term is a
robust PID control designed for the rigid subsystem and the third term is a corrective
law designed based on the first-order approximation of the reduced flexible system.
Moreover, unlike the stability analysis given in previous research, which was limited
to the rigid model subsystem [16], in this paper the overall stability of the closed-
loop system is thoroughly analyzed-based on Lyapunov stability theory. Stability
conditions for the robust PID controller are derived to guarantee that the overall
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closed-loop system is UUB stable. In order to verify the effectiveness of the
proposed control law and compare its performance to other methods given in
the literature, simulations of single- and two-link flexible joint manipulators are
examined. It is shown in this study that the proposed control law ensures robust
stability and performance, despite the modeling uncertainties.

2. FJR MODELING

Spong [4] has derived a non-linear dynamic model for FJR using singular pertur-
bation. In order to model an N-axis robot manipulator with n revolute joints as-
sume that: ¢; : i = 1,2,...,n denote the position of ith link and ¢; : i =
n—+1,n+ 2,...,2n denote the position of the ith actuator scaled by the actua-
tor gear ratio. If the joint is rigid §; = ¢, Vi. For a flexible joint, if the flexibility is
modeled with a linear torsional spring with constant k;, the elastic force z; is derived
from:

zi = ki(@i — Gn+i)- ey

The spring constants k;s are relatively large and rigidity is modeled by the limit
k; — oo. Let u; denotes the generalized force applied by the ith actuator and use
the notation:

A A A ~ T
4=y Qs dnirs - G2 = (a1a3) - )

The equation of motion of the system can be written in the following form using the
Euler-Lagrange formulation:

{M(Q1)511 + N(q1,q1) = K(q2 — q1) 3)
JGr =K(q1 —q2) — Dgr +Tr +u
in which:

N(q1,q1) = Va(q1, 91)q1 + G(q1) + Fag1 + Fy(q1) + Ty, 4)

and K is the joint stiffness matrix, M(q;) is the mass matrix, Vi,(q1, ¢1) is the
matrix of coriolis and centrifugal terms, G(g;) is the vector of gravity terms, Fy is
the viscous friction matrix, Fs(g;) is the coulomb friction vector, Ty is the vector
of the joint bounded unmodeled dynamics, J is the actuator moments of the inertia
matrix, D is the actuator viscous friction matrix and 7 is the actuator bounded
unmodeled dynamics. For all revolute manipulators, it is shown in Refs [15, 17]
that:

mil < M(q)) <mal, |[Va(qi, gDl < &llgill, ©)

1G@gDIl <& N1Fagi + Fo(gDl = &o + Crillgull, (6)

A <T<pl, dI<D<dl (7
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Moreover, if the perturbations are bounded then:

173l < Ceo  NTEl < Sn2 (8)

in which ¢p, &, do, dy, ja, j1, Ci1s oy &g, Cc, m2 and my are positive real constants.
If the joints are all rigid:

M(q)4 + Ni(q., q) = uo ®

in which ¢ = ¢; and M, is a positive definite matrix. This model is the model of
a FIR where k — oo verifying that the FJR model is a singularly perturbed model
of rigid system. Assume that all spring constants are equal (this assumption does
not reduce the generality of the formulation, since by scaling z we reach the same
conclusion), the elastic forces of the springs can be calculated by:

2=k(qg1 —q), K =kI (10)

in order to use a small quantity for a singular perturbation define € = 1/k by which
for a rigid system (k — 00) in this form we have ¢ — 0. Multiplying M~ to both
sides of (3) and taking z = k(q1 — ¢2), ¢ = ¢q1 and using ¢» = ¢, — €2:

{5?=01(q,6})+A1(61)Z an
€Z2=ax(q,q,€z) + Ax(q)z+ Bou
in which:
A =-Mq), a=-M"'q)N(4g,9q), (12)
a=—eJ 'D:+J'Dg— T 'Tr — MY (q)N(q, §), (13)
Ay=—(M"'@)+J7"), By=-J"". (14)

Equation (11) represents a FJR as a non-linear and coupled system. This represen-
tation includes both rigid and flexible subsystems in the form of a singular pertur-
bation model.

3. REDUCED FLEXIBLE MODEL

The singular perturbation model of the FJR is given in (11). This model represents
the flexibility in the joints; however, the reduced-order model is the model of a rigid
system, which can be easily derived from (11) by setting ¢ = 0. With some matrix
manipulation it can be shown that:

(M+J)q+N—TF+Dq = Uy.
Rewrite this equation in this form:

M (q)G + Ni(q, q) = uo (15)
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in which:

M(q) = M(q) +J, (16)

= Vu(q,9)q + G(q) + (Fa+ D)q + Fi(q) + Ta — Tr. (17)

This representation introduces a 2n dimension manifold, M,, which is called the
rigid manifold. If € # 0O the produced manifold M., which is a function of e,
represents the flexible system. To define the flexible manifold M, assume:

z=H(g,q,u,e) g€ R",ueR", zeR", (18)
:=H(g,g,u,e) g€ R ueR", zeR", (19)

M. is an integral manifold for the flexible system if for each initial condition:

2 =A q(t) =¢
{z(r) N {c}(t) =7

in M. all trajectories of g (¢) and z(¢) for t > f, remain in the manifold M.. In other
words YVt > t,:

2(1) = H(q(1), 4(0), u(®), €), (20)
(1) = H(q(1), q(1), u(?), €). 21

Equations (20) and (21) are called the manifold conditions. An integral manifold for
a FIR exists if Ay = —(M~'4-J~") is non-singular Vg € R" [2]. This is always true
since the mass matrices M and J are positive definite. If the manifold conditions are
not satisfied at the initial time 7,, but the fast dynamics are asymptotically stable, the
initial transient will die down shortly and the manifold condition will be satisfied
after a short transient.

In order to derive the reduced flexible model, the flexible manifold is used in the
formulation. Assume that the function H is several times differentiable with respect
to its arguments. Hence, by differentiating (20) and (21), and substitution in (11):

€H(q, q,u,€) =ax(q,4,€H(q, 4, u, €)) + Arx(@Q)H(q, G, u,€) + Bou  (22)

in which:

+—— 94+ —a+AH+_—— (23)

g (PH  OHBu\. 9H dH du
~\dg  0u dg g du ot

Now, the reduced flexible model can be derived by replacing z, z with H, H in (11):
Gg=a(q,q) +A(@H(q,q, u,e). (24)

The order of this equation is equal to the rigid system; however, this model includes
the effects of flexibility in the form of an invariant integral manifold embedded in
itself. Hence, this reduced order model is not an approximation of the FIR model,
but it represents its projection on the integral manifold.
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4. COMPOSITE CONTROL

In order that the reduced flexible model holds for the system, it is essential that M,
be an invariant manifold or the fast dynamics be asymptotically stable. This can be
satisfied using a composite control scheme [2]. In this framework the control effort
u consists of two main parts, i.e. us the control effort for slow subsystem and u; the
control effort for fast subsystem, as:

u =Ms(q,q7€)+uf(ﬂ,ﬁ) (25)

in which u¢(n, 1) is designed such that the fast dynamics becomes asymptotically
stable. 1 denotes the deviations of fast state variables from the integral manifold:

n=Z—H(Q’q.au57€)v (26)
n=z—H(q,q,usé€). (27)
The slow component of the control effort, us(q, ¢, €), is also designed based on the
reduced flexible model. We describe the design technique for u¢ and u; in the next
subsections.
4.1. Fast subsystem dynamics and control
Recall (26) and differentiate twice:
€ij =€7 —€eH
=ay(q. 4, €2) + Ax(q)z + Bou — (az(q. ¢, € H) + Aa(q) H + Bous)

or:
¢ii = [ax(q. q. €2) —ax(q. 4. € H) ] + Az(q)n + Bauir. (28)
Substituting the value of a, and using fast time scale T = /. /€ with some
manipulations this leads to [18]:
€1) = A2(q)n + Bau, (29)

and in state space form:

nil_ Y el || n Y
S A

The flexible modes are not stable since the eigenvalues are on the imaginary axis.
Hence, u; must be designed such that the eigenvalues are shifted to the open left
half plane in order to guarantee stability.

THEOREM 1. The diagonal and positive definite matrices K and Ky exist such
that the closed loop system including the subsystem (29) with the control effort
ur = Ky + Kys1) becomes globally asymptotically stable. [Proofin Ref. [19].]
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4.2. Control of the reduced flexible model

The reduced flexible model represents the effect of flexibility in the form of the
flexible integral manifold. In this section a robust control algorithm is proposed
for the system based on this model. In order to accurately derive a robust control
law us(q, ¢, €) for the system, manipulation of the partial differential equation is
necessary. To avoid complex manipulations, we propose deriving the robust control
law u(q, g, €) to any order of € from the series expansion of the integral manifold
to the same order of e:

H(q,q,us,€) = Ho(q,q,us) +€Hi(q,q,us) +--- (31)
and implement the controller u(q, ¢, €) in the same form as:
us(qque):MO(‘]»C})-FGM](C]JD‘*‘“‘ (32)

in which the functions H;(q, g, us), u;(q,q),i = 0, 1, ... are calculated iteratively
without the need to solve the partial differential equations. It is important to note
that as € — 0, u, tends to rigid control and H tends to rigid integral manifold. By
substitution of (31) and (32) into manifold condition (22) we reach:

eﬁo(q, 6}, us) +€2H1(q,q,us) +...=
a>(q. 4, €Hy+ € Hy +-+-) + As(q)(Ho + € Hy + -+ +)

+ By(up +€uy + - ). (33)
The right-hand side of (33) can be expanded with respect to the powers of €; and by
addition of equal powers of €; a set of equations for H;, u;, i = 0,1, ... in terms

of € are the result. The first-order approximation of (33) will result in:

eHo(q, 4, us) = ax(q, 4, € Ho) + A2(q) (Ho + € Hy)

+ By(ug + €uy) + O(€%). (34)
When € = 0 the equation relating u to Hy will be:
0 = ax + A2(q)Ho(q, 4, uo) + Baug (35)
in which:
axn =ax(q.4.0) =J"'DG—J'Te(q.¢) =M~ (@)N(q.9),  (36)

up is designed using a robust design technique based on the rigid reduced order
model (¢ = 0) and H is calculated from:

Hy = —A5 " (ax + Bauo). (37)

The details of the robust design technique are explained in the next section. Now,
since uy and Hy are known from (34), H; can be similarly calculated in terms
of u; and the first-order manifold H; can be substituted into the reduced flexible
model (24). If higher-order terms are neglected, the first-order corrected model for
the system is derived.
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In order to calculate H; from Hy and u, let:
az(q, q, EH) =ay + €Aay + 0(62)
in which ay is given in (36) and comparing to (13) we reach:
{ Aay =—-J'DH
Aayy = —J ' D Hj,.
Hence:
€Hy = ax) + Ay Hy + Boug + €(Aazg + Ay Hy + Bouy) + O(€).  (38)
Comparing (38) to (35):
Hy = Aaxy + A>Hy + Bouy. (39)
Therefore:
Hy = A;'(Ho — Aax — Bouy). (40)

To calculate u; refer to reduced flexible model (24) and approximate it to the first
power of €:

g =ai(q,q)+ Ai(q)Ho + €A1(61)A2_1(ﬁ0 — Aayy — Bouy).
By factoring the equal powers of € we reach:
up = Bz_](ﬁo — Aazo). (41)

The only condition on robust control design is that #y, must be at least twice
differentiable. Finally, the control law for the slow subsystem has the form:

Us = Uy + €uy. (42)
In which u, is called the corrective term that is derived through this subsection and
u is the robust control based on the rigid model elaborated in the next section.
4.3. Robust PID control for the rigid model

In this section we first propose a robust PID controller based on the rigid model of
the system and then prove its robust stability with respect to the model uncertainties.
Recall the rigid model of the system from (15) and choose a PID controller for u:

t
uoszé—i—er—i—K]/ e(s)ds = Kx 43)
0

in which
€=dqdq—(q
K =[K; Kp Ky]
T

X = |:/ el(s)ds e’ éT] .
0
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Similar to Refs [16, 17], assume:

md < M(q) < mi, (44)
and put some limits on:
INL < Bo+ BUILI+ B2AILIP, [ Vall < B3 + BallL| (45)
in which | - || is the Euclidean norm and L = [e" ¢"]. Implement the control law u
in (15) to get:
X = Ax + BAA, (46)
where:
Y I, Y Y
A= Y % I, B = 0
-M7'K;, -M7'Kp —-M7'Ky, M!
AA = N+ Mq. (47)

To analyze the system’s robust stability, consider the following Lyapunov function:

1 f '
V(x) =xTPx = 5|:012/ e(s)ds +aje +é:| - M,
0

t
|:a2/ e(s)ds + aje + é:| +wTPw (48)
0

in which:

W= fote(s)ds p :l o Kp+a1K; oKy + K,
e "7 2| wKky+K oKy +Kp |

Hence:

Ky + Kj + oy M, OllKv+Kp+Ollet o M,
oy M, oy M, M,
Since M, is a positive definite matrix, P is positive definite, if and only if, P; is
positive definite. Now choose:

1 |:0!2KP + oK +aiM, Ky + K; + ajooM, Olet]
P=-

Kp=kpl
Ky =kyl
K; =k

such that:

arkp + a1k onky + kg
arky +k;  artky +kp

becomes positive definite. The following Lemma gives the conditions where V' can
become positive definite and upper and lower bounded.
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LEMMA 1. Assume the following inequalities hold:
1 >0 ar >0 o14+ay <1
sy =ax(kp —ky) — (1 —apk; —ax(1 +a; —ax)m > 0
s> =kp + () —a)ky —k; — o (1 +ay —ap)m >0

Then P is positive definite and satisfies the following inequality (Rayleigh—Ritz) [15]:

A(P)||x]I* < V(x) < A(P)]lx]?

in which:
1 —a —
A(P) = min M%,S_{Sj
2 22
— 1
A(P) = max Mmﬂs_{s_“
2 22
and:

sz =az(kp +ky) + (1 +apk; + (1 + ay + az)aom,
sg = aym(l + o) +a2) + (a1 +ax)ky + kp + k;.

Proofis based on Gershgorin theorem and is similar to that in [16].
Now when P is positive definite then:

V(x) =x"(ATP + PA+ P)x + 2x"PBAA

1 0621 .
= —xTQx+ ExT |:oz11:| M (ool oI I]x
I
arl 1 ] a%l ool
+xT |:a11:| AA+ —xT [ ol Dojaal (@ )l
1 ool (a%+a2)l ol

M, 3 9
X |: W M, 0 :|x

g 9 M,

refer to [15]:
Y My =2y"V,y
with some manipulations we can show [20]:

Vx) < =yIxl? + A Valllx 1?4+ 2amlx i + a3 Al AA]

V(x) < llxlIGo — &llx] + &llx]1),
and:

y = min{axk;, o 1kp — anky — kg, ky}.

(49)

(50)

(S1)
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Now considering (45), (47) and (51), and || L] < ||x|| then:
§o = a3 hafo+ oy hidaim
£ =y — Py — At — o) A1 By
£y =MBs+ oy Mo
in which:
)Ll = )\max(Rl)
Ay = )\max(RZ)
A3 = supl|qall
and Anin and Ay are the least and largest eigenvalues, respectively, and:
a%l ool ol
R, = |:a1a21 05121 a11i|
ol ol 1
) a%l ool
R, = % |: ol 2010001 (a% +a2)1:| .
ool (a% + ay)l ol

According to the result obtained so far, we can prove the stability of the error system
based on the following theorem.

THEOREM 2. The error system (46) is UUB stable if & is chosen large enough.

Proof. According to (51) and (49), and Lemma 3.5 from Ref. [15], if the
following condition holds, the system is UUB stable with respect to B(0, d), where:

J— 28 x(P)
£+ & — 45t | 2P
The conditions are:

& > 25
AP
£2 1 81\/62 — dgoky > 2&&(1 + ﬁ)

(P
£l + /& — 450&r > 26 ]Ix0ll %

These conditions can be simply met by making &; large enough by choosing large
enough control gains Kp, Ky and K. O

5. STABILITY ANALYSIS OF THE COMPLETE CLOSED-LOOP SYSTEM

The stability of the fast and slow subsystems were analyzed separately in previous
sections. However, the stability of the complete closed-loop system may not be
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guaranteed through these separate analysis [2]. In this section the stability of the
complete system is analyzed. Recall the dynamic equations of the FIR (11). The
integral manifold and the control effort are chosen as:

n=z—H
H=H()+EH1

U=Ug+ Uur=ug+ €.uy + us.

Combine these equations to (11), (40), (37) and (43), and consider x =
[fye)Tds ' TNy =1[n" 71", then:

x=Ax+BAA+C[I @]y, (52)
€y = Ay (53)

0 I Y 0
A= [ 0 Y I } , B= [ Y } :
-M'K;, -M7'Kp, —-M7'K, M!

AA = N+ Myq,

Y
~ ) el
C = , A= B )
[—th} [A2+le<pf —eJ lD—i—BzKVf}

THEOREM 3. There exist diagonal and positive definite matrices Ky and K¢
such that the closed-loop system (53) becomes globally asymptotically stable.

Proof. Substitute A, and B, from (14) into (53), and define:
M7 '+ J P+ I Ky =U
eJ'D+J 'Ky =G.

Where U and G are both positive definite, since M, J, Ky and K are all positive

definite, hence:
. n|_| 9 el n
il | -U -G nl

Consider the following Lyapunov function:
Ve=y'Sy

in which y = [ #]T and:
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In order to have positive definite S, according to the Shur complement we must have:

2
-1 >0
¢ (54)

_1 (2 B -1 1€~
U -G -1 G ' >0=U""— EG > 0.
€

Now since U~! and G2 are positive definite in order to satisfy (54) the following
condition must be met:

2)Lmin(U_1)
Amax(G™2)

in which Ay, and Anyax are the smallest and the largest Eigenvalue, respectively.
Differentiate V along trajectories of (53):

Ve =3"Sy + y'Sy + TSy
1 ol 1 | _ .
=——n'G 'Un— nT[—U 'G--(G'+ U ‘)T)}n <0.
€ € 2
Since G is diagonal and positive definite, and limited ¢, ¢ will limit (U~')’, then

by choosing appropriate values for Kr and Ky, VF becomes negative definite and
it can be written as:

Vi = —yTWy
in which:
1
1| -G 'u+uGhH )
W =-— €

2 1
0 E(U*‘G+GU*‘) - U Hr -G

]

THEOREM 4. The closed-loop system of (52) and (53) is UUB stable if K, Kr
and & are chosen large enough.

Proof. Consider the following composite Lyapunov function:
V(x,y) =x"Px + 'Sy, (55)

where xT Px is the Lyapunov function candidated for slow subsystem, and yTSy is
the Lyapunov function of fast subsystem (53). Therefore, from the Rayleigh—Ritz
inequality:

AP)|Ix|I> < xTPx < A(P)|Ix?
ASIYIZ <y Sy < Syl

in which A and A are the largest and smallest eigenvalues, respectively. Adding the
above inequalities:
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AV + AP IxIP < Ve, y) S MY+ A(P)1x]I*.

Define:
Zo=1xl Iy (56)
then:
[l ||y||][MOP) kfs)][”’y‘”]@(x,y)

<ot b [*9 56 L]

Again apply the Rayleigh—Ritz inequality:
M Z < V(Z) < M Zd, (57)
where:

A =min{A(P), A(S)},
A = max{A(P), A(S)}.

Now differentiate (55) along the trajectories of (52) and (53):
V =2x"Px +xTPx+2y"Sy +y'Sy =2xTPC[I #y
+[2x"P(Ax + BAA) + x"Px] 4+ 2y"Sy + y" Sy,

and consider (50) and (51), and define | = Apa (M ~'). As shown in Theorem 3:

2518y + 'Sy < —Amin (W)Y II%.
Hence:

vt | S S | L]
+ &llxll + &llxI,

and according to (56):

V< =ZIRZ + &I Z + &I ZP,

where:

_VIX(P) Amin(W)

In order to have positive definite R:

R = |: & —le(P):|.

—2
Ayt Emin(W) — y{A (P) > 0
or.
2—2
vir (P)

)VminW
W=

(58)
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Condition (58) is met by choosing appropriate K,; and K¢ for fast subsystem,
hence:

V <1 Zll(Eo — Amin(R) | Ze + &1 Z]1). (59)

Now, according to (59) and (57), and Lemma 3.5 of [15], if these conditions are met
then the closed-loop system is UUB stable with respect to Y (0, d"), where:

v 26, ﬁ
Damin(R) + /32, (R) — 4oy ¥ 2

and the stability conditions are:

)Vmin(R) > 2\/ 5052

A
)‘zmin(R) + Amin(R) )‘r2nin(R) —4&06 > 2{{0%‘2(1 + X)

*
Amin(R) + /A (R) — 45082 > 2€2||Zt0”\/;-

O

These conditions are simply met by increasing Amin(R), through appropriate
choice of large &, and A, (W). & is a function of the robust PID gains Kp, K; and
Ky, and Ayin(W) are affected by the fast subsystem gains K¢ and K. Therefore,
the robust stability of the closed-loop system is guaranteed by the choice of the
controller gains such that the above conditions are met.

6. SIMULATIONS

A simulation study has been performed in order to verify the effectiveness of
the algorithm. In the following simulation study, the results of the closed-
loop performance of two flexible joint manipulators examined in the literature
is compared to that of the proposed control algorithm. First, a single-joint
manipulator examined in detail by Spong [4] has been simulated and the closed-loop
performances are compared. Then, the two-link manipulator studied by Al-Ashoor
et al. [6] is examined in detail and robust PID controller is designed for each joint.
Moreover, the closed-loop performance of this system is presented. The simulation
results show the effectiveness of the proposed algorithm, despite the simplicity of
its structure and the convenience of its online implementation.

6.1. Single-link flexible joint manipulator

Consider the single-link flexible joint manipulator introduced in Ref. [4], whose
parameters are given in Table 1. The dynamic equation of motion of this system is
as follows:
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Table 1.
Arm parameters (all units are in SI)

Parameters Nominal values Variation zone
Mass M=2 1<M<LS
Joint stifness k =100 k =100
Length (2L) L=1 1<L<3
Gravity g=98 g=98
Inertia I=15 1<71<2
Motor inertia J=15 1<J<K2

)&1 = X2

. —MgL .

Y= sin(xy) — 7(}61 —X3)

. (60)

X3 = X4

)&4 = 7()61 — X3) + 71/!
in which x; = ¢; and x3 = ¢,. In the limit of k — oo the rigid model of the

system is given by:

).C] = X2

—MgL . 1
sin(x) + ——u
+J) +J)

iy = (61)

in which x; = g = ¢». By choosing ¢; = ¢ and z = k(q; — ¢») as the elastic force,
the model of the system can be rewritten in a singular perturbation form:

—MgL .

. —MgL 1o ! (62)
€7 = 7 sin(g) — [ -+ —=)z— —u

in whiche = 1/k.

Spong has proposed a composite control law for this system in which there exists
two control components corresponding to the fast and slow dynamics. The slow
dynamic component is composed of a control law based on the rigid model of the
system in addition to a corrective term, which is a feedback linearization algorithm
based on the rigid model of the system [4]. According to the rigid model of the
system given in (61), the feedback linearization control signal can be chosen as:

up= I+ J)V + MgLsin(x;) (63)
in which V is the linear component of it and can be given as:

Vv :)'cg —a(x —x?) —ax(x; —xg). (64)
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Actuator 1

Figure 1. Two-link flexible joint manipulator.

In order to derive the corrective term, the integral manifold and the control law are
expanded as follows:

H = Hy+ €H, + O(¢?)
Us = U + €Uy + 0(62)
substitute these relations into (62) and equating the similar terms, we have:

—MolLJ 1
Hy = —2=" sin(q) —

I+J T+ (6
and, similarly:
u, = Hy. (66)
Choose:
ug=1n+17 (67)

in which n corresponds to the variation of z from manifold H. Hence, the composite
control law is given by:

U =us+ur=ug+ €u + us (68)

in which ug, u; and uy¢ are evaluated in (63), (66) and (67), respectively.
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Output & Desired Trajectory
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Figure 2. Instability of the closed-loop system by applying only the rigid controller term ug; Spong
algorithm.

As is illustrated in Fig. 2, the closed-loop system becomes unstable, provided that
only the corresponding rigid control effort u( is applied on the system. However,
as illustrated in Fig. 3 the system becomes stable and the desired trajectory g4 =
25sin(8¢) is well tracked, implementing the proposed composite control on the
nominal model of the system. However, this algorithm is not robust to the model
parameter variations. As illustrated in Fig. 4, the tracking performance becomes
quite poor for the maximum perturbation values for the parameters /, J, M and L.

For the sake of comparison, the proposed robust PID controller may be now
applied on the same system. The proposed control law is composed of three terms
as given in (68), in which the rigid control law is a PID controller whose coefficients
satisfy the robust stability conditions elaborated in Theorem 4 as follows:

t
uy = 200e 4 500e + 100/ e(s)ds.
0
The integral manifold would be:
, 1
Hy = —4.9sin(q) — Euo,

and the corrective term corresponds to:

ui =H0.
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Output & Desired Trajectory

(i( 10° 0.2 0.4 0.6 0‘8Con’(ro? Ac’(ion1 2
2 T T T T T T T T T

-1 I L I L L I 1 L I

0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2

Figure 3. Tracking performance of the closed-loop system for the nominal model; Spong algorithm.
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Figure 4. Poor tracking performance of the closed-loop system for the perturbed model; Spong
algorithm.
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x 108 Output & Desired Trajectory
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Figure 5. Instability of the closed-loop system by applying only the rigid controller term uq; proposed
algorithm.

The fast control law is a simple PD controller satisfying the robust stability
conditions such as:

uf=517+51'7

in which 5 indicates the variation of z from the integral manifold H.

It was observed before that if only the rigid term of the composite control law is
implemented on the closed-loop system, the system becomes unstable as illustrated
in Fig. 5. However, by implementing the complete proposed control law, not only
does the system track the desired trajectory for the nominal parameters of the model
(Fig. 6), but also the robust stability and tracking performance of the system with
maximum variation in its model parameters are preserved (Fig. 7).

The simulation results clearly show the effectiveness of the proposed control
algorithm to robustly stabilize the system, while achieving robust performance.
The superiority of our proposed algorithm compared to Spong’s algorithm is its
robustness to the model variations and the simplicity of its implementation. To
quantitatively compare the tracking errors obtained by these methods, note that the
two-norm of the tracking error in the Spong algorithm is 20.73, while its infinity-
norm is about 1.123. Using our proposed method these values are reduced to
2.93, and 0.447, respectively, despite the simililarity in the norm of the actuator
efforts. Hence, the proposed algorithm is not only robust to the model variation,
but also improves the tracking performance quite significantly. In order to evaluate
the effectiveness of the proposed method at high acceleration demands, a sinusoid
reference trajectory a frequency of 20 rad/s is simulated in Fig. 8. As it is
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Output & Desired Trajectory
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Figure 6. Tracking performance of the closed-loop system for the nominal model; proposed

algorithm.
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Figure 7. Suitable tracking performance of the closed-loop system for the perturbed model; proposed

algorithm.
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Output & Desired Trajectory
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Figure 8. Suitable tracking performance of the closed-loop system for the perturbed model at high
acceleration demand; proposed algorithm.

clearly illustrated, the tracking performance of the proposed controller is still quite
desirable.

6.2. Multiple-link flexible joint manipulator

Consider the two-link flexible joint manipulator illustrated in Fig. 1. In this
manipulator the joint flexibility is modeled with a linear torsional spring with
stifftness k. The equation of motion of this system is [6]:

my 10y +mpby + C2107 + Gy + k() — ¢1) =0,
m10; 4+ manbh + C1267 4+ Gy + ka (6 — ¢) = 0,
NiJmidr — k(61 — ¢1) = uy, (69)

NY Juapr = ka(62 — ) = w2
in which m;; are the elements of the following mass matrix:

ey +malf + Jy - malilea cos(¢1 = 61) 70)
malile cos(py — 61) mol2, + Jp ’

M(9,¢)=[

m; and J;; are the mass and the moment of inertia of the ith link, while /; and L;
are the link length and the distance of the center of mass of ith link to its joint,
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respectively. The other terms of (70) are given as:

Cy = —molilosin(py — 01), Gy = (miler +mali)g cos(6y), (71)

Cio = mylilysin(gy — 01), Gy = malog cos(6r)

in which g is the gravity constant, k; is the stiffness of the ith spring, J; is the
moment of inertia of the ith link and N; is the ith gearbox ratio. The numerical
parameters used for simulations are as follows [6]:

my=my=1, Jyu=Jp=1, k =k, =100,
Ny =Nidp=1, Li=h=1, Il4=1,=05

Borrowing this system from Ref. [6], our proposed algorithm is applied to the
system for comparison of the results. The equation of motion of the system can
be reformulated in the standard form of a singular perturbation, using e = 1/k; =
1/ky = 1/k = 0.01 as the singular perturbation parameter. Defining two new state
variables z; = k(6 —¢1) and z, = k(6 — ¢») as the elastic torques in the compliant
elements, then:

225  0.5cos(ezn) | [ 6y
0.5cos(ezy) 1.25 6,

14.7 cos(6;) + 0.563 sin(ez;) al_Jo
+|:4.9005(02)—0.5912sin(ez1) o= o) 72)

1 ol[é 4] 21 u

WSl—e| ] = = . 73
o VLR )-e[2]- 2] 1] ™

The corresponding rigid model when k — oo will be:

325 057[6 14.7cos(@) ] _ [u
[ 0.5 2.25] [ez] + [ 49c0s(0y) |~ |ua | 74
As elaborated previously, the integral manifold for the corresponding system can be
defined as:

21 = H(01,01,05, 00, u1,u2,€); 2= Hy (61,61, 65, 05, u1, U, €) (75)

in which H; and H, satisfy the manifold condition. Expanding the manifolds up to
first degree:

Hy=H)+eH +0("); H,=H)+eH, + 0(), (76)
and expanding the corresponding control efforts as:

ulszu?+eu{+0(62), uzszug—i—eu;—i—O(ez). (77)
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Hence, the reduced order model is evaluated as follows:

2.25 0.5cos(e H) [ 6, 14.7 cos(6y) + 0.562 sin(e HY)
0.5 cos(e H) 1.25 60> 4.9 cos(6,) — 0.56% sin(e H?)
H +eH!'| _JO
+|:H20+6H21 1o (78)

In order to evaluate the fast dynamics caused by the joint flexibility, the normalized
time variable T = ¢/4/€ is used. Hence:

d*m d*n

— _ f
dfz =€ dt2 =—-m _M](nlv 772)7
d2772 d2772 f
42— Caz = ur (15 m2), (79)

m=z—H), m=z—H
in which H and HJ can be evaluated simply by replacing € = 0 in (73):
H =6, —u’, H)=6,—ud. (80)

In order to evaluate the integral manifold and the control law for this system, (73)
is used, substituting z; = H; and equating up to first-order term with respect to €.
This concludes to:

H' =-H'—ul, H} =-H) —u). (81)
Expanding (80) to the first order of € we have:
H! = —-0.50}H?, H) =0.567H, (82)
and from (81) we get:
ul =0.502H° — H, ul=—0502H" — A, (83)

Finally, the slow part of the control law will be calculated from:
Uls =u?+€u{, Uog =ug+€u£. (84)

“(1) and ug are the rigid part of the control law, and as elaborated before are robustly
designed as a PID controller. In here we design the PID gains which satisfy the
robust conditions:

t
u = 500e + 50¢ + 50 /0 e(s) ds, (85)
t
u3 = 200e + 50¢ + 50/ e(s) ds.
0

The fast control law is also designed as a PD controller as:

uig=n1+n1, Ux=mnm+mnmn. (86)
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Finally, the control law is composed of the fast and slow parts:
Uy = uis +uif, Uz = Uzs + Upf. (87)
To compare the simulation results to [6], the reference signal is considered as:
0; = 1.57 + 7.8539 exp(—t) — 9.428 exp(—1/1.2) i=1,2 (88)

in which the joint angles reach a final value of 6; = /2 from the zero state. As
shown in Fig. 9, the system reaches instability if only the rigid control is applied to
the system. The main reason for instability is the divergence of its fast dynamics.

Figure 10 illustrates the respones of the system to our proposed composite control
law. The system becomes stable and the tracking performance is quite desirable,
despite the limited control effort guaranteed with adding a saturation block in the
simulation (Fig. 11). In order to analyze the robustness of the response, the system
parameters were varied by 50%. Figures 12 and 13 illustrate the robustness of the
performance and stability to the model variations.

In order to compare the effectiveness of our proposed control law, the simulation
results are compared to the results presented in Ref. [6]. Al-Ashoor et al. have
used a robust-adaptive control law in addition to the composite law we introduced
in this paper. By this means, in addition to the corrective adaptive term used based
on the integral manifold, another term is used for robustness of the performance
against the modeling uncertainties. Figure 14 illustrates the results obtained for
the refrence signal introduced in equation (88) in Ref. [6]. Figure 14 illustrates

500 !

400
300
200
100

0

-100
0

400 T T

200_ .......

_200 I Vi —

-400 1 1
0 0.5 1 15

Figure 9. Instability of the closed-loop system by applying only the rigid controller term uq; proposed
algorithm.
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Link 2

1
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Figure 10. Tracking performance of the closed-loop system for the nominal model; proposed
algorithm.
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50
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Figure 11. Control effort for the closed-loop system and the nominal model; proposed algorithm.



Stability analysis and robust control for FJRs 207

Link # 1

5 10 15

Link # 2
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Figure 12. Tracking performance of the closed-loop system for the perturbed model; proposed

algorithm.
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Figure 13. Tracking error for the closed-loop system and the perturbed model; proposed algorithm.
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Figure 14. Tracking performance of the closed-loop system for the nominal model; Al-Ashoor ef al.
algorithm.

the tracking performance despite the bounded control effort illustrated in Fig. 15.
Comparing these results to that obtained with our proposed control law (Figs 10
and 11) it is clear that, despite the simplicity of our proposed control law, the
results are quite similar. Hence, our proposed algorithm results into a much simpler
implementation effort without loss of performance. The only limitation that exists
in our proposed law compared to that in Ref. [6] is the amplitude of the control
law at the initial time of the simulation. The adaptive law has a smaller control
effort in the beginning of the simulation, due to the adaptive nature of the algorithm
and using the information of the identified model of the system in the control law.
This issue is under current investigation, and promising results are obtained either
by an H,-based robust performance synthesis for PID design [21], or adapting the
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Figure 15. Control effort for the closed-loop system and the nominal model; Al-Ashoor et al.
algorithm.

controller gain by a supervisory control loop [22—24]; in both cases the control
effort can be limited to the desired bounds.

7. CONCLUSIONS

The control of flexible joint manipulators is examined in detail. First, the model
of N-axis robot manipulators is given and reformulated in the form of a singular
perturbation, and an integral manifold is used to separate fast and slow dynamics.
A composite control algorithm is proposed in order to achieve the required perfor-
mance, consisting of a corresponding control law for fast and slow subsystems. A
simple PD control is proposed for the fast subsystem, and it is proven that the fast
subsystem becomes asymptotically stable and the flexible manifold becomes invari-
ant. The slow subsystem itself is controlled through a robust PID control, which
is designed based on the rigid model, and a correction term, whose design is based
on the reduced flexible model. The robust UUB stability of the PID controller is
first analyzed by Lyapunov theory. Then, the stability of the complete closed-loop
system is analyzed and the detailed stability conditions are derived for the closed-
loop system. It is shown that by choosing proper gains for the proposed controller,
robust stability of the closed-loop system is guaranteed despite the modeling uncer-
tainties. Finally, the effectiveness of the proposed control law is verified through
simulations. Single- and two-link flexible joint manipulators are examined in this
study, and the simulation results are compared to that given in the literature. The
effectiveness of preserving the robust stability and obtaining desirable performance
for the closed loop system is verified and compared, respectively.
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