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Abstract. In this paper, three numerical methods are presented to solve the forward kinematics

of a three DOF actuator-redundant hydraulic parallel manipulator. It is known, that on the con-

trary to series manipulators, the forward kinematic map of parallel manipulators involves highly

coupled nonlinear equations, whose closed-form solution derivation is a real challenge. This

issue is of great importance noting that the forward kinematics solution is a key element in

closed loop position control of parallel manipulators. The proposed methods, namely the Neural

Network Estimation, the Quasi-closed Solution, and the Taylor series approximation, are using

mainly numerical computations, with different ideas to solve the problem in hand. The latter

two methods are proposed for the first time in literature to solve the forward kinematics of a

parallel manipulator. These methods are compared in detail and the advantages or the dis-

advantages of each method in computing the forward kinematic map of the given mechanism

is discussed. It is shown that a 4th order Taylor series approximation to the problem provides

a good compromise for practical applications compared to that of other methods considered in

this paper.

Key words: closed-form, forward kinematics, neural networks, numerical solution, parallel mani-

pulator, performance comparison, quasi-closed form, Taylor series.

1. Introduction

Over the last two decades, parallel manipulators have been among the most

considerable research topics in the field of robotics. These robots are used in real-

life applications such as force sensing robots, fine positioning devices, and med-

ical applications [10, 11]. As in the case of conventional serial robots, kinematic

analysis of parallel manipulators is also performed in two phases. In forward or

direct kinematics the position and orientation of the mobile platform as the robot

end effector is determined given the leg lengths. This is done with respect to a

base reference frame. In inverse kinematics, the position and orientation of the

mobile platform is used to determine actuator lengths. It is known that unlike

serial manipulators, inverse position kinematics for parallel robots is usually sim-
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ple and straightforward. In most cases joint variables (actuator displacements) may

be computed independently using the given pose of the movable platform. The

solution to this problem is in most cases uniquely determined.

However, the forward kinematics of parallel manipulators is generally very

complicated. It usually involves a set of highly coupled nonlinear equations, that

in general there is no closed form and usually no unique solution for it. In the

literature, mostly six DOF parallel mechanisms based on the StewartYGough

platform are analyzed. However, parallel manipulators with three DOF have been

also implemented for applications where six DOF are not required, such as high-

speed machine tools. Recently, three DOF parallel manipulators with more

than three legs have been investigated [22]. Complete kinematic modeling and

Jacobian analysis of such mechanisms have not received much attention so far

and is still regarded as a challenging problem in parallel robotics research [23].

Different approaches are provided in literature to solve this problem either gen-

erally or in special cases. There are also numerous cases in which the solution to

this problem is provided for a special or novel architecture [20, 21]. In general,

different solutions to this problem can be placed in one of the following forms

[3, 4]:

� Numerical approaches
� Analytical approaches
� Closed-form solution for special architectures

In this paper three different, mainly numerical approaches are being analyzed

to solve the kinematics of a three DOF actuator redundant hydraulic parallel

manipulator. This solution is an inherent part of closed-loop feedback design for

position control requirements. The comparisons given in this paper, although is

performed for a special mechanism, is an important research asset in the field of

parallel robot analysis, since for the first time it provides an engineering judg-

ment between three different approaches to solve the forward kinematic map in

the literature, and is a useful guide for control designers to choose and integrate

the right method in feedback control routines. It is notable that research results

with similar scope have not received much attention in the literature, and only a

few results are published with the same objectives but mainly for serial or bio-

logical manipulators [24, 25].

To accomplish this objective, the paper is organized as follows. Section 2

contains the mechanism description, and kinematic modeling of the manipulator

is discussed in Section 3, where inverse and forward kinematics is studied in

detail and the need for appropriate method to solve the forward kinematics is

justified. In Section 4, three different methods to solve the forward kinematics

problem are discussed in detail. First, two different but mostly common neural

networks are used to estimate the forward kinematic map of the given mech-

anism. In the second method a quasi-closed form is provided for the same

purpose which combines the numerical and analytical schemes. Finally, with a
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new approach, conventional Taylor series expansion is applied for the problem in

order to approximate the nonlinear map with required precision. In Section 5,

these methods are simulated and compared in two parts. First each method is

simulated with different parameters and structure, and the best compromise is

nominated, then among the best alternatives, a comparison on the estimation

error and complexity in implementation is performed and the advantages or

disadvantages of each scheme are elaborated. It is concluded that a fourth order

Taylor series approximation provides a good compromise for similar appli-

cations as in Hydraulic shoulder, with the assigned required accuracies and

performance.

2. Mechanism Description

A three DOF actuator-redundant hydraulically-driven parallel manipulator is

used as the basis of our study, which is called FHydraulic Shoulder_ herein after.

The mechanism is designed by Dr. V. Hayward [7, 8], borrowing design ideas

from biological manipulators and specially the biological shoulder [6]. The in-

teresting features of the mechanism and its similarity to human shoulder have

made it a unique design, which can serve as a basis for a good experimental setup

for parallel robot research. As it is shown in Figure 1 the mobile platform of the

hydraulic shoulder is constrained to spherical motions. Four high performance

hydraulic actuators are used to give three degrees of freedom in the mobile

Figure 1. The hydraulic shoulder in movement.
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platform. Each actuator includes a position sensor of LVDT type and an em-

bedded Hall Effect force sensor. Simple elements like spherical and universal

joints are used in the structure. A complete kinematic analysis of such a careful

design will provide us with good results regarding the structure itself and its

performance.

From the structural point of view, the shoulder mechanism falls into an im-

portant class of robotic mechanisms called parallel robots. In these robots, the end

effector is connected to the base through several closed kinematic chains. The

motivation behind using these types of robot manipulators is to compensate for

the shortcomings of the conventional serial manipulators such as low precision,

low stiffness, high error accumulation and low load carrying capability. Parallel

structures are usually lighter and simpler than their serial counterparts. However,

they have their own disadvantages, which are mainly smaller workspace and

many singular configurations. Recently, hybrid structures are designed which

combine the advantages of both serial and parallel robots.

The hydraulic shoulder, being a parallel structure, has the general features of

these structures; however, the design is such that the redundancy of the actuators

prohibits any singular configuration in its workspace [7]. It can be thought of as a

shoulder for a light weighed seven DOF robotic arm, which can carry loads

several time its own weight. Simple elements, used in this design, add to its

lightness and simplicity. The workspace of such a mechanism can be considered

as part of a spherical surface. The orientation angles are limited to vary between

jp/6 and p/6.

3. Kinematics

The hydraulic shoulder is kinematically over constrained. The inverse kinematics

problem is easily solved, given the orientation of the mobile plate. This is also

the case for general parallel robots. The inverse kinematics problem has a unique

solution, in our case meaning that, the hydraulic shoulder cannot be optimized by

choosing between inverse kinematics solutions. But, in contrast to serial struc-

tures, the forward kinematics is very complicated and there is no closed form

solution in general. Figure 2 depicts a geometric model for the mechanism which

will be used for its kinematics derivation.

The parameters used in kinematics can be defined as:

lb Base actuator offset lengths, lb : jjCAi

��!jj
lp Distance between the fixed and moving platform centers, lp : jjCC1

��!jj
lk Distance from the moving platform center and actuator moving endpoints

along Zl, lk : jjC1Pi

��!jj
z1

ld Distance from the moving platform center and actuator moving endpoints

along Yl, ld : jjC1Pi

��!jj
y1
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a The angle between CA4 and y0

C Center of the reference frame
C1 Center of the moving plate
�i Link lengths i = 1, 2, 3, 4
Pi Moving endpoints of the actuators
Ai Fixed endpoints of the actuators

Two coordinate frames are defined as depicted in Figure 2. The base frame

X0Y0Z0 is centered at C (rotation center) with its Z0-axis perpendicular to the

plane defined by A1A2A3A4 and an X0 axis parallel to the bisector of angle

!A1CA4. The second frame, namely X1Y1Z1 is centered at C1 (center of the

moving plate) with its Z1 axis perpendicular to the line defined by the actuators

moving end points (P1P2) and horizontal Y axis along C1P2.

3.1. INVERSE KINEMATICS

In modeling the inverse kinematics of the hydraulic shoulder we must determine

link lengths ( �i ) as the joint space variables given the task space variables,

namely �x, �y and �z as the orientation angles of the moving platform. First we

note that the fixed end points of the actuators (Ai) can be written in the base

frame as:

A0
1 ¼ lbsin� � lbcos� 0ð Þ

A0
2 ¼ �lbsin� � lbcos� 0ð Þ

A0
3 ¼ �lbsin� lbcos� 0ð Þ

A0
4 ¼ lbsin� lbcos� 0ð Þ

ð1Þ

Figure 2. A geometric model for the hydraulic shoulder.
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Also:

P1
1 ¼ 0 � ld � lkð Þ

P1
2 ¼ 0 ld � lkð Þ

These must be transferred to the base frame using the rotation matrix R1
0, where:

S3�3 ¼ R0
1 ¼ Rz �zð ÞRy �y

� �

Rx �xð Þ ð3Þ

As a result the rotation matrix components are computed as following:

S11 ¼ cos �zð Þcos �y

� �

S21 ¼ sin �zð Þcos �y

� �

S31 ¼ �sin �y

� �

S12 ¼ cos �zð Þsin �y

� �

sin �xð Þ � sin �zð Þcos �xð Þ

S22 ¼ sin �zð Þsin �y

� �

sin �xð Þ þ cos �zð Þcos �xð Þ

S32 ¼ cos �y

� �

sin �xð Þ

S13 ¼ cos �zð Þsin �y

� �

cos �xð Þ þ sin �zð Þsin �xð Þ

S23 ¼ sin �zð Þsin �y

� �

cos �xð Þ � cos �zð Þsin �xð Þ

S33 ¼ cos �y

� �

cos �xð Þ

So we have:

p0
1 ¼

�lds12 �lks13

�lds22 �lks23

�lds32 �lks33

0

@

1

A; p0
2 ¼

lds12 �lks13

lds22 �lks23

lds32 �lks33

0

@

1

A ð5Þ

The final step is to translate the resulting vectors Pi
0 by lp along the Z axis.

Having Pi
0 and Aj

0 in hand, the link lengths PiAj

��!�

�

�

�

�

�
can be easily computed as:

�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

px � axð Þ2þ py � ay

� �2þ pz � azð Þ2
q

ð6Þ

where:

P0
i ¼ px py pz

� �T
i ¼ 1; 2 ð7Þ

and:

A0
j ¼ ax ay az

� �T
j ¼ 1; 2; 3; 4 ð8Þ

are defined in Equations (5) and (1), respectively.

(2)

(4)
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Equation (6) completely models the inverse kinematics of the hydraulic

shoulder. As it is obvious from the equations the link lengths will be uniquely

computed given the orientation angles �x, �y, and �z. So the manipulator is not

kinematically redundant, meaning that reaching a specific point in the task space

can’t be satisfied through different combinations of the link lengths.

3.2. FORWARD KINEMATICS

Equation (6) can also be used for the forward kinematics of the hydraulic

shoulder but with the link lengths as the input and orientation angles �x, �y,

�z as the unknowns. In fact, we have four nonlinear equations to solve for three

unknowns. Obviously, solving such a system of nonlinear equations for a unique

closed-form analytic solution to the forward kinematics problem is very com-

plicated, although three equations of the four could be used. Several incon-

clusive attempts have been made in this direction; therefore, we propose using

numerical methods or a combination of the numerical and analytic schemes to

solve the forward kinematics problem as a basic element in modeling and control

of the manipulator. These are studied in detail in the next section.

4. Forward Kinematics Solution

4.1. NEURAL NETWORKS ESTIMATION

One of the most interesting features of neural networks is undoubtedly their

ability to approximate nonlinear maps or functions. Furthermore neural net-

work schemes are independent of the system structure resulting in a robust

approach with respect to environmental changes. There have been extensive ap-

plications of these networks to modeling and control of robot manipulators.

Research results in this field have shown that neural networks are an ideal choice

to compute the forward kinematics of parallel manipulators [5]. Various ar-

chitectures of these networks have been used in literature to solve the forward

kinematics problem even for the conventional manipulators. For example in [26]

a simple multilayer feed forward network is used to solve the forward kinematics

of Stewart platform. Geng and Haynes [5], have proposed another structure

called CMAC (Cerebella Model Arithmetic Computer) which is a multiple

neural network structure to solve the same problem. Nguyen, Pate1 and

Khorasani [14] compared various neural network models for solving the problem

which has been used for serial manipulators. Other structures such as kohonen

self-organizing networks [19], linear estimators using neural networks [17] and

bidirectional mapping neural networks [9] have been also used for similar

applications. In all of the above, fault tolerance, adaptability, learning capability

and non-algorithm nature of modeling are considered as the most important

advantages of neural networks over other numerical or analytical approaches to
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solve the forward kinematics problem. Furthermore, no programming is required,

the time to obtain a solution is independent of the number of degrees of freedom

and real-time operation is also possible.

The results of these and also other similar works on this topic suggest using

neural networks in robotics applications such as in the forward kinematics

problem. Two most popular and of course suitable neural network models for

function approximation are the multilayer feed forward and Radial Basis net-

works which have been studied in detail to solve the forward kinematics problem

of the hydraulic shoulder.

4.1.1. Multilayer Feed Forward Network

A simple feed forward network with back propagation learning was used in the

first step. It is a well-known theorem which states that for any function f and any

positive ( there exists a three layer back propagation network that can be used to

approximate f with ( as the mean-squared error accuracy [26]. Therefore, such a

network can be applied to approximate the forward kinematics map of the

hydraulic shoulder with desired accuracy. The input layer has as many nodes as

the number of inputs to the map namely four link lengths. Similarly the output

layer will have three nodes which represent the orientation of the moving plate

(�x, �y, �z).

The number of neurons in the hidden layer was used as a design parameter.

Sigmoid and linear transfer functions were selected for all hidden and output

layer nodes respectively. Supervised learning scheme was used in which the ma-

nipulator is treated as a black box and the network is taught to learn the map by

observing the inputs and outputs. Such a learning scheme will result in offline

training. The supervised training method requires a training data pair which is

generated easily using the inverse kinematics map for the hydraulic shoulder. The

target pattern for training, the three orientation angles, was randomly generated

within the workspace of the robot and the input pattern, four actuator displace-

ments, was found using the inverse kinematics model. The pair was then used to

train the network and the weights were updated in a back propagation process.

Random initialization was used for the weights. Different configurations of the

feed forward network were tested by varying the number of neurons in the hidden

layer between 5 and 35 and the performance of these networks was compared.

Different performance indices could be used in this case, the best of which

could be the sum of square output errors, though other indices such as mean

square or mean absolute error may also be used. Networks with best perfor-

mance as indicated would be selected, from which the network with fewer

hidden layer nodes will be the best choice since the number of weights and also

the training time of the network will increase with more neurons in the hidden

layer. About 30 multilayer feed forward networks with one hidden layer were

trained by varying the number of neurons in the hidden layer from 5 to 35. The
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network with 34 neurons in the hidden layers was the best compromise. As another

configuration, the same multilayer feed forward network was used with two hidden

layers. The activation function of the second hidden layer was also sigmoid. About

20 multilayer feed forward networks with two hidden layers were trained by

varying the number of neurons from 10 to 25 in the first hidden layer and from 5 to

15 in the second hidden layer. These networks had a better performance in general

compared to the networks with a single hidden layer (see Table I).

All the networks were trained over 1000 training epochs with Bayesian

regularization training. Each network was evaluated by comparing the predic-

tions to the true outputs, resulting in a prediction error for each orientation angle.

The autocorrelation coefficients were also computed for the prediction error in

each angle [15]. All the trainings and simulations of the neural networks were

done on a Pentium 4, 2 GHz. Using the whole stated criteria, five networks with

best performance were selected from each configuration. Table I summarizes the

performance of these networks. It can be seen that networks with two hidden

Table I. Performance of multilayer feed forward and radial basis networks.

Network structure Multilayer feed forward one hidden layer

No. of hidden

layer neurons

Training time (s) MSE SSE MAE

Network performance S = 27 7.3e3 2.8ej5 0.644 0.0037

S = 29 8.2e3 2.9ej5 0.66 0.0035

S = 30 8.6e3 1.9ej5 0.428 0.0028

S = 34 1e4 1.1ej5 0.242 0.0022

S = 35 1.1e4 1.1ej5 0.26 0.0022

Network Structure Multilayer feed forward two hidden layers

Network performance S1 = 10 9.5e3 6.8ej6 0.154 0.0018

S2 = 15

S1 = 12 2.9e4 2.8ej6 0.062 0.0011

S2 = 15

S1 = 17 6.1e4 8.1ej7 0.018 6ej4

S2 = 15

S1 = 17 1e4 5.6ej6 0.12 0.0016

S2 = 9

S1 = 17 2.3e4 1.9ej6 0.044 9ej4

S2 = 12

Network structure Radial basis function

Network performance Training time (s) MSE SSE MAE

RBF1 750 1.3ej5 0.1 0.0019

RBF2 680 9.9ej6 0.074 0.0017
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layers have a better performance in general. The network with 12 neurons in the

first and 15 neurons in the second hidden layer provides a good compromise. It

should be also noted that the mean square of error is approximately equal to the

square of the maximum error. So a mean square error of 1ej5 will correspond to

about 0.18- of accuracy for the forward kinematics solution.

4.1.2. Radial Basis Neural Network

Radial basis function (RBF) neural network architecture was tested as another

choice for computing the forward kinematics of the hydraulic shoulder. In

general, RBF networks require more neurons but much less training time than

feed forward back propagation networks. RBF networks consist of two layers:

a hidden radial basis layer and an output linear layer. Input and output patterns

were generated in a same procedure as in the multilayer feed forward network.

Supervised learning method was used in a way to reduce the estimated error of the

network. Other specifications such as weight initialization, network evaluation

and performance indices were just the same as the multilayer feed forward

network. About 10 different configurations with different spread parameters were

trained and compared, from which two networks with best performance were

selected. The performance of these networks is also shown in Table I, in which

MSE stands for mean square error, SSE for sum of square of error, and MAE for

mean absolute error. From the comparison of the selected structures in Table I, it

can be seen that the multilayer feed forward network with two hidden layers have

a better performance in general, regarding the training times, training errors and

number of weights, compared to other network structures. However, such

accuracy may not meet accurate robotic applications such as our redundant

parallel manipulator.

4.2. QUASI-CLOSED SOLUTION METHOD

Most of the research regarding the closed form solution to the forward

kinematics problem of parallel manipulators has assumed simplified or special

conditions under which a closed form solution to the problem could be found

[13]. Some researchers have focused on a special or a novel architecture [1, 12,

18]. Also, in [2] a closed form solution has been provided for parallel ma-

nipulators with planar base and mobile platform which is based on the use of

three linear extra sensors to provide additional information.

In this section, we propose a quasi-closed form solution method to estimate

the forward kinematics map of the hydraulic shoulder. First, recall from Equation

(6) that the link lengths are described as:

�i ¼ p0
j A0

i

��!�

�

�

�

�

�

�

�

i ¼ 1; 2; 3; 4; j ¼ 1; 2 ð9Þ
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Substituting Pj
0 and Ai

0 from Equations (5) and (1), we can rewrite the kinematic

equations as:

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ Bs12 þ Cs13 � Ds22 � Es23 � Fs32 � Gs33

p

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� Bs12 � Cs13 � Ds22 � Es23 � Fs32 � Gs33

p

�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ Bs12 � Cs13 � Ds22 þ Es23 þ Fs32 � Gs33

p

�4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� Bs12 þ Cs13 � Ds22 þ Es23 þ Fs32 � Gs33

p

ð10Þ

where parameters A, B, C, D, E, F and G are used for simplicity of notations and

depend only on the geometric features of the mechanism described in Figure 2 as

follows:

A ¼ l2
b þ l2

d þ l2
k þ l2

p; B ¼ 2lbldsin�; C ¼ 2lblksin�;

D ¼ �2lbldcos�; E ¼ �2lblkcos�; F ¼ �2ldlp; G ¼ �2lklp

These parameters are measured and calculated as follows:

A ¼ 0:0268 m;B ¼ 0:0045 m;C ¼ 0:0083 m;D ¼ 0:0026 m;E ¼ 0:0048 m;

F ¼ 0:0092 m;G ¼ 0:0169 m:

The sij’s are the nine entries of the rotation matrix which represent the

orientation of the moving platform, and �1, �2, �3, �4 are the link lengths. It is

fairly easy to obtain the forward kinematics equations having the rotation matrix

S in hand. Hence, the problem reduces to solving for the rotation matrix instead,

with nine entries as the unknowns. Noting that these entries are not independent,

there would be no need to compute all nine unknowns.

Furthermore, The elements in the first column of S, namely: s11, s21, and s31

are not present in the kinematic equations, which simplifies the problem as we

can find the second and third columns of S and the first column will be simply

computed as their cross product.

Hence, the problem is solving the kinematic Equations (10) for the rotation

matrix with the following constraints:

s2
12 þ s2

22 þ s2
32 ¼ 1 ð11Þ

s2
13 þ s2

23 þ s2
33 ¼ 1 ð12Þ

col 2ð Þ:col 3ð Þ ¼ 0 ð13Þ
co1 (2) and co1 (3) are defined as the second and third columns of the rotation

matrix S, respectively. We must note that S is an orthonormal matrix so the

second and third columns must be orthogonal with unit lengths. As the cross
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product of two orthonormal vectors would also be orthonormal, the other

constraints on the rotation matrix entries would be trivial.

From Equations (10), we can solve for s12, s13 as:

s12 ¼
�2

1 þ �2
3 � �2

2 � �2
4

4B

s13 ¼
�2

1 þ �2
4 � �2

2 � �2
3

4C

ð14Þ

Equation (14) is in the form of an analytic closed form solution. Unfortunately

the high coupling of the forward kinematic equations makes the closed form

computation of other entries of S complicated. Several inconclusive attempts

were made to find an analytic solution for these entries; therefore we proposed a

new approach combining the analytic and numerical methods to solve for the

remaining entries of the rotation matrix in a quasi-closed form.

We can relate the four remaining unknowns with the following equations:

s22 ¼
4A� �2

1 � �2
2 � �2

3 � �2
4 � 4Gs33

4D

s23 ¼
4Fs32 þ �2

1 þ �2
2 � �2

3 � �2
4

�4E

ð15Þ

Or much simpler:

s22 ¼ �þ �s33

s23 ¼ �s32 þ �
ð16Þ

where:

� ¼ 4A� �2
1 � �2

2 � �2
3 � �2

4

4D
; � ¼ � G

D

� ¼ �2
1 þ �2

2 � �2
3 � �2

4

�4E
; � ¼ � F

E

ð17Þ

Using constraint Equations (11)Y(12) we have:

s2
12 þ �þ �s33ð Þ2 þ s2

32 ¼ 1

s2
13 þ �s32 þ �ð Þ2 þ s2

33 ¼ 1

ð18Þ

The remaining problem will be to determine s32, s33 using the above system of

nonlinear equations, given s12, s13. Having s32, s33 in hand, we can easily find the

remaining entries s22, s23 to obtain the second and third columns of the rotation

matrix S, from which the first column would be determined by a cross product.

The two entries s32, s33 were obtained numerically from Equation (18) solving

a constrained optimization problem. In the next step the rotation matrix S was
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determined from which the orientation angles were easily obtained. Hence the

forward kinematics problem was solved using the rotation matrix of the end

effector as a means of simplifying the equations.

It should be noted that the degree of accuracy of the numerical optimization

scheme to find an orthonormal rotation matrix is considered very important. The

accuracy of the proposed method will definitely depend on the initial conditions

used in the optimization process. This can be remedied in our application, by

using the results of previous step approximation as the initial condition for the

next step. We should also note that the proposed method uses a combination of

analytic and numerical computation schemes, hence called a quasi-closed form

solution method. The detailed simulation results of this method are given in

Section 5, where the effectiveness and accuracy of approximation is compared to

the other methods.

4.3. TAYLOR SERIES EXPANSION

As shown in Section 3, the forward kinematic model of the hydraulic shoulder

involves four nonlinear equations with link lengths (�1, . . . , �4) as the input and

orientation angles of the end effector (�x, �y, �z) as the outputs, in other words:

��� ¼ f �1; �2; �3; �4ð Þ ð19Þ

In which, f represents the forward kinematics map, that is subject of solution. A

basic numerical approach to solve this problem is to approximate the nonlinear

function f with a Taylor series expansion of arbitrary order:

��� ¼ f 0ð Þ þ
X

4

i¼1

@f

@�i

�i þ
X

4

i¼1

X

4

j¼1

@2f

@�i@�j

�i�j þ � � � ð20Þ

The number of the coefficients in the expansion is determined by the required

degree of accuracy. Solving the forward kinematic problem, will, hence, be

equal to computing these coefficients. In order to accomplish this task, different

trajectories were considered for the end effector and the corresponding actuator

displacements were determined using the inverse kinematics. The data pair was

then used to compute the coefficients of the Taylor expansion using least square

estimation. The trajectories in the task space must consider the whole workspace

of the manipulator so that the estimated function for the forward kinematics

could be used equally in different points of the workspace. Therefore, about 25

different trajectories are selected and being embedded into 70,000 sample

points, used to estimate the coefficients in a least square approach. Different

orders of expansion up to fourth (O(n5)) were considered separately and the

coefficients in each case were computed. The estimation error between the

desired ��� and its estimate b������, namely: e ¼ ����b������ was used as a performance index

of each scheme.
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In general, the number of the coefficients in the expansion will increase with the

order of approximation resulting in a better degree of accuracy but usually with a

slight increase in the computation time. The estimation results for different orders

of expansion are compared in Table II, in which PE stands for Prediction Error,

SSE for sum of square of error, MSE for mean square error, and MAE for mean

absolute error. This result enables the designer to choose the appropriate order,

according to the performance requirement. The accuracy sought by the fourth

order approximation seems to be a good compromise for robotic applications.

The coefficients for such an approximation could be found in [16].

5. Simulation Results

The comparison study presented in this paper has two major parts. In first part as

elaborated in Section 4, each method is examined with different parameters and

structures, and the best compromise of parameters and structures is concluded in

the above tables. In this part of comparisons, not only some measures of predic-

tion error can be used as a quantitative measure, to select the best compromise,

but also the complexity of each method and the amount of offline computations

are compared in detail. In this section and as the second part of comparisons, a

simulation study for selected representatives of all methods concluded in

preceding is performed, in which a sample trajectory of the robot is considered

in the reachable workspace of the manipulator. By this means and through these

two part of comparison study, a fair judgment can be drawn not only between the

various structures proposed in each method, but also between the selected

representatives of each method. It should be noted that in the first part of com-

Table II. Measures of prediction errors for different orders of approximation, Taylor series

expansion.

Approximation Order 2nd 3rd 4th

No. of coefficients 15 35 64

Max PE �x 0.058 0.0116 0.0033

�y 0.292 0.0475 0.014

�z 0.025 0.0114 0.0011

SSE �x 20.8 0.67 0.012

�y 41.8 1.77 0.028

�z 3.9 0.18 0.0025

MSE �x 3.1ej4 1ej5 1.8ej7

�y 6.3ej4 2.7ej5 4.2ej7

�z 5.9ej5 2.8ej6 3.7ej8

MAE �x 0.011 0.0024 2.9ej4

�y 0.016 0.0038 4.5ej4

�z 0.0056 0.0012 1.5ej4
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parison, an additional test data has been used in the training process for the

neural networks, to test the generalizability of the networks as given in Table I.

However for the second part of comparison only one set of sample trajectories

is used within the reachable workspace of the manipulator, whose specifications

are explained in the following section.

5.1. SAMPLE TRAJECTORY GENERATION

We consider a smooth motion specified in terms of a desired pose of the moving

platform of the hydraulic shoulder. The sample trajectory is easily defined given

the initial and final points and the time to reach the final point. Figure 3 shows

the sample trajectory for each orientation angle in the task space of the hydraulic

shoulder. Note that the link lengths profile corresponding to the desired task

space trajectory could be easily obtained through the inverse kinematics map of

the manipulator.

5.2. NEURAL NETWORK ESTIMATION

Figures 4(a)Y(c), show the simulation results using the trained neural networks

of different structures. Best representatives from each structure, selected from

Figure 3. Sample trajectory for orientation angles.
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Figure 4. Tracking performance for different structures of neural networks.
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Table I namely: Multilayer feed forward with 34 neurons in a single hidden

layer, Multilayer feed forward with 12 and 15 neurons in two respective hidden

layers, and also radial basis function network, were tested with the same sample

trajectory. The Multilayer feed forward network with two hidden layers is seen to

be the best compromise, compared to the other network structures, regarding the

large number of neurons and weights in the RBF network.

5.3. QUASI-CLOSED METHOD SIMULATION

Figure 5 shows the simulation results for the Quasi-closed method applied to

follow the sample trajectory along each orientation angle. The tracking

performance is seen to be good but behind required for an accurate robotic

application. However the method shows to be effective and comparable to the

other methods proposed to solve the forward kinematics problem of the hydraulic

shoulder in medium accurate applications.

5.4. TAYLOR SERIES EXPANSION

Figures 6(a)Y(c), show the simulation results for the Taylor series method ap-

plied to follow the sample trajectory along each orientation angle. The tracking

Figure 5. Sample trajectory tracking for quasi-closed solution method.
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Figure 6. Tracking performance of Taylor series method with different orders of

approximation.
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performance is seen to improve as the order of approximation increases up to

four. The results clearly show that the fourth order Taylor series approximation

outperforms the other proposed methods tracking a typical robotic trajectory.

5.5. SIMULATION COMPARISON

Different measures were used for the tracking errors along the sample trajectory

to test and compare the tracking performance of the methods. Table III

summarizes the results, in which Emax stands for the maximum tracking error,

SSE stands for sum of square of error, MSE stands for mean square error, and

MAE stands for mean absolute error. As observed from Table III, the maximum

approximation error reached by the suitable Neural network structures are

limited to 0.03 radians (1.7-) and 0.086 (5-) for the quasi-closed method, which

are way beyond required in an accurate robotic application.

Multilayer feed forward networks with two hidden layers show a slightly

better performance compared to those with one hidden layer. The performance of

RBF networks is also good; the training time for these networks is much less

than their feed forward counterpart, but the weak point of such networks could be

the big size leading to large number of neurons and weights. The main drawback

of neural networks in this application would be the long training times and the

big size of the networks resulting in much more number of weights compared to

the number of coefficients used in Taylor series expansion. The accuracy sought

Table III. Measures of tracking errors.

Performance index Emax SSE MSE MAE

Solution Method

Fourth order Taylor �x 0.0028 0.0005 2.5ej6 0.0013

expansion �y 0.0056 0.0018 9.1ej6 0.0025

�z 0.0017 0.00015 7.5ej7 0.0006

Three layer feed-forward �x 0.0548 0.124 0.00061 0.017

neural net (s = 34) �y 0.0453 0.056 0.00028 0.011

�z 0.0295 0.025 0.00013 0.0074

Four layer feed-forward neural net �x 0.028 0.032 0.00016 0.0091

s1 = 12, s2 = 15 �y 0.03 0.069 0.00034 0.014

�z 0.032 0.054 0.00027 0.012

RBF neural network �x 0.018 0.019 9.9ej5 0.008

�y 0.017 0.016 8.3ej5 0.0074

�z 0.1 0.53 0.0026 0.033

Quasi-closed solution �x 0.086 0.225 0.0011 0.0193

method �y 0.014 0.0072 3.6ej5 0.0041

�z 0.025 0.0171 8.5ej5 0.0053
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by the different networks is also comparable only to a Taylor approximation of

third order.

The quasi-closed form solution method uses a combination of analytic and

numerical computation schemes. Hence the degree of accuracy of the method

mainly depends on the numerical optimization scheme to find an orthonormal

rotation matrix which is considered very important. This method provides good

results comparable to neural network structures and the third order Taylor se-

ries approximation, yet behind demanded in an application such as feedback

position control of the hydraulic shoulder. Another main drawback of this meth-

od is its dependency on the initial conditions used in the optimization process.

The maximum error of approximation in fourth order Taylor series is at least

10 times better than that of other methods and typically about 0.005 radians

(0.14-). It was observed that the number of the coefficients in the expansion will

increase with the order of approximation resulting in a better degree of accuracy

but usually with a slight increase in the computation time. This result enables the

designer to choose the appropriate order, according to the performance require-

ment. The accuracy sought by the fourth order approximation seems to be a good

compromise for robotic applications such as our redundant parallel manipulator.

6. Conclusions

In this paper, three different approaches were presented to solve the forward

kinematics problem in a three DOF actuator redundant hydraulic parallel mani-

pulator. First, neural networks of different structures were introduced to solve the

forward kinematics problem. Multilayer feed forward and Radial Basis networks

were considered separately. Alternatively, a quasi-closed solution method was

developed which used the rotation matrix of the end effector to determine the

corresponding orientation angles needed to solve the forward kinematics map.

Finally, the Taylor series expansion was used in a least square estimation prob-

lem to solve for the unknown coefficients of the map.

From the comparison study made in two major parts, it can be concluded that

the fourth order Taylor series approximation provides the best compromise with

acceptable prediction errors for robotic applications, relatively less offline com-

putation effort, and easy online digital implementation, compared to the different

structures of neural networks or the quasi-closed solution method proposed.

Further attempts to increase the order of approximation seems not to be worth

considering the computation time, number of coefficients and required accuracy

in our application.
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