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Abstract— Adaptive robust controller (ARC) has been recently 
developed for read/write head embedded control systems of hard 
disk drives (HDD). This structure is applicable to both track 
seeking and track following modes, and it makes the mode 
switching control algorithms found in conventional HDD servo 
system unnecessary. An Improved Desired Compensation ARC 
(IDCARC) scheme is proposed in this paper, in which traditional 
ARC is powered by a dynamic adaptive term. In this approach 
the adaptation regressor is calculated using reference trajectory 
information. Moreover, a robust analysis of this method is 
forwarded, in which a controller designed based on a simple 
model of system is verified in closed loop performance of a more 
comprehensive model of the system. Simulation result verifies the 
significant improvement of the performance of IDCARC 
compared to that of ARC and its robustness for this model. It is 
observed that in the presence of large disturbances the proposed 
method preserves stability and performance while the ARC fails 
even in stability.  

Index Terms— Adaptive robust control, hard disk drive, dynamic 
adaptation, robustness verification, nonlinear robust. 

I. INTRODUCTION 
ARD Hard disk servo systems play a vital role for meeting the 
demand of increasingly high density and high performance hard 

disk drives. The servo system must achieve precise positioning of the 
read/write head on a desired track, called track following, and fast 
transition from one track to another target track called track seeking. 
The seeking time, should be minimized for faster data transmission 
rates. Because of the different control objectives in seeking and 
following modes, many drives use mode switching control (MSC) to 
accomplish both tasks. In MSC nonlinear controller routines such as 
proximate time optimal servo (PTOS) are popular choices for track 
seeking [1]. For track following, adaptive control [2,3], repetitive 
control, and many other approaches have been developed [4-10]. 
Switching of control mode from track seeking to track following 
should be so smooth that residual vibration of the suspension is 
minimal [4]. There are several attempts to develop unifying control 
algorithms, which work for both track seeking and following. Such 
control algorithms utilize the two degree-of-freedom control structure 
[4-6], composite nonlinear feedback control [7], gradient based track 
following [8], or other robust approaches for control [9,10]. 
Tomizuka and Yi proposed a 2DOF adaptive robust controller for 
HDD, [6], in which track seeking is accomplished by using a feed-
forward controller based on offline identification. Yao proposed 
another ARC method for cancellation of the pivot nonlinearity and 
hysteresis effect in following mode [2]. Yao and Xu proposed 
Desired Compensation ARC (DCARC) for linear motors [11], in 
which the adaptation regressor is calculated using trajectory 
information based on Sadegh and Horowitz previous works [12]. The 
authors have proposed earlier an Improved DCARC, which includes 
dynamic adaptation mechanism to achieve hard disk performance 
necessities, such as fast disturbance attenuation and accuracy [13]. 
In this Paper this unifying controller structure is described based on 

Improved Desired Compensation ARC, and its closed loop 
performance is verified in present of high frequency resonant modes 
in the model. IDCARC combines DCARC advantages [11], in 
addition to faster disturbance attenuation, which is obtained through 
a dynamic adaptation routine included in the structure [6]. The 
algorithm is easily implementable as a unified embedded controller 
on both seeking and following modes. Reference trajectory is 
generated based on structural vibration minimized acceleration 
(SMART), in which the residual vibration of the suspension is 
minimal [4]. Hence, reference trajectory and its second order 
derivation, which is necessary in this ARC method, is generated 
online, and the differentiation from reference input becomes 
unnecessary. Moreover, as it is elaborated in Appendix I, the 
reference input signals based on SMART strategy will prevent 
saturation. The proposed new ARC controller has important 
advantages such as separating robust control design from parameter 
adaptation process [12], reducing the effect of measurement noise on 
the tracking, making adaptation process faster, and reducing the need 
for feed forward control in seeking time. The controller also takes 
into account the delay in seeking time, the model uncertainties and 
the effect of pivot friction. In order to fulfill high performance 
requirements, the model considered in controller performance 
verification, includes most significant nonlinear effect, namely the 
friction and high frequency resonant, hence the simulation results 
applied on this model is promising to work well in practice.  
In the proceeding section, the plant modeling and problem 
formulation is introduced. In section III adaptive robust algorithm, 
DCARC and the proposed IDCARC has been introduced and its 
robust stability is analyzed, and finally, the comparative studies are 
elaborated in section IV. 

II. PROBLEM FORMULATION AND DYNAMICAL MODELS 
A comprehensive mathematical model of the hard disk servo drive 
system is given as following [1, 9]:  

1 2

2 2 ( )f hys hi d

x x
Jx u Bx A Sign y F F F

=⎧⎪
⎨ = − − − + +⎪⎩

 

1y x=  

(1) 

in which, Txxx ],[ 21=  represent the state vector of the angular 
position and velocity, y is the position, J is the moment of inertia, 
u  is the control input, B  and fA  are coefficient of viscous and 
coulomb friction, respectively, hysF  and hiF  represent the effect of 
hysteresis loop and high frequencies uncertainties, respectively, and, 

dF  is the external disturbance. Let ry  be the reference motion 
trajectory. The control objective is to synthesize a control input u  
such that the output y  tracks )(tyr  as close as possible, despite 
various model uncertainties.  
Fig. 1 shows different components of HDD, and the parameters used 
in the simulations are given in Table I. A simpler version of the 
model, in which the hysteresis, high frequency resonant, and the 
external disturbances are considered as an uncertain disturbance is 
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assumed to be the basis of the adaptive robust controller design. 
However, for robustness verification of the closed loop performance 
a more comprehensive model including high frequency resonance 
modes [1], are used. The transfer function of the more comprehensive 
system is derived from identification experiments, and its frequency 
response is illustrated in Fig. 2. The model is identified using least-
squares estimation on the frequency response. The identified transfer 
function is a tenth order non-minimum phase system, with two real 
poles, one of them right at the origin and another one close to the 
origin, which resembles a the dynamical behavior reported in [9]. 
The identified poles are: 104 × (0, -0.0012, 

0.0283 5.6548i− ± , 0.1257 2.510i− ± , 0.0069 1.3823i− ± ,
0.0022 0.0439i− ± ). Moreover, the zeros are located at: 105 ×  

( 6.8070,0.0017 0.4360i− ± , 0.0008 0.1394i− ± , 0.0002 0.0044i− ± ). 
 In Fig. 2, the frequency response of the simple model (dash dot) is 
compared to that of more comprehensive model (solid). The input to 
the system is the VCM current measured in (mA) and the output of 
the system is the head position in (mm). As it is seen in Fig. 2 the 
more comprehensive model contains a resonance frequency about 
2200 Hz. The consistency of the simplified model to the more 
comprehensive model is clearly illustrated by the perfect fit at low 
frequencies. The controller design goal is to obtain desired tracking 
performance and to avoid exciting high frequency modes especially 
during following mode. 

III. ADAPTIVE ROBUST CONTROL 
In order to design the Adaptive robust controller, identification of a 
simple model for the system is sufficient. The state space 
representation of this model can be linearly parameterized as: 

1 2x x=  (2) 

1 2 2 2 3 2 4( )x u x Sign x dθ θ θ θ= − − + +  (3) 
In which nd=4θ  is the nominal value of the lumped disturbance d . 

It is assumed that, all the effect of hysteresis and high frequency 
resonance is absorbed into the term d . In order to describe the 
controller structure, consider the following assumptions. 
Assumptions: The following bounds and structures for uncertainties 
and disturbances are assumed. 

{ }maxmin: θθθθΩθ θ <<≡∈  (4) 
{ :| | }d dd d d δ∈Ω ≡ <  (5) 

In which, T],...,[ min4min1min θθθ = , T],...,[ max4max1max θθθ =  and 

dδ  are assumed to be known. Let θ̂  denotes the estimate of θ  and 

θ  the estimation error (i.e. ˆθ θ θ= − ). In view of (4) the following 
adaptation law with discontinuous projection modification can be 
used: 

where, 0>Γ  is a diagonal matrix, τ  is adaptation function to be 
synthesized later. The projection mapping is defined as:  
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It can be shown that for any adaptation function τ  the projection 
mapping used in (7) guarantees [15]:  

min max

1
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A. ARC Controller Design 
Define a switching-function quantity as 1p e k e= + =  eqxx 22 − , 

where 2 1eq dx y k e≡ −  and )(tyye d−=  is the output tracking error, 

)(tyd  is the desired trajectory to be tracked by y , and 1k  is any 
positive feedback gain. With respect to (3) one can obtain: 

1 2 2 2 3 2 4( ) T
eqJp u x x Sign x d u dθ θ θ θ ϕ θ= − − − + + = + +  (9) 

If p is small or converges to zero exponentially, then the output 
tracking error e , will be small or converges to zero exponentially. 
This is because )/(1)(/)()( 1ksspsesGp +==  is a stable transfer 
function. Hence, the rest of design is to make p  as small as possible. 
Where 

2 2 2[ , , ( ),1]T
eqx x Sign xϕ = − − −  and 2 1eq dx y k e= − . 

The control law consists of two parts: 
ˆT

a s au u u u ϕ θ= + = −  (10) 

ˆ Pr ( )ojθ τ= Γ  (6) 

TABLE I 
PARAMETER OF HARD DISK DRIVE COMPONENTS 

Description Symbols Quantity 

Spindle speed ω  3623 rpm  

Track pitch trackL  1 mµ  

Coil resistance and  
Current sensing resistance R  Ω516.8  

Viscous Friction B  2.54 secN m−  

Torque constant TK  20 /N A  

Moment of inertia bI  6 212.5 10 kg m−× ⋅  

 
Fig. 2. Bode diagram of HDD ideal model (dashed) and more complete model 

(solid) 

 
Fig. 1. Hard disk drive components  
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1 2 1 2         s s s su u u u k p= + = −  
Where au  is the adjustable model compensation needed for 
achieving perfect tracking, and su is a robust control law consist of 
two parts: 1su  is used to stabilize the nominal system which is a 
proportional feedback in this case, and 2su  is a robust feedback term 
to attenuate the effect of model uncertainties, which will be 
synthesize later. Substituting (10) in to (9), and simplifying one can 
obtain: 

T
sJp u dϕ θ= − +  (11) 

Noting Assumption 1 and P1 of (8), there exist a 2su such that the 
following two conditions are satisfied: 

2 2) { } ) 0T
s si p u d ii puϕ θ ε− + ≤ ≤  (12) 

where, ε  is a design parameter which can be chosen arbitrarily 
small. From condition (i) 2su  is synthesized to dominate the model 
uncertainties coming from both parametric uncertainties θ  and 
uncertain nonlinearities d , and condition (ii) guarantees that 2su  is 
dissipative in nature so that it does not interfere with the functionality 
of the adaptive control part au . If the adaptation function in (6) is 
chosen as p.ϕτ =  then the ARC control law in (10), whose general 
block diagram is depicted in Fig. 3, guarantees all signals to be 
bounded [11]. In addition, if after finite time 0t , there exist only 
parametric uncertainties i.e., (

00,d t t= ∀ ≥ ), then zero final tracking 
error is achieved, i.e. 0→e  and 0→p  as ∞→t . 

B. IMPROVED DESIRED COMPENSATION ARC 
In the ARC design presented, the regressor ϕ  in the model 
compensation au (Eq. 10) and adaptation function p.ϕτ =  depends 
on the actual measurement of the velocity 2x . Thus the effect of 
measurement noise is severe. Moreover, in spite of condition ii of 
(12), there still exist certain interaction between the model 
compensation au  and the robust control su . This may complicate 
controller gain tuning process in an experimental implementation. 
Sadegh and Horowitz [9] proposed a desired compensation 
adaptation law, in which the regressor is only calculated by desired 
trajectory information. The idea is then incorporated in the ARC 
design in some other works. However, as detailed in [13], DCARC 
alone cannot guarantee high accuracy and disturbance attenuation as 
a HDD controller. Here, we introduced Improved DCARC, in which 
dynamics is added to the adaptation law. In the IDCARC, the control 
law and the adaptation function have the same form as (10) and 

p.ϕτ = , respectively, however, regressor ϕ  is substituted by the 
desired regressor dϕ : 

ˆT
a s a d du u u u pϕ θ τ ϕ= + = − =  (13) 

Where [ , , ( ),1]T
d d d dy y Sign yϕ = − − − . Substituting (13) into (11) 

and noting that 2 dx y e= + , one obtains: 

1 1 2 3 2( ) [ ( ) ( )]T
s d dJp u k e Sign y Sign x dϕ θ θ θ θ= − + − + − +  (14) 

Note that since only the desired trajectory information )(tyd  is 
needed in this case, the effect of noise is reduced significantly. 
Comparing (14) with (11), it can be seen that two additional terms 
(under lined) has been appeared, which may demand a strengthened 
robust control function su  for a robust performance. The 
strengthened robust control function su  has the same form as (10): 

1 2 1 1s s s s su u u u k p= + = −  (15) 
The drawback of using desired regressor dϕ  instead of measured 
one ϕ , is the inability to attenuate disturbance fast enough to 
accommodate hard disk drives requirements. This is remedied in 
IDCARC by using a dynamical adaptation law. As depicted in Fig. 4 
it is proposed to change the I (integrator) estimator with a PI 
(Proportional-Integral) routine in estimation mechanism of θ . To 
elaborate these changes consider the model of hard disk servo system 
in identification procedure. 
 Real system: B ( )f du d Jy y A Sign y+ = + +  (16) 
It is suggested to reach to: 
Ideal system: Bd dp Jy y= +  (17) 
Lemma 1: suppose; )()( tytty dd =+  in which, dt  is the system time 
delay. Hence, for the generated signal )()( tytty d ≥+ , and 
therefore: 

)()( 1 tyty dα= & 2( ) ( )dy t y tα= & 3( ) ( )dy t y tα=  (18) 

where 1α , 2α and 3α are constant coefficient depending on time. 
Without loss of generality assume 02 =su ; hence, puu a +=  by 
substitution of (13) into (16) with respect to (18) and some 
simplifications we reach to: 

3 2

2

ˆˆ ˆ( ) ( ) ( ( )

ˆ( )) ( ) 0

d d f d

f d

p J J y B B y A Sign y

A Sign y d d

α α

α

+ − + − +

− + − =
 (19) 

Now we propose adding a dynamic term to au . 

3 2

2

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ( ( ) ( ) ( ))

ˆ ˆ( ) 0

d d d d d d

f d f d f d

p Jy kJy J y By kBy B y

A Sign y kA Sign y A Sign y

d d kd

α α

α

+ + − + + − +

+ −

+ − − =

 (20) 

Furthermore, each term inside the brackets consist of a first order 
differential equation, i.e. by this means a suitable dynamics is 
introduced for the compensation signal. Since, by the introduced 
dynamics, (16) approaches to (17) dynamically, hence better 
disturbance and friction compensation is obtained. Thus, the 
adaptation law can be interpreted as adding integrator proportional to 

au , as depicted in Fig. 4. The proposed improved IDCARC law and 
the adaptation function have the same from as (13), respectively, but 
with the difference that 

d pτ ϕ= ⋅  is subjected to the introduced 

dynamics of dτ  as: 
ˆ ( )T

a s a d d du u u u p kpϕ θ τ ϕ= + = − = +  (21) 
Equations (13) to (18) can be applied with this improvement to 
IDCARC. One can write (14) as: 

1 1 2 3 2( ) ( ) [ ( ) ( )]T
s d dp u k e Sign y Sign x dϕ θ θ θ θ= − + − + − +  (22) 

Where ˆ ˆ( )kθ θ θ θ= + − . Applying mean value theorem, we have; 

2 2( ) ( ) ( , )dSign x Sign y g x t e− =  (23)  
Fig. 3. ARC Block diagram 
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In which, ),( 2 txg  is a nonlinear function. The strengthened robust 
control function su  has the same form as (10): 

pkuuuu sssss 1121 −=+=  (24) 
but with 1sk  being a nonlinear function. We must have 21 kks ≥  

( ) 11
2

323211 2 kggk θθθθθθ ++−−+  such that the matrix A defined 
below becomes positive definite. 

⎥
⎥
⎥
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⎦
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⎢
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⎣
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s

θθ
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 (25) 

2su required to satisfy following constrains similar to (12). 

2

2

) { }
) 0

T
s d

s

i p u d
ii pu

ϕ θ ε− + ≤
≤

 (26) 

As shown in Fig. 5 Because of additional term in (22) the robust 
term of IDCARC su in (24) must be stronger than robust term of 
ARC, whereas better adaptation mechanism in IDCARC causes 
lower upper bounds for 2 ( )p t  in IDCARC, simulations confirm this 
general observation. 

Theorem 1: If the IDCARC law (14) is applied, then  
A) In General, all signals are bounded. Furthermore, the positive 
definite function  

2 2 2
11 / 2 1 / 2sV Jp Jk e= +  (27) 

is bounded by: 

)]exp(1[)0()exp( tVtV ss λ
λ
ελ −−+−≤  (28) 

where { }1max12 ,/2min kk θλ = . 

B) If after finite time 0t , there exist parametric uncertainties only 

(i.e., 0,d t t= ∀ ≥ ) then, in addition to result in (A), zero final 
tracking error is also achieved, i.e.: 

∞→→→ taspande 00 . 

Proof: Along the trajectory of (20), the time derivative of sV given 
by (27) is: 

1 1 2
2

3 2 1

{ ( )

[ ( ) ( )] }

T
s s d

f d f

V p u k e

S y S x d Jk ee

ϕ θ θ θ

θ

= − + −

+ − + +
 (29) 

Applying (23) and (24) where as 1e p k e= −  and 1 Jθ = , we have: 
2

s 2 1 1 1 2 3
3 2

1 2 3 1

 V { } ( )

( )

T
s d sp u d k k g p

k g ep Jk e

ϕ θ θ θ θ

θ θ

≤ − + + − + − −

+ + −
 (30) 

If A given by (25) is positive definite, then  
2 3 2

s 2 2 1
1 V { }
2

T
s dp u d k p Jk eϕ θ≤ − + + −  (31) 

With condition (26-i) and { }1max12 ,/2min kk θλ = , the derivative of 

sV  becomes: 

s V sVλ ε≤ − +  (32) 
Which leads to (28) and the results in A) is proved. Now consider a 
situation on B) where 0d = , 0t t∀ ≥ . Choose a positive definite 

function aV as:  

1
a

1 V
2

T
sV θ θ−= + Γ  (33) 

From (30), condition ii) of (26), and P2 of (8), the derivative of 
aV satisfies: 

2 3 2 1
a 2 1

1 ˆ V ( )
2

Tk p Jk e Wθ θ τ−≤ − − + Γ − Γ ≤  (34) 

Where 2 3 2
2 1

1
2

W k p Jk e= − − . Therefore, 1W L∈  and aV L∞∈ . 

Since all signal are bounded, and it is easy to check W is bounded 
and thus uniformly continuous. By Barbalet’s lemma 0W → as  

0t → .  

Remark: Let h  be any smooth function satisfying: 

dMh δϕθ +≥  where minmax θθθ −=M .Then, one smooth 

example of 2su  satisfying (12) is given by: phus
2

2 4
1
ε

−= , also for 

(26): ddMh δϕθ +≥' , phus
2'

2 4
1
ε

−= . 

IV. COMPARATIVE STUDIES 

A. Performance Indices 
Simulations studies have been performed for ARC, DCARC, and 
IDCARC to verify the effectiveness of the proposed controller in 
terms of tracking errors, and disturbance rejection. In order to 
compare simulation results for representatives of different controllers 
proposed for such system as in literature [4, 6, 7], the following 
performance indices are used.  

I1) ∫=
fT

f
dteTeL

0

2
2 1][  is an average tracking performance 

index, for the entire error curve )( te . fT  represents the total 
simulation time in here.  
I2) })({max tee tM = , is the maximum absolute value of the 
tracking error.  
I3) })({max

1
tee

ff TtTF ≤≤−
= , is the maximum absolute value of 

the tracking error during the last one millisecond. 
I4) ∫=

fT

f
dtuTuL

0

2
2 1][ , is the mean of the control input.  

I5) ][][ 22 uLuLcu ∆= , is the control input chattering, where 

 
Fig. 4. IDCARC Block diagram 

 
Fig. 5. Upper bound of 2 ( )p t in ARC and IDCARC 

Plant 
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∑
=

−−=
N

j

TjuTjuNuL
1

2
2 ))1(()(1][ ∆∆∆  is the normalized control 

variations.  

B. Controller Structures 
The following control structures are used in simulations: 

• Mode Switching Control During the seeking mode of MSC, the 
servo controller drives the read/write head to follow the desired 
velocity profile, which is calculated base on a rigid body plant 
model. Defining the velocity profile as 

trpappv −−= 2)sgn()(  if arp t
22>  or =)( pv pra t ).2(−  

if arp t
22<  an approximate time optimal system (PTOS) can be 

generated [1]. In which, ,, ap and tr are the remaining distance to the 
target track, the maximum acceleration, and the velocity offset, 
respectively. In PTOS approach, the back electromotive force, which 
physically behaves like a linear friction, and the actuator bandwidth, 
are not taken into consideration and as a result, the velocity profile in 
PTOS method can only be approximately followed. 

• ARC: The ARC law proposed in section 3. is applied on the 
system. With pku ss −= , ε42

2 hkks +≥ the control gains are 
chosen as: 1 317k =  to have a bandwidth about 500 Hz, and 1.0sk = . 
The adaptation rates are set as }10000,1,0,10{diag=Γ . The initial 
parameters are chosen as follows: 

,61[)0(
^

−= eθ Te ]0,0,65.12, − [0.8 6,10 6,1 5,0.5]TMax e e eθ = − − −  

• DCARC: The Desired Compensation ARC law with pku ss
'−= is 

applied on the system. The control gains are chosen as 
ε42'

2
' hkk s +≥  to have a bandwidth about 500 Hz 1 317k =  and 

' 1.0sk = . The adaptation rates are set as }10000,1,0,10{diag=Γ . 

• IDCARC: The proposed Improved DCARC law is applied on the 
system. All coefficients are the same as DCARC coefficient and 

integrator gain in adaptive part is set to 1000k = . 

C.  Simulation Input Signals 
In order to have a fair comparison the following sets of simulation 
input signals are considered: 
Set1: To test tracking performance of the controllers in present of 
friction with Af =1e-5 as in [3], a 2600 track seeking trajectory is 
considered in this set, as elaborated in appendix I. and illustrated in 
Fig. 10. 
Set2: A step disturbance input at 10 msect =  with amplitude about 
0.5mA   is considered in this set in addition to the above reference 
trajectory. 
Set3: The performance to the Set 1 reference trajectory in present of 
%20 variation in system gain is simulated in this set. 

D. Controllers Performance 
As quantitatively shown in Table II, the simulation result in terms of 
performance indices Me  and Fe  of IDCARC is significantly better 
than that of ARC and DCARC for all sets, specifically in present of 
disturbance. As shown in Fig. 6 and 7 it has been observed that ARC 
is relatively poor to reject disturbance compared to the IDCARC. 
IDCARC has the best performance in terms of ][2 uL , ][2 eL , Me  and 

Fe  for all abovementioned sets. The main reason for this significant 
improvement is due to the proposed dynamic term added in the 
estimation procedure. It can be seen in the Fig. 6 that the closed loop 
position results obtained through IDCARC method, has a suitable 
settling characteristics without any large overshoots and attenuate 
disturbances extremely better than ARC. It is observed that for larger 
disturbances ARC becomes unstable but IDCARC can still attenuate 
disturbances relatively well. In order to analyze the other important 
issues on the performance of the closed loop system, the control 
efforts are illustrated in Fig. 7. As it is shown in this figure smooth 
control effort confirms the advantages of jerk minimized reference 
input, especially at the time of disturbance enforcement at 

10 msect = . Moreover, the low values of obtained errors in the 
IDCARC method shows the effectiveness of delay compensation. 
The rejection of the disturbance occurred in 10 msect = in IDCARC 
method shows superior characteristics in presence of higher 

 
Fig. 8. Parameter estimation of ARC 

 
Fig. 9. Parameter estimation of IDCARC 

 
Fig. 6. Tracking error for different methods 

 
Fig. 7. Control effort for smooth signal generated 

810−×  410−×  
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frequency modes considered in the simulated model. Because of the 
introduced dynamics in adaptation algorithm in IDCARC method, 
the proposed method is capable to pick up the actual value of 
disturbance more quickly. This can be seen from the comparison of 
the parameter estimation rates shown in Figs 8 and 9, in which in the 
IDCARC method the steady state convergence of the parameters are 
much faster than that in ARC. Finally, as illustrated in Fig. 10 the 
track seeking time of IDCARC results are much faster than that in 
conventional PTOS method.  

E. Runout Disturbance and Position Error Signal 
The disturbances in a real HDD are usually considered as a lumped 
disturbance at the plant outputs, known as runouts, [16].  Repeatable 
runouts (RRO) are caused by spindle motor rotation, and consist of 
frequencies that are multiple spindle frequencies. Non-repeatable 
runouts (NRRO), on the other hand, are caused mainly due to 
vibrations and shocks, mechanical disturbance and electrical noise, 
and hence usually random and unpredictable. Although the effects of 
the runouts are not considered in our problem formulation, but it 
turns out that the proposed controller is capable of rejecting the few 
first modes of the runout disturbances quite effectively. Fig 11 shows 
the tracking error of ARC and IDCARC controllers, under the 
simulated disturbance of runouts as in [16]. It is illustrated in this 
figure how effective is the proposed IDCARC method in runout 
rejection compared to that to ARC method. In order to have 
comprehensive performance verification in presence of runout 
disturbance, the statistical measure of position error signal (PES) can 
be analyzed. In disk drive applications, the variation of the R/W head 
from the center of track during track following, which can be directly 
read off as the PES, is very important. HDD servo system must 
ensure that PES is kept to a minimum. Having deviations that are 
above the tolerance of the disk drive would result in too many R/W 
errors, making the disk drive unusable. A suitable measure is the 
standard deviation of the readings, σpes. A useful guideline is to make 
the 3σpes value %10<  of the track pitch, which is about 0.1 µm for a 
track density of 25kTPI. In the simulations made for the system in 
hand, the 3σpes value for the ARC controller is about 0.0335 µm and 
for the IDCARC is 1.4238e-5 µm, which shows a significant 
improvement in terms of disturbance rejection. In case of DCARC 
the 3σpes value is more than 0.1 µm and not acceptable. By this 
comparison study, the effectiveness of the proposed control 
algorithm is verified and compared to the other methods. 

V. CONCLUSIONS 
In this paper, an adaptive robust controller is implemented for hard 
disk drives (HDD), considering high frequency modes in the model. 
This method with its unified structure can be applied to both seeking 
and following modes. 

  
Fig 10. Seeking and following of 2600 tracks 

 

Fig 11. Runout Disturbance and Response in ARC and IDCARC methods 

In this proposed method a discontinuous projection based on adaptive 
robust controller (ARC) is considered first. This controller 
theoretically guarantees a prescribed transient performance and well 
behaved tracking in presence of parametric uncertainties. An 
IDCARC scheme is then proposed, in which the adaptation regressor 
is calculated using only reference trajectory information. The 
resulting controller has many implementation advantages. It reduces 
not only the on-line computation time, but also the induced structural 
vibration, the effect of the measurement noise, and moreover, it 
separates the robust control design from parameter adaptation with a 
faster adaptation rate. A thorough robust analysis of this method is 
presented first, in which a controller designed based on a simple 
model of the system is implemented in closed loop on a more 
comprehensive model for the system. Simulation result verifies the 
robustness and the significant performance improvement of the 
IDCARC compared to that of ARC for this model. Moreover, the 
simulation and comparison results illustrate the ability of the 
proposed method in achieving suitable control in presence of 
unstructured model uncertainties, and input disturbances. It is shown 

ARC IDCARC

DisturbanceDisturbance

Response Response 

TABLE II 
PERFORMANCE INDEX FOR DESIRED TRAJECTORY 

Experiments Set 1 Set 2 Set 3 

Performance 
Index ARC DCARC IDCARC ARC DCARC IDCARC ARC DCARC IDCARC 

410Me −× 1.48 1.82 7.47e-4 1.82 1.48 7.47e-4 1.76 2.78 9.34e-4 

610−×Fe 0.26 1.21 2.04e-4 8.9 8.45 5.25e-3 7.83 2.2e1 5.19e-3 
4

2[ ] 10L e −× 6.5 7.48 3.2e-3 8.11 6.71 3.83e-3 7.78 13 4.51e-3 
2

2[ ] 10L u −× 0.49 0.66 0.44 0.68 0.50 0.45 0.64 1.10 0.56 
4

2[ ] 10L u −∆ × 1.05 0.75 0.77 0.84 1.10 0.93 1.39 1.36 1.09 
210uc −× 2.15 1.14 1.74 1.25 2.2 2.08 2.17 1.24 1.98 
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that the IDCARC method is capable of significantly improving the 
seeking and following performances, and its implementation on a 
more comprehensive model of the system provides the assurance of 
its successful experimental implementation. 
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APPENDIX I: SMOOTH SIGNAL GENERATION METHOD: 

To avoid vibration and saturation input signal has been designed 
based on optimal control. Consider a simple double integrator model 
for VCM, with the back-emf. For jerk minimization the SMART 
strategy introduced in [4] is used, in which an optimal control 
problem for the double integrator plant with the following 
performance index is considered. 

dt
dt

tduJ
ft

smart

2

0

)(
∫ ⎥⎦

⎤
⎢⎣
⎡=  (35) 

As illustrated in Fig 12 in this strategy in order to avoid actuator 
saturation, the maximum motor voltage maxu is used in acceleration 
and its negative - maxu  in deceleration. The acceleration is continued 
until the motor speed reaches its maximum maxv . Then constant 

speed is kept, until the deceleration mode starts. In order to find the 
appropriate final time tf  and switching time tsw the optimal problem 
has been solved analytically, and lookup tables are generated. 
Simulation results for some discrete switching time ksw are shown in 
Fig 13, and the values of SMART output, voltage and current is 
given by the following equations: 
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in which, k is discrete–time index, kf is final sample number, ky is one 
track pitch angle (rad/track), kT is torque constant, Ts is sampling 
time(sec), and the current error if  is converted to an acceleration 
error using:  
 ( ) ( )ysTff JkTkia 2= .   (39) 

 

1.Accel.

maxv)t(v ≥

swk

seti)t(i ≤

maxu

maxvk
u

e

cv =

m
(k

)
u 

vo
lta

ge

 
Fig 12. Control input in off-line simulation 
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Fig 13. Represented off-line simulation results (head velocity) 

 


