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 Abstract – In this paper, adaptive robust controllers are 
proposed for dual-stage hard disk drives. An Improved Desired 
Compensation ARC (IDCARC) scheme is proposed in this paper 
for both actuators of the system, in which the traditional ARC is 
powered by a dynamic adaptive term. Moreover, a simulation 
study of these controllers are presented, in which the controllers 
designed based on simple models for the subsystem are 
implemented on a more comprehensive, experimentally verified 
models of the system. Simulation result verifies the effectiveness 
of the IDCARC method in providing the required tracking, in 
presence of unstructured uncertainty for the models. 

 Index Terms - Adaptive robust control, dual-stage hard disk 
drive, dynamic adaptation, robustness verification. 

I. INTRODUCTION 

The demand for continually increasing storage density, and 
reducing the data access time in commercial hard disk drives, 
necessitates the performance improvement of the head 
positioning systems. The servo system must achieve precise 
track following, the positioning of the head on a desired track, 
and fast track seeking, the transition from one track to another 
target track. The seeking time, should be minimized for faster 
data transmission rates. To meet these requirements the servo 
bandwidth of the head positioning system must be increased 
to lower the sensitivity to disturbances such as disk flutter 
vibrations, spindle motor run-out and external vibrations [1]. 
However, the servo bandwidth is mainly limited by the 
mechanical resonance of the head positioning system. The 
dual-stage actuation system offers one way to enlarge the 
servo bandwidth. Using high bandwidth secondary actuators 
mounted on the voice coil motor (VCM) has been investigated 
for many years [2], and is regarded as a feasible alternative to 
single stage servo systems. In this paper, a dual-stage hard 
disk drive system is considered, in which a push-pull type 
piezo-electric transducer (PZT) is used as a second-stage 
actuator, in addition to the first-stage VCM. The VCM has a 
large operating range and a low resonance frequency, and is 
used for coarse positioning. The PZT actuator has a small 
operating range and a high resonance frequency, and is used 
for fine positioning. 

There are several attempts to develop unifying control 
algorithms, which work for both track seeking and track 
following [3-10]. Such control algorithms utilize LQR/LQG 
controller structure [ 4 , 5 ], composite nonlinear feedback 
control [6], gradient based track following [7], or other robust 
approaches for control [8]. Adaptive robust controller are also 
developed for single-stage hard disk servo systems [9], and by 
introducing dynamic adaptation into the adaptive structure of 
such controllers promising results in terms of fast and accurate 
tracking performance in presence of modeling uncertainty is 
obtained [10]. In this paper, this approach called IDCARC is 
implemented for the dual-stage disk drive servo system, and 
its closed loop performance is compared to that of ARC in 
presence of modeling uncertainty. To verify the robustness of 
such algorithms, experimentally verified models for the 
system [11], is used in the simulations. The simulation results 
applied on this model is promising to work well in practice. 

The paper is organized as following, in section 2. the dynamic 
models for dual stage hard disk drives are described in detail, 
and high order linear models for HDD subsystems are given in 
addition to the modeling uncertainty. Section 3 is dedicated to 
the development of ARC and IDCARC methods and its 
theoretical performance characteristics. In section 3 the details 
of simulation studies, and the obtained results is elaborated.  

II. DYNAMICS MODELS OF DUAL-STAGE HDD 

Fig. 1 illustrates a schematic of a hard disk drive (HDD) with 
a dual-stage actuation system. Several disks are stacked on the 
spindle motor shaft, and each disk is accompanied by a pair of 
recording heads. Each head is attached to the tip of a 
suspension. The PZT actuator is placed between the 
suspension and the base plate. The VCM actuator moves the 
carriage, base plates, PZT actuators, suspensions and heads all 
together, and the PZT actuator drives only the suspension and 
the head. Therefore, the total movement of the head is 
composed of the individual movement provided to head by the 
VCM and PZT actuators. In order to control the position tip of 
the head of HDD with the stringent accuracy requirement, two 
controllers must be designed for the system, in which the 



VCM closed loop feedback provides the course positioning, 
and the PZT actuator eliminates high frequency disturbances 
applied to the system. In order to model the individual 
actuators of the HDD let us start with a comprehensive 
nonlinear model for each actuator. A nonlinear model for the 
VCM is given as following [10]:  
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in which, Txxx ],[ 21=  represent the state vector of the angular 
position and velocity, y is the position, J is the moment of 
inertia, u  is the control input, B  and fA  are coefficient of 
viscous and coulomb friction, respectively, hysF  and hiF  
represent the effect of hysteresis loop and high frequencies 
uncertainties, respectively, and, dF  is the external 
disturbance. Similar nonlinear models can be derived for the 
PZT actuators in HDD’s. In order to apply linear robust 
controllers to this problem, the nonlinear model of each 
actuator of the system is represented by a linear model and 
multiplicative uncertainty, using a systematic linear 
identification scheme. In this representation, the nominal 
model replicates the dynamic behavior of the system, only at 
nominal conditions, and all nonlinear interactions, unmodeled 
dynamics and the disturbances are encapsulated via an 
unstructured uncertainty representation. This idea is used 
extensively in many applications, where linear H∞ or µ-
synthesis schemes are used in controller design of some 
nonlinear systems [11,12].  
In order to represent a system into this form, suppose the true 
system belongs to a family of plants ∏, which is defined by 
using the following perturbation to the nominal plant Po: 

( ) ( ) ( ) ( )( ) ( )1 oP s P s s W s P s∀ ∈Π = + ∆   

In this equation W(s) is a stable transfer function indicating the 
upper bound of uncertainty and ∆(s) indicates the admissible 
uncertainty block, which is a stable but unknown transfer 
function with ║∆║∞< 1. In this general representation 
∆(s)W(s) describes the normalized perturbation of the true 
plant from nominal plant, and is quantitatively determined 
through identification at each frequency: 
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Where,│W(jω)│ represents the amplitude of the uncertainty 
profile with respect to frequency. Nominal plant Po, can be 
evaluated experimentally, through a series of frequency 
response estimates of the system in the operating regime. 
Linear identification for the system can be applied with 
different input amplitudes, while their outputs are measured 
and logged. By minimizing the least squares of the prediction 
error, from the set of input-output information, a set of linear 

models are estimated for the system, which can be considered 
as the set Π. The uncertainty upper bound W(s), is then 
obtained using Equation (3), while the nominal plant Po is 
selected from the average fit over all the individual identified 
plants. By this means, not only the nominal plant of the 
system is obtained, but also a measure of its perturbations, 
will be encapsulated by the multiplicative uncertainty.  
Using this technique the actuator linear models are derived 
from experimental frequency response estimates of system 
[11]. In order to measure the tip position of the PZT actuator a 
Laser-Doppler-Scanning Vibrometer (LDV) is used in this 
reference. For each actuator, 21 frequency response estimates 
are then derived experimentally using a Dynamic Signal 
Analyzer (DSA), which are presented in Figs. 3 and 4. The 
nominal model of the actuators is derived by averaging all the 
frequency response estimates [11]. The nominal model of the 
VCM-actuator which is shown in Fig. 3, is a stable 12 order 
non-min phase system, whose pole zero patterns are given in 
Table I. The PZT actuator model is also a stable but 10 order 
non-min phase system whose zero-poles pattern are given in 
Table II. 
The uncertainty profiles of the models are experimentally 

TABLE I 
POLES  ZEROS PATTERN OF VCM NOMINAL MODEL  

Zeros Poles  

(-0.0076± 0.1317 j) ×104 (-0.0230 ± 0.0896 j) ×104 1,2 

(-0.0214 ± 0.1333 j) ×104 (-0.0089 ± 0.1295 j) ×104 3,4 

(-0.0898 ± 1.9927 j) ×104 (-0.0124± 0.1401 j) ×104 5,6 

(-0.0770 ± 3.5620 j) ×104 (-0.0915 ± 1.8589 j) ×104 7,8 

(2.4248 ± 7.3828 j) ×104 (-0.0729 ± 3.1183 j) ×104 9,10 

2.5886×104, -5.5608×104 (-0.0747 ± 6.6933 j) ×104 11,12 

TABLE II 
POLES  ZEROS PATTERN OF PZT NOMINAL MODEL  

Zeros Poles  

(-0.0056 + 0.3132j) ×105 (-0.0488 ± 3.1141j) ×104 1,2 

(-0.0168 + 0.4239j) ×105 (-0.0869 ± 4.1066j) ×104 3,4 

(-0.0267 + 0.5234j) ×105 (-0.2287 ± 5.1408j) ×104 5,6 

(-0.0588 + 0.7707j) ×105 (-0.0320 ± 6.7123j) ×104 7,8 

1.2430×105, -4.3606×105
 (-1.4642 ± 8.4616j) ×104 9,10 

 
Fig. 1. Schematic of HDD with PZT actuator 



derived and using equation (2) the uncertainty profiles are 
calculated for each actuator and illustrated in figures 4 and 5, 
respectively. As it will be elaborated in the proceeding 

section, the adaptive robust controller for the system is 
designed based on a reduced order model of the system. 
Hence the full order model of the system and its uncertainty 
profile is used in simulation to verify the robustness of the 
proposed algorithm in presence of modelling uncertainty.  

III. ADAPTIVE ROBUST CONTROL  

In order to design the adaptive robust controller, identification 
of a simple model for the system is sufficient [10]. The 
comprehensive models for actuators can be reduced to second-
order transfer functions as illustrated in figures 4 and 5. The 
state space representation of such models can be linearly 
parameterized as: 

1 2x x=  (3) 

1 2 2 2 3 2 4( )x u x Sign x dθ θ θ θ= − − + +  (4) 

In which nd=4θ  is the nominal value of the lumped 
disturbance d . It is assumed that, all the effect of unmodeled 
dynamics, hysteresis and high frequency resonances of the 
systems are absorbed into the term d . In order to describe the 
controller structure, consider the following assumptions. 

Assumptions: The following bounds and structures for 
uncertainties and disturbances are assumed. 

{ }maxmin: θθθθΩθ θ <<≡∈  
{ :| | }d dd d d δ∈Ω ≡ <  (5)

In which, T],...,[ min4min1min θθθ = , T],...,[ max4max1max θθθ =  
and dδ  are assumed to be known. Let θ̂  denotes the estimate 

of θ  and θ  the estimation error (i.e. ˆθ θ θ= − ). In view of (4) 
the following adaptation law with discontinuous projection 
modification can be used: 

where, 0>Γ  is a diagonal matrix, τ  is adaptation function to 
be synthesized later. The projection mapping is defined as:  
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It can be shown that for any adaptation function τ  the 
projection mapping used in (7) guarantees [10]:  
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1
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P
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θθ θ θ θ θ
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A. ARC Controller Design 

Define a PD switching-function as 1p e k e= + = eqxx 22 − , 
where 2 1eq dx y k e≡ −  and )(tyye d−=  is the output tracking 

error, )(tyd  is the desired trajectory to be tracked by y , and 

1k  is any positive feedback gain. With respect to (3) one can 
obtain: 

1 2 2 2 3 2 4( ) T
eqJp u x x Sign x d u dθ θ θ θ ϕ θ= − − − + + = + +  (9) 

If p is small or converges to zero exponentially, then the 
output tracking error e , will be small or converges to zero 

ˆ Pr ( )ojθ τ= Γ  (6) 
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exponentially. This is because )/(1)(/)()( 1ksspsesGp +==  is 
a stable transfer function. Hence, the rest of design is to make 
p  as small as possible. Where 

2 2 2[ , , ( ),1]T
eqx x Sign xϕ = − − −  

and 2 1eq dx y k e= − . 

The control law consists of two parts: 
ˆT

a s au u u u ϕ θ= + = −  

1 2 1 2         s s s su u u u k p= + = −  
(10) 

Where au  is the adjustable model compensation needed for 
achieving perfect tracking, and su is a robust control law 
consist of two parts: 1su  is used to stabilize the nominal 
system which is a proportional feedback in this case, and 2su  
is a robust feedback term to attenuate the effect of model 
uncertainties, which will be synthesize later. Substituting (10) 
in to (9), and simplifying one can obtain: 

T
sJp u dϕ θ= − +  (11) 

Noting Assumption 1 and P1 of (8), there exist a 2su such that 
the following two conditions are satisfied: 

2 2) { } ) 0T
s si p u d ii puϕ θ ε− + ≤ ≤  (12) 

where, ε  is a design parameter which can be chosen 
arbitrarily small. From condition (i) 2su  is synthesized to 
dominate the model uncertainties coming from both 
parametric uncertainties θ  and uncertain nonlinearities d , 
and condition (ii) guarantees that 2su  is dissipative in nature 
so that it does not interfere with the functionality of the 
adaptive control part au . If the adaptation function in (6) is 
chosen as p.ϕτ =  then the ARC control law in (10), whose 
general block diagram is depicted in Fig. 6, guarantees all 
signals to be bounded [10]. In addition, if after finite time 0t , 
there exist only parametric uncertainties i.e., (

00,d t t= ∀ ≥ ), 
then zero final tracking error is achieved, i.e. 0→e  and 

0→p  as ∞→t . 

B. Improved Desired Compensation ARC 

In the ARC design presented, the regressor ϕ  in the model 
compensation au (Eq. 10) and adaptation function p.ϕτ =  
depends on the actual measurement of the velocity 2x . Thus 
the effect of measurement noise is severe. Moreover, in spite 
of condition ii of (12), there still exist certain interaction 
between the model compensation au  and the robust control 

su . This may complicate controller gain tuning process in an 
experimental implementation. In the IDCARC, the control law 
and the adaptation function have the same form as (10) and 

p.ϕτ = , respectively, however, regressor ϕ  is substituted by 
the desired regressor dϕ : 

ˆT
a s a d du u u u pϕ θ τ ϕ= + = − =  (13) 

Where [ , , ( ),1]T
d d d dy y Sign yϕ = − − − . Substituting (13) into 

(11) and noting that 2 dx y e= + , one obtains: 

1 1 2 3 2( ) [ ( ) ( )]T
s d dJp u k e Sign y Sign x dϕ θ θ θ θ= − + − + − +  (14) 

Note that since only the desired trajectory information )(tyd  
is needed in this case, the effect of noise is reduced 
significantly. Comparing (14) with (11), it can be seen that 
two additional terms (under lined) has been appeared, which 
may demand a strengthened robust control function su  for a 
robust performance. The strengthened robust control function 

su  has the same form as (10): 

1 2 1 1s s s s su u u u k p= + = −  (15) 
The drawback of using desired regressor dϕ  instead of 
measured one ϕ , is the inability to attenuate disturbance fast 
enough to accommodate hard disk drives requirements. This is 
remedied in IDCARC by using a dynamical adaptation law. 
As depicted in Fig. 8 it is proposed to change the I (integrator) 
estimator with a PI (Proportional-Integral) routine in 
estimation mechanism of θ . A detail elaboration of the effect 
of these changes into the identification procedure, and a 
thorough stability analysis of this algorithm is given in [10]. 

C. Reduced Order Model and Prefilter Design 

As it is described in the previous subsections, in order to 
design ARC controllers for each actuator of the HDD, a 
reduced second-order model for each actuator is needed. As it 
is illustrated in figures 3, and 4, the reduced order models are 
assigned as the following transfer functions.  

7

, 2

8.119 10 /
460.3 853776VCM reducedG m Volt

s s
µ×

=
+ +

 (16) 
8

, 2 8

1.343 10 /
21000 2.25 10PZT reducedG m Volt

s s
µ×

=
+ + ×

 (17) 

One of main features neglected in these reduced models is the 
effect of non-min phase zeros of the models, which are given 
in Tables I and II. The destabilising effect of neglecting those 
zeros can be compensated by designing appropriate prefilters 
in addition to the usual ARC structure of the controllers for 

 
Fig. 6. ARC Block diagram 

 
Fig. 7. IDCARC Block diagram 



each actuator as depicted in Fig. 8. The prefilters are designed 
by carefully examination of the location of the unstable zeros 
of the models, and also the uncertainty profile of the system 
(Figures 4 and 5). As a direct implication of small-gain 
theorem for the robust stability of uncertain systems, it is well 
understood that at the frequencies where the uncertainty 
profile of the system is beyond zero dB, the designed 
controller must reduces ||WT||∞<1, in which W(s) is the 
uncertainty weighting function and T(s) is the closed loop 
transfer function.  
To accomplish that for the VCM prefilter design, consider the 
following fourth order stable transfer function with relative 
degree two, whose poles are located close to the high 
frequency stable and the mirror of unstable zeros of the plant 
with respect to the imaginary axis, and its zeros are close to 
the high frequency poles of the system: 

4

1 4 4 4

(0.07 6.7 ) 10
( 5.56 10 )( 2.6 10 )( (2.4 7.4) 10 )VCM

s jP K
s s s

+ ± ×
=

+ × + × + ± ×
 (29) 

K1 is chosen such that the DC gain of the transfer function 
equals to one. Similarly for the PZT actuator a sixth order 
stable transfer function with relative degree of two is 
designed. The prefilter zeros compensate for the high 
frequency poles of the system, and its poles compensate for 
high frequency stable and unstable zeros of the system. 
Moreover, a pair of complex poles with ω=1.5e4 rad/sec, 
ξ=0.707 is added to the prefilter to act as the dominant poles 
for the system in controller design. K2 is chosen such that the 
DC gain of the transfer function equals to one.  

4 4

2 2 2 4 5 5

( (0.03 6.7 ) 10 )( (1.4 8.4 ) 10 )
( 2 )( (0.58 7.7) 10 )( 1.24 10 )( 4.36 10 )PZT

s j s jP K
s s s s sωξ ω

+ ± × + ± ×
=

+ + + ± × + × + × (30) 

The bode plots of VCM, and PZT actuators, with and without 
prefilter compensation is given in figures 9, and 10, 
respectively. As it is shown in this figure, the prefilters 
attenuates the system gains at high frequencies, where the 
uncertainty profiles are higher than 0 dB, while adding 
negative phase to the systems to compensate for destabilizing 
effect of unstable zeros of the systems. 

IV. SIMULATION RESULTS  

A. Performance Indices 

Simulations studies have been performed for ARC, and 
IDCARC to verify the effectiveness of the proposed controller 
in terms of tracking errors, and disturbance rejection in 

presence of modelling uncertainty. In order to compare 
simulation results the following performance indices are used.  

I1)
1/ 2

2
2 0
[ ] 1/ fT

fL e T e dt⎡ ⎤= ⋅⎢ ⎥⎣ ⎦∫  is an average tracking 

performance index, for the entire error curve e(t), and Tf 
represents the total simulation time.  

I2) })({max tee tM = , is the maximum absolute value of the 
tracking error, and is a measure of transient performance.  
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variations.  

B. Controller Structures 

The following control structures are used in simulations: 
• ARC: The ARC law proposed in section 3. is applied on 
both actuators. With us=-ksp, ks ≥ k2+h2/4ε and ks=1.0, the PD 
switching control gains are chosen as given below in order to 
obtain closed loop bandwidth of 1kHz, and 70kHz for VCM, 
and PZT actuator, respectively 

4 5
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Fig. 8. The VCM and PZT final controller strategy. 



The adaptation rates are set as Γ=diag[10 100 1e5 100], and 
the initial parameters are chosen as follows: 

40.01231 5.6695 1.0515 10 1VCMθ ⎡ ⎤= ×⎣ ⎦
3 2 67.4458 10 1.5636 10 1.6753 10 1PZTθ −⎡ ⎤= × × ×⎣ ⎦

 

• IDCARC: The proposed IDCARC law is applied on the 
system. All coefficients are the same as ARC coefficient and 
the integrator gain in the adaptive part is set to kI=1000.  

C. Simulation Input Signals 

In order to verify the effectiveness of the proposed controller 
in obtaining the stringent tracking performance requirement 
the following two sets of experiments considered for the 
system.  
Set 1: To test tracking performance of the controllers in 
presence of disturbances acting on the system, a 2600 track 
seeking trajectory is considered in this set. The reference 
trajectory is designed based on SMART algorithm described 
in [10], and is illustrated in Fig. 11. Moreover, the following 
pulse disturbance inputs for VCM and PZT are applied, at 0.01 
sec, and 0.02 sec, respectively. 
 ( )3 ( 0.01) ( 0.013)vcmd u t u t= − − − , ( )2 ( 0.020) ( 0.023)pztd u t u t= − − −  

The saturation amplitude of the PZT actuator is considered as 
±25 volts. 
 

Set 2: The performance of the closed loop system to the Set 1 
reference trajectory, is simulated in this set in the presence of 
worst case uncertainty at both actuator models ||∆||∞=1. This 
set is considered to verify the robust performance of the 
proposed controller. 

D. Controllers Performance 

Figures 11 and 12 illustrate the closed loop performance of the 
ARC and the proposed controller, respectively. In these 
simulations the disturbance rejection objective, which is 
designed in Set 1, is simulated for the full order nominal 
model of VCM and PZT servo actuators. In order to have 
detail comparison of the controller performances different 
quantities are plotted in these figures. The total tracking 
performance of the tip head for 2600 one micron tracks are 
plotted first versus the desired trajectory.  
The tracking errors are divided into two next plots in these 
figures, in which in the first plot the total seeking performance 
for the first 8 millisecond seeking time is given, while the 
accuracy of the tip positioning in tracking performance is 
given in the next plot. To evaluate the significance of the PZT 
actuator in order to reduce the tracking performance of the 
total head tip position, the VCM tracking performance is 
given separately in the next plot, and finally, the actuator 
efforts of the VCM and PZT actuators are given in the last two 
plots. To further compare the controller performances 
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Fig. 11. The closed loop performance of the ARC controller in presence of 
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Fig. 12. The closed loop performance of the IDCARC controller in presence of 

disturbance 



quantitatively, the performance indices described in the 
preceding section is given in Table III. The final error 
performance index is highlighted in this table, which indicates 
the final tracking error achievable by the controller, and the 
individual contribution of VCM and PZT actuator to this 
performance. 
It is observed that the proposed method is contributing into a 
better tracking performance in both seeking and tracking 
regimes, and the effect of disturbance is rejected significantly 
reaching to a final tracking error 4e-3 microns in the IDCARC 
method. However, the difference between the closed-loop 
performance of ARC and IDCARC are minimal in these 
simulations. The significant improvement of introducing 
dynamic adaptation in the proposed method is revealed in the 
simulation of Set 2, in which the worst case modelling 
uncertainty is also integrated into simulations. Figures 13 and 

14 compares the closed loop performance of ARC and 
IDCARC methods in presence of modelling uncertainty, and 
the quantitative evaluation of the performance indices are 
given in Table III. As it is seen in these figures, the ARC 
controller is unable to reduce the final tracking performance 
below one micron, and as it is seen in the actuator effort of 
PZT remains in saturation for all the simulation time. 
However, the IDCARC controller preserves the total tracking 
error below one micron, and as it is specified in Table III, the 
final tracking error for this case is increased to 1e-2 microns, 
which is completely satisfying, while the control efforts of 
both actuators remain also within their limits. These 
extraordinary results are reproduced for disturbance rejection 
objective with worst case uncertainty, and are very promising 
for physical implementation. 

TABLE III 
PERFORMANCE INDEX FOR DESIRED TRAJECTORY 

Experiments Set 1 Set 2 
Performance  ARC IDCARC ARC IDCARC 
Index VCM PZT VCM PZT VCM PZT VCM PZT 

510Me −×  6.4 6.1 4.8 4.7 9.6 8.4 7.5 6.3 
-7

Fe ×10  4.5 0.06 3.1 0.04 127.5 127.5 6.9 0.01 
4

2[ ] 10L e −×  9.2 8.0 7.2 6.1 28.3 24.8 17.3 15.4 
2

2[ ] 10L u ×  14.2 7.0 14.2 6.0 73.7 13.6 130.2 16.6 
2

2[ ] 10L u −∆ ×  9.8 0.31 6.5 0.32 0.10 8.97 6.18 8.4 
410uc −×  69.1 4.5 0.46 5.4 0.13 0.66 0.047 0.51 
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Fig. 13. The closed loop performance of the ARC controller in presence of 

worst case uncertainty 
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Fig. 14. The closed loop performance of the IDCARC controller in presence of 

worst case uncertainty 
 



V. CONCLUSIONS  

In this paper, an adaptive robust controller is implemented on 
dual-stage hard disk drives. An adaptive robust controller 
(ARC) is designed first for each actuator, which theoretically 
guarantees a prescribed transient performance and well 
behaved tracking in presence of uncertainties. An IDCARC 
scheme is then proposed, in which a dynamic adaptation law is 
included into the ARC method. A robust simulation study of 
these method are presented in this paper, in which the 
controllers designed based on simple models for the 
subsystem are implemented on an experimentally verified 
high order models for the system. Simulation result verifies 
the effectiveness of the IDCARC method in preserving the 
stringent tracking performance requirement of the hard disk 
drives in presence of worst case unstructured uncertainty of 
the models. This analysis provides the required assurance of 
its successful experimental implementation in future. 
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