
 
 

  

Abstract— In this paper, adaptive robust controllers are 
proposed for dual-stage hard disk drives. An Improved 
Desired Compensation ARC (IDCARC) scheme is proposed in 
this paper for both actuators of the system, in which the 
traditional ARC is powered by a dynamic adaptive term. 
Moreover, a simulation study of these controllers are 
presented, in which the controllers designed based on simple 
models for the subsystem are implemented on a more 
comprehensive, experimentally verified models of the system. 
Simulation result verifies the effectiveness of the IDCARC 
method in providing the required tracking, in presence of 
unstructured uncertainty for the models. 

I. INTRODUCTION 
The demand for continually increasing storage density, and 
reducing the data access time in commercial hard disk 
drives, necessitates the performance improvement of the 
head positioning systems. The servo system must achieve 
precise track following, the positioning of the head on a 
desired track, and fast track seeking, the transition from one 
track to another target track. The seeking time, should be 
minimized for faster data transmission rates. To meet these 
requirements the servo bandwidth of the head positioning 
system must be increased to lower the sensitivity to 
disturbances such as disk flutter vibrations, spindle motor 
run-out and external vibrations [1]. However, the servo 
bandwidth is mainly limited by the mechanical resonance 
of the head positioning system. The dual-stage actuation 
system offers one way to enlarge the servo bandwidth. 
Using high bandwidth secondary actuators mounted on the 
voice coil motor (VCM) has been investigated for many 
years [2], and is regarded as a feasible alternative to single 
stage servo systems. In this paper, a dual-stage hard disk 
drive system is considered, in which a push-pull type piezo-
electric transducer (PZT) is used as a second-stage actuator, 
in addition to the first-stage VCM. The VCM has a large 
operating range and a low resonance frequency, and is used 
for coarse positioning. The PZT actuator has a small 
operating range and a high resonance frequency, and is 
used for fine positioning. 
There are several attempts to develop unifying control 
algorithms, which work for both track seeking and track 
following [3-10]. Such control algorithms utilize 
LQR/LQG controller structure [4], composite nonlinear 
feedback control [5], gradient based track following [6], or 
other robust approaches for control [7]. Adaptive robust 
controller are also developed for single-stage hard disk 
servo systems [8], and by introducing dynamic adaptation 
into the adaptive structure of such controllers promising 
results in terms of fast and accurate tracking performance in 
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presence of modeling uncertainty is obtained [9]. In this 
paper, this approach called IDCARC is implemented for the 
dual-stage disk drive servo system, and its closed loop 
performance is compared to that of ARC in presence of 
modeling uncertainty. To verify the robustness of such 
algorithms, experimentally verified models for the system 
[10], is used in the simulations. The simulation results 
applied on this model is promising to work well in practice. 

II. DYNAMICS MODELS OF DUAL-STAGE HDD 

Fig. 1 illustrates a schematic of a hard disk drive (HDD) 
with a dual-stage actuation system. Several disks are 
stacked on the spindle motor shaft, and each disk is 
accompanied by a pair of recording heads. Each head is 
attached to the tip of a suspension. The PZT actuator is 
placed between the suspension and the base plate. The 
VCM actuator moves the carriage, base plates, PZT 
actuators, suspensions and heads all together, and the PZT 
actuator drives only the suspension and the head. Therefore, 
the total movement of the head is composed of the 
individual movement provided to head by the VCM and 
PZT actuators. In order to control the position tip of the 
head of HDD with the stringent accuracy requirement, two 
controllers must be designed for the system, in which the 
VCM closed loop feedback provides the course positioning, 
and the PZT actuator eliminates high frequency 
disturbances applied to the system. In order to model the 
individual actuators of the HDD let us start with a 
comprehensive nonlinear model for each actuator. A 
nonlinear model for the VCM is given as following [10]:  
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in which, Txxx ],[ 21=  represent the state vector of the 
angular position and velocity, y is the position, J is the 
moment of inertia, u  is the control input, B  and fA  are 
coefficient of viscous and coulomb friction, respectively, 

hysF  and hiF  represent the effect of hysteresis loop and 
high frequencies uncertainties, respectively, and, dF  is the 
external disturbance. Similar nonlinear models can be 
derived for the PZT actuators in HDD’s. In order to apply 
linear robust controllers to this problem, the nonlinear 
model of each actuator of the system is represented by a 
linear model and multiplicative uncertainty, using a 
systematic linear identification scheme. In this 
representation, the nominal model replicates the dynamic 
behavior of the system, only at nominal conditions, and all 
nonlinear interactions, unmodeled dynamics and the 
disturbances are encapsulated via an unstructured 
uncertainty representation. This idea is used extensively in 
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many applications, where linear H∞ or µ-synthesis schemes 
are used in controller design of some nonlinear systems 
[11,11].  
In order to represent a system into this form, suppose the 
true system belongs to a family of plants ∏, which is 
defined by using the following perturbation to the nominal 
plant Po: 

( ) ( ) ( ) ( )( ) ( )1 oP s P s s W s P s∀ ∈ Π = + ∆   
In this equation W(s) is a stable transfer function indicating 
the upper bound of uncertainty and ∆(s) indicates the 
admissible uncertainty block, which is a stable but unknown 
transfer function with ║∆║∞< 1. For SISO system the 
uncertainty profile can be obtained by  

( )
( ) ( )
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P j

W j
P j

ω
ω ω

ω
− ≤ ∀  (2) 

Where,│W(jω)│ represents the amplitude of the 
uncertainty profile with respect to frequency. Nominal plant 
Po, can be evaluated experimentally, through a series of 
frequency response estimates of the system in the operating 
regime.  
Using this technique the actuator linear models are derived 
from experimental frequency response estimates of system 
[11]. In order to measure the tip position of the PZT 
actuator a Laser-Doppler-Scanning Vibrometer (LDV) is 
used in this reference. For each actuator, 21 frequency 
response estimates are then derived experimentally using a 
Dynamic Signal Analyzer (DSA), which are presented in 
Figs. 3 and 4. The nominal model of the actuators is 
derived by averaging all the frequency response estimates 
[11]. The nominal model of the VCM-actuator which is 
shown in Fig. 3, is a stable 12 order non-min phase system, 
whose pole zero patterns are given in Table I. The PZT 
actuator model is also a stable but 10 order non-min phase 
system whose zero-poles pattern are given in Table II. 
The uncertainty profiles of the models are experimentally 
derived and using equation (2) the uncertainty profiles are 
calculated for each actuator and illustrated in figures 4 and 
5, respectively. As it will be elaborated in the proceeding 
section, the adaptive robust controller for the system is 
designed based on a reduced order model of the system. 
Hence the full order model of the system and its uncertainty 
profile is used in simulation to verify the robustness of the 
proposed algorithm in presence of modelling uncertainty.  

III. ADAPTIVE ROBUST CONTROL  

In order to design the adaptive robust controller, 
identification of a simple model for the system is sufficient 
[10]. The comprehensive models for actuators can be 
reduced to second-order transfer functions as illustrated in 
figures 4 and 5. The state space representation of such 
models can be linearly parameterized as: 

1 2x x=  (3) 

1 2 2 2 3 2 4( )x u x Sign x dθ θ θ θ= − − + +  (4) 

In which nd=4θ  is the nominal value of the lumped 
disturbance d . It is assumed that, all the effect of 
unmodeled dynamics, hysteresis and high frequency 
resonances of the systems are absorbed into the term d . In 

order to describe the controller structure, consider the 
following assumptions. 

Assumptions: The following bounds and structures for 
uncertainties and disturbances are assumed. 

{ }maxmin: θθθθΩθ θ <<≡∈  
{ :| | }d dd d d δ∈Ω ≡ <  (5)

In which, T],...,[ min4min1min θθθ = , T],...,[ max4max1max θθθ =  
and dδ  are assumed to be known. Let θ̂  denotes the 
estimate of θ  and θ  the estimation error (i.e. ˆθ θ θ= − ). In 
view of (4) the following adaptation law with discontinuous 
projection modification can be used: 

where, 0>Γ  is a diagonal matrix, τ  is adaptation function 
to be synthesized later. The projection mapping is defined 
as:  
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It can be shown that for any adaptation function τ  the 
projection mapping used in (7) guarantees [10]:  

ˆ Pr ( )ojθ τ= Γ  (6) 

TABLE I 
POLES  ZEROS PATTERN OF VCM NOMINAL MODEL  

Zeros Poles  

(-0.0076± 0.1317 j) ×104 (-0.0230 ± 0.0896 j) ×104 1,2 

(-0.0214 ± 0.1333 j) ×104 (-0.0089 ± 0.1295 j) ×104 3,4 

(-0.0898 ± 1.9927 j) ×104 (-0.0124± 0.1401 j) ×104 5,6 

(-0.0770 ± 3.5620 j) ×104 (-0.0915 ± 1.8589 j) ×104 7,8 

(2.4248 ± 7.3828 j) ×104 (-0.0729 ± 3.1183 j) ×104 9,10 

2.5886×104, -5.5608×104 (-0.0747 ± 6.6933 j) ×104 11,12 

TABLE II 
POLES  ZEROS PATTERN OF PZT NOMINAL MODEL  

Zeros Poles  

(-0.0056 + 0.3132j) ×105 (-0.0488 ± 3.1141j) ×104 1,2 

(-0.0168 + 0.4239j) ×105 (-0.0869 ± 4.1066j) ×104 3,4 

(-0.0267 + 0.5234j) ×105 (-0.2287 ± 5.1408j) ×104 5,6 

(-0.0588 + 0.7707j) ×105 (-0.0320 ± 6.7123j) ×104 7,8 

1.2430×105, -4.3606×105
 (-1.4642 ± 8.4616j) ×104 9,10 

Fig. 1. Schematic of HDD with PZT actuator 
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A. ARC Controller Design 

Define a PD switching-function as 1p e k e= + = eqxx 22 − , 
where 2 1eq dx y k e≡ −  and )(tyye d−=  is the output tracking 

error, )(tyd  is the desired trajectory to be tracked by y , 
and 1k  is any positive feedback gain. With respect to (3) 
one can obtain: 

1 2 2 2 3 2 4( ) T
eqJp u x x Sign x d u dθ θ θ θ ϕ θ= − − − + + = + +  (9)  

If p is small or converges to zero exponentially, then the 
output tracking error e , will be small or converges to zero 
exponentially. This is because )/(1)(/)()( 1ksspsesGp +==  
is a stable transfer function. Hence, the rest of design is to 
make p  as small as possible. Where 

2 2 2[ , , ( ),1]T
eqx x Sign xϕ = − − −  and 2 1eq dx y k e= − . 

The control law consists of two parts: 
ˆT

a s au u u u ϕ θ= + = −  
1 2 1 2         s s s su u u u k p= + = −  

(10) 

Where au  is the adjustable model compensation needed for 
achieving perfect tracking, and su is a robust control law 
consist of two parts: 1su  is used to stabilize the nominal 

system which is a proportional feedback in this case, and 
2su  is a robust feedback term to attenuate the effect of 

model uncertainties, which will be synthesize later. 
Substituting (10) in to (9), and simplifying one can obtain: 

T
sJp u dϕ θ= − +  (11) 

Noting Assumption 1 and P1 of (8), there exist a 2su such 
that the following two conditions are satisfied: 

2 2) { } ) 0T
s si p u d ii puϕ θ ε− + ≤ ≤  (12) 

where, ε  is a design parameter which can be chosen 
arbitrarily small. From condition (i) 2su  is synthesized to 
dominate the model uncertainties coming from both 
parametric uncertainties θ  and uncertain nonlinearities d , 
and condition (ii) guarantees that 2su  is dissipative in 
nature so that it does not interfere with the functionality of 
the adaptive control part au . If the adaptation function in 
(6) is chosen as p.ϕτ =  then the ARC control law in (10), 
whose general block diagram is depicted in Fig. 6, 
guarantees all signals to be bounded [10]. In addition, if 
after finite time 0t , there exist only parametric uncertainties 
i.e., (

00,d t t= ∀ ≥ ), then zero final tracking error is 
achieved, i.e. 0→e  and 0→p  as ∞→t . 
B. Improved Desired Compensation ARC 

In the ARC design presented, the regressor ϕ  in the model 
compensation au (Eq. 10) and adaptation function p.ϕτ =  
depends on the actual measurement of the velocity 2x . 
Thus the effect of measurement noise is severe. Moreover, 
in spite of condition ii of (12), there still exist certain 
interaction between the model compensation au  and the 
robust control su . This may complicate controller gain 
tuning process in an experimental implementation. In the 
IDCARC, the control law and the adaptation function have 
the same form as (10) and p.ϕτ = , respectively, however, 
regressor ϕ  is substituted by the desired regressor dϕ : 

ˆT
a s a d du u u u pϕ θ τ ϕ= + = − =  (13) 

Where [ , , ( ),1]T
d d d dy y Sign yϕ = − − − . Substituting (13) into 

(11) and noting that 2 dx y e= + , one obtains: 

1 1 2 3 2( ) [ ( ) ( )]T
s d dJp u k e Sign y Sign x dϕ θ θ θ θ= − + − + − +  (14) 

Note that since only the desired trajectory information 
)(tyd  is needed in this case, the effect of noise is reduced 

significantly. Comparing (14) with (11), it can be seen that 
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Fig. 2. The frequency response estimates for the VCM, the nominal 

model and its reduced form. 

10
2

10
3

10
4

10
0

Lo
g.

 M
ag

n.
 [
µ 

m
/V

] 

Frequency [Hz]

PZT-model

 
Fig. 3. The frequency response estimates for the PZT, the nominal model 

and its reduced form. 
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Fig. 4. The multiplicative uncertainty profile of the VCM 

10
2

10
3

10
4

10
-1

10
0

10
1

 
Fig. 5. The multiplicative uncertainty profile of the PZT  

model 

 
Fig. 6. ARC Block diagram 



 
 

two additional terms (under lined) has been appeared, 
which may demand a strengthened robust control function 

su  for a robust performance. The strengthened robust 
control function su  has the same form as (10): 

1 2 1 1s s s s su u u u k p= + = −  (15) 
The drawback of using desired regressor dϕ  instead of 
measured one ϕ , is the inability to attenuate disturbance 
fast enough to accommodate hard disk drives requirements. 
This is remedied in IDCARC by using a dynamical 
adaptation law. As depicted in Fig. 8 it is proposed to 
change the I (integrator) estimator with a PI (Proportional-
Integral) routine in estimation mechanism of θ . A detail 
elaboration of the effect of these changes into the 
identification procedure, and a thorough stability analysis 
of this algorithm is given in [10]. 
C. Reduced Order Model and Prefilter Design 
As it is described in the previous subsections, in order to 
design ARC controllers for each actuator of the HDD, a 
reduced second-order model for each actuator is needed. As 
it is illustrated in figures 3, and 4, the reduced order models 
are assigned as the following transfer functions.  

7

, 2

8.119 10 /
460.3 853776VCM reducedG m Volt

s s
µ×=

+ +
 (16) 

8

, 2 8

1.343 10 /
21000 2.25 10PZT reducedG m Volt

s s
µ×=

+ + ×
 (17) 

One of main features neglected in these reduced models is 
the effect of non-min phase zeros of the models, which are 
given in Tables I and II. The destabilising effect of 
neglecting those zeros can be compensated by designing 
appropriate prefilters in addition to the usual ARC structure 
of the controllers for each actuator as depicted in Fig. 8. 
The prefilters are designed by carefully examination of the 
location of the unstable zeros of the models, and also the 
uncertainty profile of the system (Figures 4 and 5). As a 
direct implication of small-gain theorem for the robust 
stability of uncertain systems, it is well understood that at 
the frequencies where the uncertainty profile of the system 
is beyond zero dB, the designed controller must reduces 
||WT||∞<1, in which W(s) is the uncertainty weighting 
function and T(s) is the closed loop transfer function.  
To accomplish that for the VCM prefilter design, consider 
the following fourth order stable transfer function with 
relative degree two, whose poles are located close to the 
high frequency stable and the mirror of unstable zeros of 
the plant with respect to the imaginary axis, and its zeros 
are close to the high frequency poles of the system: 

4

1 4 4 4

(0.07 6.7 ) 10
( 5.56 10 )( 2.6 10 )( (2.4 7.4) 10 )VCM

s jP K
s s s

+ ± ×=
+ × + × + ± ×

 (18) 

K1 is chosen such that the DC gain of the transfer function 
equals to one. Similarly for the PZT actuator a sixth order 
stable transfer function with relative degree of two is 
designed. The prefilter zeros compensate for the high 
frequency poles of the system, and its poles compensate for 
high frequency stable and unstable zeros of the system. 
Moreover, a pair of complex poles with ω=1.5e4 rad/sec, 
ξ=0.707 is added to the prefilter to act as the dominant 
poles for the system in controller design. K2 is chosen such 
that the DC gain of the transfer function equals to one.  

4 4

2 2 2 4 5 5

( (0.03 6.7 ) 10 )( (1.4 8.4 ) 10 )
( 2 )( (0.58 7.7) 10 )( 1.24 10 )( 4.36 10 )PZT

s j s jP K
s s s s sωξ ω

+ ± × + ± ×=
+ + + ± × + × + ×

 
(19) 

The bode plots of VCM, and PZT actuators, with and 
without prefilter compensation is given in figures 9, and 10, 
respectively. As it is shown in this figure, the prefilters 
attenuates the system gains at high frequencies, where the 
uncertainty profiles are higher than 0 dB, while adding 
negative phase to the systems to compensate for 
destabilizing effect of unstable zeros of the systems. 

IV. SIMULATION RESULTS  

A. Performance Indices 
Simulations studies have been performed for ARC, and 
IDCARC to verify the effectiveness of the proposed 
controller in terms of tracking errors, and disturbance 
rejection in presence of modelling uncertainty. In order to 
compare simulation results the following performance 
indices are used.  

I1)
1/ 2

2
2 0
[ ] 1/ fT

fL e T e dt = ⋅  ∫  is an average tracking 

performance index, for the entire error curve e(t), and Tf 
represents the total simulation time.  

I2) })({max tee tM = , is the maximum absolute value of 
the tracking error, and is a measure of transient 
performance.  

I3) 
1

max { ( ) }
f fF T t Te e t

− ≤ ≤= , is the maximum absolute 

value of the tracking error during the last one millisecond. 

I4) ∫=
fT

f
dtuTuL

0

2
2 1][ , is the mean of the control input.  

 
Fig. 7. IDCARC Block diagram  

Fig. 8. The VCM and PZT final controller strategy. 



 
 

I5) ][][ 22 uLuLcu ∆= , is the control input chattering, 

where ∑
=

−−=
N

j

TjuTjuNuL
1

2
2 ))1(()(1][ ∆∆∆  is the normalized 

control variations.  

B. Controller Structures 
The following control structures are used in simulations: 
←ARC: The ARC law proposed in section 3. is applied 

on both actuators. With us=-ksp, ks ≥ k2+h2/4ε and ks=1.0, 
the PD switching control gains are chosen as given below 
in order to obtain closed loop bandwidth of 1kHz, and 
70kHz for VCM, and PZT actuator, respectively 

4 5
, ,48.52 4.909 10 ,  74.76 1.135 10PD VCM PD PZTC s C s= + × = + ×  

The adaptation rates are set as Γ=diag[10 100 1e5 100], and 
the initial parameters are chosen as follows: 

40.01231 5.6695 1.0515 10 1VCMθ  = × 
3 2 67.4458 10 1.5636 10 1.6753 10 1PZTθ − = × × × 

 

← IDCARC: The proposed IDCARC law is applied on 

the system. All coefficients are the same as ARC 
coefficient and the integrator gain in the adaptive part is set 
to kI=1000.  
C. Simulation Input Signals 
In order to verify the effectiveness of the proposed 
controller in obtaining the stringent tracking performance 
requirement the following experiment is considered for the 
system. A 2600 track seeking trajectory is considered in 
this set, which is designed based on SMART algorithm 
described in [10], and is illustrated in Fig. 11. Moreover, 
the following pulse disturbance inputs for VCM and PZT 
are applied, at 0.01 sec, and 0.02 sec, respectively. 
 ( )3 ( 0.01) ( 0.013)vcmd u t u t= − − − , 
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Fig. 11. The closed loop performance of the ARC controller in  

presence of worst case uncertainty 
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( )2 ( 0.020) ( 0.023)pztd u t u t= − − −   
The saturation amplitude of the PZT actuator is considered 
as ±25 volts. Furthermore, in this experiment the worst case 
uncertainty at both actuator models ||∆||∞=1 are included. 
This experiment is considered to verify the robust 
performance of the proposed controller. 
D. Controllers Performance 
Figures 11 and 12 illustrate the closed loop performance of 
the ARC and the proposed controller, respectively. In these 
simulations the disturbance rejection objective, which is 
designed is simulated for the full order nominal model of 
VCM and PZT servo actuators. In order to have detail 
comparison of the controller performances different 
quantities are plotted in these figures. The total tracking 
performance of the tip head for 2600 one micron tracks are 
plotted first versus the desired trajectory.  
The tracking errors are divided into two next plots in these 
figures, in which in the first plot the total seeking 
performance for the first 8 millisecond seeking time is 
given, while the accuracy of the tip positioning in tracking 
performance is given in the next plot. To evaluate the 
significance of the PZT actuator in order to reduce the 
tracking performance of the total head tip position, the 
VCM tracking performance is given separately in the next 
plot, and finally, the actuator efforts of the VCM and PZT 
actuators are given in the last two plots. To further compare 
the controller performances quantitatively, the performance 
indices described in the preceding section is given in Table 
III. The final error performance index is highlighted in this 
table, which indicates the final tracking error achievable by 
the controller, and the individual contribution of VCM and 
PZT actuator to this performance. 
It is observed that the proposed method is contributing into 
a better tracking performance in both seeking and tracking 
regimes, and the effect of disturbance is rejected 
significantly reaching to a final tracking error 1e-2 microns 
in the IDCARC method. As it is seen in figures 13 and 14, 
the ARC controller is unable to reduce the final tracking 
performance below one micron, and as it is seen in the 
actuator effort of PZT remains in saturation for all the 
simulation time. However, the IDCARC controller 
preserves the total tracking error below one micron, and as 
it is specified in Table III, the final tracking error for this 
case is about 1e-2 microns, which is pretty satisfying, while 
the control efforts of both actuators remain also within their 
limits. 

V. CONCLUSIONS  
In this paper, an adaptive robust controller is implemented 
on dual-stage hard disk drives. An adaptive robust 
controller (ARC) is designed first for each actuator, which 
theoretically guarantees a prescribed transient performance 
and well behaved tracking in presence of uncertainties. An 
IDCARC scheme is then proposed, in which a dynamic 
adaptation law is included into the ARC method. A robust 
simulation study of these method are presented in this 
paper, in which the controllers designed based on simple 
models for the subsystem are implemented on an 

experimentally verified high order models for the system. 
Simulation result verifies the effectiveness of the IDCARC 
method in preserving the stringent tracking performance 
requirement of the hard disk drives in presence of worst 
case unstructured uncertainty of the models. This analysis 
provides the required assurance of its successful 
experimental implementation in future. 
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TABLE III 
PERFORMANCE INDEX FOR DESIRED TRAJECTORY 

Performance ARC IDCARC 
Index VCM PZT VCM PZT 

510Me −×  9.6 8.4 7.5 6.3 
-7

Fe ×10  127.5 127.5 6.9 0.01 
4

2[ ] 10L e −×  28.3 24.8 17.3 15.4 
2

2[ ] 10L u ×  73.7 13.6 130.2 16.6 
2

2[ ] 10L u −∆ × 0.10 8.97 6.18 8.4 
 


