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Abstract
In this paper the dynamic analysis of a macro–micro parallel manipulator is studied in detail. The manipu-
lator architecture is a simplified planar version adopted from the structure of the Large Adaptive Reflector
(LAR), the Canadian design of next-generation giant radio telescopes. In this structure it is proposed to use
two parallel redundant manipulators at the macro and micro level, both actuated by cables. In this paper,
the governing dynamic equation of motion of such a structure is derived using the Newton–Euler formu-
lation. Next, the dynamic equations of the system are used in the open-loop inverse dynamics simulations,
as well as closed-loop forward dynamics simulations. In the open-loop dynamic simulations it is observed
that the inertial forces of the limbs contribute only 10% of the dynamic forces required to generate a typi-
cal trajectory and, moreover, the total dynamic forces contribute only 10% of the experimentally measured
disturbance forces. Furthermore, in the closed-loop simulations using decentralized PD controllers at the
macro and micro levels, it is shown that the macro–micro structure results in a 10 times more accurate posi-
tioning than that in the first stage of the macro–micro structure. This convincing result promotes the use of
the macro–micro structure for LAR application.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2008
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1. Introduction

An international consortium of radio astronomers and engineers has agreed to
investigate technologies to build the Square Kilometer Array (SKA), a centimeter-
to-meter wave radio telescope for the next generation of investigation into cosmic
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Figure 1. An artist’s concept of a complete 200-m diameter LAR installation.

phenomena [1–3]. A looming ‘sensitivity barrier’ will prevent current telescopes
from making much deeper inroads at these wavelengths, particularly in studies of
the early universe. The Canadian proposal for the SKA design consists of an array
of 30–50 individual antennas whose signals are combined to yield the resolution of
a much larger antenna. Each of these antennas would use the Large Adaptive Re-
flector (LAR) concept put forward by a group led by the National Research Council
of Canada, and supported by university and industry collaborators [4–6]. The LAR
design is applicable to telescopes up to several hundred meters in diameter. How-
ever, design and construction of a 200-m LAR prototype is pursued by the National
Research Council of Canada. Figure 1 is an artist’s concept of a complete 200-m
diameter LAR installation, which consists of two central components. The first is a
200-m diameter parabolic reflector with a focal length of 500 m, composed of actu-
ated panels supported by the ground. The second component is the receiver package
which is supported by a tension structure consisting of multiple long tethers and
a helium-filled aerostat as shown schematically in Fig. 2. With funding from the
Canada Foundation for Innovation, a one-third scale prototype of the multi-tethered
aerostat subsystem has been designed and implemented in Penticton [7]. It should
be noted that even at one third scale, this system is very large, with a footprint of
roughly 1 km2.

The challenging problem in this system is accurately positioning the feed (re-
ceiver) in the presence of disturbances, such as wind turbulence. For the positioning
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Figure 2. Schematics of the LCM with eight cables and aerostat.

structure of the receiver a macro–micro manipulator design is proposed, in which
at both the macro and micro levels two redundantly actuated cable-driven paral-
lel manipulators are used. As illustrated in Fig. 2, at the macro level the receiver is
moved to various locations on a circular hemisphere and its positioning is controlled
by changing the lengths of eight tethers with ground winches. The cable-driven
macro manipulator used in this design, which is called the Large Cable Mecha-
nism (LCM), is in fact a 6-d.o.f. cable-driven redundantly actuated manipulator.
For sufficient coverage of the sky, the LCM must be capable of positioning the re-
ceiver for a wide range of zenith angles (0 � θz � 60◦) and for the full range of
azimuth angles (0 � θa � 360◦). Once the receiver is in place, the position con-
troller of the system at the micro level responds to disturbances such as wind gusts
in order to limit the movement of the receiver to centimeter accuracy. At this level
a Confluence Point Mechanism (CPM) is designed to perform the final small-scale
corrections at high frequencies. The CPM requires 6 d.o.f. and is also a redundantly
actuated cable-driven parallel manipulator. The CPM base is attached to the LCM
structure with tethers and its moving platform accurately positions the telescope
feed (receiver). This design is intended to keep the moving platform of the CPM,
and hence the feed, as close to stationary as possible, and pointed toward the center
of the reflector.

Since in the design of the LCM/CPM a macro–micro structure is proposed in
which at each level a redundantly actuated parallel manipulator is used for ex-
treme positioning accuracy, this paper intends to study the dynamic analysis of such
macro–micro structures in detail. Although the analysis of the above system is nat-
urally adopted from the design of the LCM/CPM structure, it touches two leading
topics in parallel robotics research, i.e., tendon-driven redundant parallel manipu-
lators and macro/micro structure in parallel structures, which have their own merits
and potential application beyond the LAR. In the LCM/CPM structure, two parallel
manipulators with 6 d.o.f. are used at the macro and micro levels. In contrast to the



952 H. D. Taghirad, M. A. Nahon / Advanced Robotics 22 (2008) 949–981

open-chain macro–micro manipulator, the dynamic analysis of parallel manipula-
tors with such structures exhibits an inherent complexity, due to their closed loops
and kinematic constraints. Therefore, in order to keep the analysis complexity at
a managable level, while preserving all the important analysis elements, a simpli-
fied version of the macro–micro structure is considered in this paper as the basis
of the analysis. This structure is composed of two parallel 4RPR mechanisms, both
actuated by cables. In this simplified structure, although a planar version of the
mechanisms is considered, two important features of the original design, i.e., the
cable-driven actuators with redundancy for each subsystem and the macro–micro
structure of the original design, are employed.

In contrast to the open-chain serial manipulators, the dynamic modeling of paral-
lel manipulators presents an inherent complexity due to their closed-loop structure
and kinematic constraints. Nevertheless, the dynamic modeling is quite important
for the control, particularly because parallel manipulators are preferred in appli-
cations where precise positioning and good dynamic performance under high load
are the prime requirements. In recent years, there has been a great amount of re-
search on the kinematics of parallel manipulators, but works on the dynamics of
parallel manipulators are relatively few. Several approaches have been proposed
for the dynamic analysis of parallel manipulators. The traditional Newton–Euler
formulation is used for the dynamic analysis of general parallel manipulators [8]
and also for the Stewart platform, which is the most celebrated parallel manipula-
tor [9]. In this formulation the equation of motion for each limb and the moving
platform must be derived, which inevitably leads to a large number of equations
and less computational efficiency. On the other hand, all the reaction forces can be
computed, which is very useful in the design of a parallel manipulator. The La-
grangian formulation eliminates all the unwanted reaction forces at the outset, and
it is more efficient [10]. However, because of the numerous constraints imposed by
the closed loops of a parallel manipulator, deriving explicit equations of motion in
terms of a set of independent generalized coordinates becomes a prohibitive task
[11]. A third approach is to use the principle of virtual work, in which the compu-
tation of the constraint forces is bypassed [12]. In this method the inertial forces
and moments are computed using the linear and angular accelerations of each of
the bodies. Then, the whole manipulator is considered to be in static equilibrium
and the principle of virtual work is applied to derive the input force or torque [12].
Since constraint forces and moments do not need to be computed, this approach
leads to faster computational algorithms, which is an important advantage for the
purposes of control of a manipulator [13]. Other approaches have also been sug-
gested in the literature [14, 15]. Inverse dynamic formulations are used primarily
for the closed-loop control algorithms applied for parallel manipulators. Among
the reported research, a position control routine using inverse dynamics of Stewart
platform is implemented in Ref. [16], while stiffness control for such manipulator
is implemented in Ref. [11]. Among the many control topologies reported in the
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literature, the dynamics and control of redundantly actuated parallel manipulators
has been considered by fewer researchers [17].

Due to the potential attraction of the macro–micro structure in the LAR ap-
plication, a thorough analysis on the kinematics and dynamics of the described
macro–micro parallel manipulator has been developed, and some-closed loop con-
trol topologies are proposed and simulated for this system. The governing dynamic
equation of motion of the macro–micro manipulator is derived using both the
Newton–Euler formulation and the principle of virtual work Newton–Euler formu-
lation. In this paper the dynamic analysis of this system using the Newton–Euler
formulation is reported, while the virtual work method is presented in Ref. [18].
Furthermore, the dynamic equations of the system are used in two sets of simula-
tions. First, the inverse dynamic simulations are presented, in which the required
actuator torques to generate a predefined trajectory is computed. It is shown that
for a typical trajectory, the limb inertial forces contributes only 10% of the dy-
namic forces and the total dynamic forces contribute only 10% of external forces
in the presence of some experimentally measured disturbance forces. Finally, the
inverse dynamic equations are used in a special implicit integration routine in order
to simulate the dynamic behavior of the system in closed-loop form and in the pres-
ence of disturbances. It is shown that for a typical trajectory and in the presence of
experimentally measured disturbance forces, the macro–micro structure results in
10 times more accurate positioning than that in the first stage of the macro–micro
structure. This convincing result promotes the use of the macro–micro structure in
the LAR application.

2. Mechanism Description

The architecture of the planar macro–micro 2 × 4RPR parallel manipulator consid-
ered for our studies is shown in Fig. 3. This manipulator consists of two similar
4RPR parallel structures at the macro and micro level. At each level the moving
platform is supported by four limbs of identical kinematic structure. At the macro
level each limb connects the fixed base to the macro manipulator moving platform
by a revolute joint (R) followed by a prismatic joint (P) and another revolute joint
(R). The kinematic structure of a prismatic joint is used to model the elongation of
each cable-driven limb. In order to avoid singularities at the central position of the
manipulator at each level, the cable-driven limbs are considered to be crossed. Com-
plete kinematic and singularity analysis of the mechanism is reported in Ref. [21].
At the micro level a similar 4RPR structure is used; however, the base points of
the macro manipulators are located on the moving platform of the macro manipu-
lator. Angular positions of fixed base and moving platform attachment points are
given in Table 1, in which capital letters are used to describe the macro manipula-
tor variables, while small letters are used for that of the micro manipulator. In this
presentation, Ai denotes the fixed base points of the limbs, Bi denotes the connec-
tion points of the limbs on the moving platform, Li denotes the limb lengths and
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Figure 3. Schematics of the 2 × 4RPR mechanism employed for the analysis of the LCM/CPM struc-
ture.

αi denotes the limb angles. The position of the center of the moving platform at the
macro level is denoted by G = [xG,yG] and the final position of the micro manip-
ulator g is denoted by g = [xg, yg], which both are measured relative to the inertial
coordinate frame depicted in Figs 3 and 4. The absolute orientation of the macro
manipulator moving platform is denoted by φ and the absolute orientation of the
micro manipulator with respect to the fixed coordinate frame is denoted by ψ .

The planar structure used in this analysis is a simplified version of the LCM/CPM
design, in which the two important features of the main mechanism, i.e., the macro–
micro structure and actuator redundancy, are preserved in a planar structure. Al-
though in the simplified structured used in this analysis, the 6 d.o.f. of the real
system is down scaled to 3 d.o.f. and the vertical motion of the feed is neglected,
the dynamic analysis results can be used to verify the significance of the macro–
micro structure in the design. The control objective in the simplified mechanism is
to track the desired position and orientation of the final micro moving platform in
the presence of a disturbance force, such as wind turbulence. The geometry of the
fixed and moving platform attachment points, Ai,Bi, ai and bi , are considered to
be arbitrary in the analysis and they are not necessarily coincident. However, the
parameter used in the simulations of the system is adopted from the LCM/CPM
design and is symmetrical, as given in Table 1.
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Table 1.
Geometric and inertial parameters of macro–micro manipulator according to the LCM/CPM design

Description Symbols Quantity

Location circle radius of the macro fixed points Ai RA 900 m
Location circle radius of the macro moving points Bi RB 10 m
Location circle radius of the micro base points ai Ra 10 m
Location circle radius of the micro moving points bi Rb 2 m
Angle of macro fixed points Ai θAi

[−135◦,−45◦,45◦,135◦]
Angle of macro moving points Bi θBi

[−45◦,−135◦,135◦,45◦]
Angle of micro fixed points ai θai [−45◦,45◦,135◦,−135◦]
Angle of micro moving points bi θbi

[45◦,−45◦,−135◦,135◦]
Macro moving platform mass M 2500 kg
Macro moving platform moment of inertia IM 3.5 × 105 kg · m2

Macro limb density per length ρM 0.215 kg/m
Micro moving platform mass m 500 kg
Micro moving platform moment of inertia Im 2 × 103 kg · m2

Micro limb density per length ρm 0.1 kg/m
Maximum macro actuator force τAmax 5 kN
Maximum micro actuator force τamax 50 N

Figure 4. Kinematics configuration of the macro manipulator.

3. Kinematic Analysis

3.1. Position Analysis

In this section, the kinematic of the system is detailed. In this analysis the inverse
kinematics of the macro manipulator is analyzed first and then the kinematic analy-
sis of the macro–micro assembly is presented.
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3.1.1. Inverse Kinematics of the Macro Manipulator
For the inverse kinematic analysis of the macro manipulator, it is assumed that
the position and orientation of the moving platform X = [xG,yG,φ]T is given
and the problem is to find the joint variable of the macro manipulator, L =
[L1,L2,L3,L4]T. For the purpose of analysis and as it is illustrated in Fig. 3, a fixed
frame O :xy is attached to the fixed base at the point O , the center of the circle
which passes through Ai ’s, and another moving coordinate frame G :UV is at-
tached to the macro manipulator moving platform at point G. Furthermore, assume
that the point Ai lies at the radial distance of RA from point O and the point Bi lies
at the radial distance of RB from point G in the xy-plane, when the manipulator is
at the central location.

In order to specify the geometry of the macro manipulator define θAi
, θBi

as the
absolute angle of the points Ai and Bi at the central configuration of the macro
manipulator, with respect to the fixed frame O . Moreover, notice that the moving
platform experiences a position and orientation of [xG,yG,φ]T at each instant. Let
us define the instantaneous orientation angle of Bi as:

φi = φ + θBi
. (1)

Therefore, for each limb, i = 1,2, . . . ,4, the position of the base points, Ai are
given by:

Ai = [RA cos(θAi
),RA sin(θAi

)]T. (2)

From the geometry of the macro manipulator as illustrated in Fig. 4, the loop-
closure equation for each limb, i = 1,2, . . . ,4, can be written as:

−−−→
AiG = −−−→

AiBi + −−−→
BiG. (3)

Rewriting the vector loop closure component-wise:

xG − xAi
= Li cos(αi) − RB cos(φi) (4)

yG − yAi
= Li sin(αi) − RB sin(φi), (5)

in which αi is the absolute limb angles. To solve the inverse kinematic problem,
αi must be eliminated from the above equation and it must be rewritten in terms
of Li . This can be accomplished by reordering the above equation as:

Li cos(αi) = xG − xAi
+ RB cos(φi) (6)

Li sin(αi) = yG − yAi
+ RB sin(φi). (7)

By adding the square of both sides of (6) and (7) the limb lengths are uniquely
determined:

Li = [(
xG − xAi

+ RB cos(φi)
)2 + (

yG − yAi
+ RB sin(φi)

)2]1/2
. (8)

Furthermore, the limb angles αi can be determined from:

αi = atan 2
[(

yG − yAi
+ RB sin(φi)

)
,
(
xG − xAi

+ RB cos(φi)
)]

. (9)

Hence, corresponding to each given macro manipulator location X = [xG,yG,φ]T,
there is a unique solution for the limb length Li and limb angle αi .
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3.1.2. Macro–Micro Kinematics
For inverse kinematic analysis of the macro–micro manipulator, it is assumed that
the position and orientation of the macro moving platform X = [xG,yG,φ]T and
that of the micro moving platform x = [xg, yg,ψ]T are given. The problem is then
to find the joint variables of the macro manipulator, L = [L1,L2,L3,L4]T and that
of the micro manipulator � = [�1, �2, �3, �4]T, respectively. As explained before
capital letters are reserved for the macro manipulator variables, while small letters
are used to denote micro manipulator variables.

For the purpose of the analysis and as illustrated in Fig. 4, in addition to the
frame O :xy which is attached to the fixed base at the point O and the macro
moving coordinate frame G :UV attached to the macro manipulator at point G,
consider the micro moving coordinate frame g :uv which is attached to the micro
manipulator moving platform at point g, the center of the micro moving platform.
Furthermore, assume that the points ai lie at the radial distance of Ra from point G

and the points bi lie at the radial distance of Rb from point g in the uv plane.
In order to specify the geometry of the macro manipulator, as illustrated in Fig. 5
in addition to the definition of θAi

, θBi
, define θai

, θbi
as the absolute angle of the

points ai and bi at the central configuration of the macro manipulator, with respect
to the fixed frame O . Moreover, notice that the micro moving platform experiences
a position and orientation of [xg, yg,ψ]T at each instant as it is shown in Fig. 5.

Since the structures of the macro and micro manipulators are the same, the in-
verse kinematic solution of the macro–micro system is similar to that of the macro
manipulator and can be found in the following sequence. Starting with the
macro manipulator inverse kinematic solution, for a given X = [xG,yG,φ]T, the
macro joint variables Li and αi are determined from (8) and (9), respectively. Then

Figure 5. Vector definitions for the Jacobian derivation of the macro manipulator.
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the coordinates of points Bi and ai are determined from the following geometrical
relation:

Bi = [xG + RB cos(θBi
+ φ), yG + RB sin(θBi

+ φ)]T (10)

ai = [xG + Ra cos(θai
+ φ), yG + Ra sin(θai

+ φ)]T. (11)

Finally, assuming that the micro manipulator position and orientation [xg, yg,ψ]T

are given, the micro manipulator joint variables can be determined by the following
equations, similar to that of the macro manipulator equations (8) and (9):

�i = [(
xg − xai

+ Rb cos(ψi)
)2 + (

yg − yai
+ Rb sin(ψi)

)2]1/2
, (12)

in which:

ψi = ψ + θbi
. (13)

Furthermore, the micro manipulator limb angles βi can be determined from:

βi = atan 2
[(

yg − yai
+ Rb sin(ψi)

)
,
(
xg − xai

+ Rb cos(ψi)
)]

. (14)

3.2. Jacobian Analysis

Jacobian analysis plays a vital role in the study of robotic manipulators. The Ja-
cobian matrix not only reveals the relation between the joint variable velocities L̇
and the moving platform velocities Ẋ, it constructs the transformation needed to
find the actuator forces τ from the forces acting on the moving platform F. In this
section the Jacobian analysis for the macro manipulator is performed first and then
the Jacobian matrix of the macro–micro manipulator is derived.

3.2.1. Macro Jacobian
Contrary to the serial manipulators, the Jacobian matrix of a parallel manipulator is
defined as the transformation matrix that converts the moving platform velocities to
the joint variable velocities, i.e.:

L̇ = JM · Ẋ. (15)

In which, for the macro manipulator L̇ = [L̇1, L̇2, L̇3, L̇4] is the 4×1 limb velocity
vector and Ẋ = [ẋG, ẏG, φ̇] is the 3×1 moving platform velocity vector. Therefore,
the macro Jacobian matrix JM is a non-square 4 × 3 matrix. In order to obtain the
Jacobian matrix, let us differentiate the vector loop equation (3) with respect to
time, considering the vector definitions Ŝi and Ei illustrated in Fig. 5. Hence, for
i = 1,2, . . . ,4:

vG + φ̇(K̂ × Ei ) = L̇i Ŝi + α̇i L̇i(K̂ × Ŝi). (16)

In which, vG = [ẋG, ẏG]T is the velocity of the moving platform at point G and K̂ is
the unit vector along the Z-direction of the fixed coordinate frame O . Furthermore,
the vectors Ei and Ŝi can be found from the inverse kinematic relation by:

Ŝi = [cos(αi), sin(αi)]T (17)

Ei = [RB cos(θBi
+ φ),RB sin(θBi

+ φ)]T. (18)
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In order to eliminate α̇i , dot multiply both sides of (16) by Ŝi :

Ŝi · vG + φ̇K̂(Ei × Ŝi) = L̇i . (19)

Rewriting (19) in a matrix form:

L̇i = [ Six |Siy |EixSiy − EiySix ] ·
⎡

⎣
vGx

vGy

φ̇

⎤

⎦ . (20)

Using (20) for i = 1,2, . . . ,4 the macro Jacobian matrix JM , which is a 4 × 3
matrix, is derived as follows:

JM = [ Six |Siy |EixSiy − EiySix ]4
i=1. (21)

In order to get an expression for α̇i , cross-multiply both sides of (16) by Ŝi :

Ŝi × vG + φ̇(Ei · Ŝi )K̂ = α̇iLiK̂. (22)

Rewriting the third component of (22) in matrix form:

α̇i = 1

Li

· [ −Siy |Six |EixSix + EiySiy ] ·
⎡

⎣
vGx

vGy

φ̇

⎤

⎦ . (23)

Therefore, Jα is defined as the matrix relating the vector of moving platform
velocities, Ẋ = [ẋG, ẏG, φ̇] to the vector of angular velocities of the limbs α̇ =
[α̇1, α̇2, α̇3, α̇4] as:

α̇ = Jα · Ẋ, (24)

in which:

Jα = 1

Li

· [ −Siy |Six |EixSix + EiySiy ]4
i=1. (25)

3.2.2. Macro–Micro Jacobian
As illustrated in Fig. 5 denote ŝi as the unit vector along the micro manipulator limb
i, ei the vector form the point g to bi , and di as the vector from the point Bi to the
point ai . The vector loop closure for the micro manipulator can be written as:

−−→
Aig + −−→

gbi = −−−→
AiBi + −−−→

Biai + −−→
aibi. (26)

Substitute
−−−→
AiBi from (3):

−−→
Aig + −−→

gbi = −−−→
AiG + −−−→

GBi + −−−→
Biai + −−→

aibi. (27)

Differentiate both sides with respect to time:

vg + ψ̇(K̂ × ei ) = vG + φ̇(K̂ × Ei ) + φ̇(K̂ × di ) + �̇i ŝi + β̇i�i(K̂ × ŝi ),
(28)
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in which ŝi and di are given from inverse kinematic relation by:

ŝi = [cos(βi), sin(βi)]T (29)

di = Ra[cos(θai
+ φ) − cos(θBi

+ φ), sin(θai
+ φ) − sin(θBi

+ φ)]T. (30)

Dot multiply both sides of (28) by ŝi to eliminate β̇:

ŝi · vg + ψ̇K̂ · (ei × ŝi ) = ŝi · vG + φ̇K̂ · ((Ei + di ) × ŝi

) + �̇i . (31)

Rewriting (31) into matrix form:

[ six | siy | eixsiy − eiysix ] ·
⎡

⎣
vgx

vgy

ψ̇

⎤

⎦

= [ six | siy | (Eix + dix)siy − (Eiy + diy)six ] ·
⎡

⎣
vGx

vGy

φ̇

⎤

⎦ + �̇i . (32)

Using (32) for i = 1,2, . . . ,4 define two different Jacobian matrices Jm, the micro
manipulator Jacobian, and JMm as the macro–micro coupled Jacobian as:

Jm = [ six | siy | eixsiy − eiysix ]4
i=1 (33)

JMm = [ six | siy | (Eix + dix)siy − (Eiy + diy)six ]4
i=1. (34)

Hence:

Jm · ẋ = JMm · Ẋ + �̇. (35)

Equation (35) constitutes the relation between the micro manipulator joint velocity
vector �̇ to the macro and micro cartesian space velocities Ẋ and ẋ. Moreover, the
total macro–micro manipulator Jacobian matrix Jt can be defined as the projection
matrix of total the macro–micro joint velocities L̇ = [L̇, �̇]T to the vector of macro
and micro moving platform velocities Ẋ = [Ẋ, ẋ]T as:

L̇ = Jt · Ẋ . (36)

The Jacobian matrix Jt can be derived by grouping L and X from (15) and (35):

Jt =
[

JM 0
−JMm Jm

]
. (37)

As seen from this equation the total Jacobian matrix of the macro–micro manipu-
lator is a block triangular matrix, which contains the macro and micro individual
Jacobian matrices JM and Jm as the diagonal blocks and the coupling Jacobian
matrix JMm as the off-diagonal block.

In order to get an expression for β̇i , cross-multiply both sides of (28) by ŝi :

ŝi × vg + ψ̇(ei · ŝi )K̂ = ŝi × vG + φ̇
(
(Ei + di ) · ŝi

)
K̂ + β̇i�iK̂. (38)



H. D. Taghirad, M. A. Nahon / Advanced Robotics 22 (2008) 949–981 961

Rewriting (38) in matrix form:

β̇i = 1

�i

· [ −siy | six | eixsix + eiysiy ] ·
⎡

⎣
vgx

vgy

ψ̇

⎤

⎦

− 1

�i

· [ −siy | six | (Eix + dix)six + (Eiy + diy)siy ] ·
⎡

⎣
vGx

vGy

φ̇

⎤

⎦ . (39)

3.3. Acceleration Analysis

Acceleration analysis of the limbs and the moving platform is needed for Newton–
Euler formulation of a parallel manipulator. In this section the acceleration analysis
for the macro manipulator is performed first and then the acceleration analysis of
the macro–micro manipulator is derived.

3.3.1. Macro Accelerations
In acceleration analysis it is intended to derive expressions for the linear and angular
accelerations of the limbs, i.e., L̈i and α̈i , as a function of the moving platform
acceleration Ẍ = [ẍG, ÿG, φ̈]T. In order to obtain such a relation differentiate the
vector loop equation (16) with respect to time, considering the vector definitions Ŝi

and Ei as given in (17) and (18), and illustrated in Fig. 5. Furthermore, note that
˙̂Si = α̇i(K̂ × Ŝi ) and Ėi = φ̇(K̂ × Ei ). Hence, for i = 1,2, . . . ,4:

aG + φ̈(K̂ × Ei ) − φ̇2Ei

= L̈i Ŝi + 2L̇i α̇i(K̂ × Ŝi ) + α̈iLi(K̂ × Ŝi) − α̇2
i Li Ŝi . (40)

In order to eliminate α̈i and get an expression for L̈i , dot multiply both side by Ŝi

and reorder it into:

L̈i = aG · Ŝi + φ̈K̂(Ei × Ŝi ) − φ̇2(Ei · Ŝi ) + α̇2
i Li. (41)

In order to eliminate L̈i and get an expression for α̈i , cross-multiply both sides of 40
by Ŝi :

Ŝi × aG + φ̈(Ei · Ŝi)K̂ − φ̇2(Ŝi × Ei ) = (2L̇i α̇i + α̈iLi)K̂. (42)

This simplifies to:

α̈i = 1

Li

[ −Siy |Six |EixSix + EiySiy ]
⎡

⎣
aGx

aGy

φ̈

⎤

⎦

− 1

Li

(
(EiySix − EixSiy)φ̇

2 + 2L̇i α̇i

)
. (43)

Note that, if this equation is written for all four limbs, the first term constitutes Jα ,
as defined in (25). In order to complete the macro manipulator acceleration analysis
it is necessary to derive expressions for the linear accelerations of the center of
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mass of each limb. Since in the LAR application, the manipulator is cable driven,
it is assumed that the center of mass of each limb is located in the middle of the
limbs. Denote the velocity and acceleration of the center of mass of the limbs as
vCi

and aCi
, respectively. The velocity of the center of mass is composed of the

tangential and normal components integrated in the following vector equation:

vCi
= 1

2

(
L̇i Ŝi + α̇iLi(K̂ × Ŝi)

)
. (44)

In order to obtain the relation for the acceleration of the center of mass of each limb,
differentiate (44) with respect to time:

aCi
= 1

2

(
(L̈i − α̇2Li)Ŝi + (α̈iLi + 2L̇i α̇i)(K̂ × Ŝi )

)
. (45)

Note that the velocity and acceleration of the center of mass of the limbs vCi
and aCi

are functions of L̇i, α̇i, L̈i and α̈i , whose relation to the macro manipulator velocity
and acceleration Ẋ and Ẍ are given in (20), (23), (41) and (43), respectively.

3.3.2. Macro–Micro Accelerations
In order to derive expressions for the linear and angular accelerations of the micro
limbs, i.e., �̈i and β̈i , differentiate the vector loop equation (28) with respect to time.
Note that ˙̂si = β̇i(K̂ × ŝi ) and ėi = ψ̇(K̂ × ei ). Hence, for i = 1,2, . . . ,4:

ag + ψ̈(K̂ × ei ) − ψ̇2ei = aG + φ̈
(
K̂ × (Ei + di)

) − φ̇2(Ei + di)

+ (�̈i − �iβ̇
2
i )ŝi + (2�̇i β̇i + β̈i�i)(K̂ × ŝi). (46)

In order to eliminate β̈i and get an expression for �̈i , dot multiply both sides by ŝi

and reorder into:

�̈i = �iβ̇
2
i + [ six | siy | eixsiy − eiysix ]

⎡

⎣
agx

agy

ψ̈

⎤

⎦ − ψ̇2
i (ei · ŝi )

− [ six | siy | (Eix + dix)siy − (Eiy + diy)six ]
⎡

⎣
aGx

aGy

φ̈

⎤

⎦ + φ̇2(Ei + di) · ŝi .

(47)

Cross multiply both side of (46) by ŝi to get an expression for β̈i . With some ma-
nipulations this leads to:

�iβ̈i = −2�̇i β̇i + [ −siy | six | ei · ŝi ]
⎡

⎣
agx

agy

ψ̈

⎤

⎦ − ψ̇2(eiysix − eixsiy)

− [ −siy | six | (Ei + di ) · ŝi ]
⎡

⎣
aGx

aGy

φ̈

⎤

⎦

+ φ̇2{(Eiy + diy)six − (Eix + dix)siy}. (48)
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In order to complete the macro–micro manipulator acceleration analysis it is
necessary to derive expressions for the linear accelerations of the center of mass of
the micro limbs. As before, assume that the center of mass of the micro limb is also
located at the center of the limbs. Denote the velocity and acceleration of the center
of mass of the micro limbs as vci

and aci
, respectively. In order to evaluate these

quantities, the absolute position vector of each micro limb pci
is written as follows,

and by differentiation with respect to time the velocity and acceleration is obtained:

pci
= −−−→

AiBi + −−−→
Biai + 1

2
�i ŝi

= Li Ŝi + di + 1

2
�i ŝi .

Differentiate with respect to time:

vci
= L̇i Ŝi + Li

˙̂Si + φ̇(K̂ × di ) + 1

2

(
�̇i ŝi + �iβ̇i(K̂ × ŝi )

)

= vG + φ̇
(
K̂ × (Ei + di)

) + 1

2

(
�̇i ŝi + �iβ̇i(K̂ × ŝi )

)
. (49)

Similarly, the acceleration of the center of mass of micro limb is derived as:

aci
= aG + φ̈

(
K̂ × (Ei + di )

) − φ̇2(Ei + di )

+ 1

2

(
(�̈i − �iβ̇

2
i )ŝi + (2�̇i β̇i + �iβ̈i)(K̂ × ŝi)

)
. (50)

4. Dynamic Analysis

The most popular approach used in robotics research to derive the dynamics equa-
tion of motion of a parallel manipulator is the Newton–Euler formulation. In this
method the free-body diagrams of the limbs and moving platform are considered
and the Newton–Euler equations are applied to each isolated body. Using this
approach, all constraint forces and moments between the limbs and the moving
platform are obtained. In this paper first the dynamic equation of the macro manip-
ulator is derived, and then the dynamic equation for the macro–micro structure is
derived and analyzed.

4.1. Macro Manipulator Dynamics

In order to derive the dynamic equation of the macro manipulator, assume for the
time being that there exists no micro manipulator, and the reaction forces between
the macro and micro manipulator are zero. It is assumed that the moving platform
center of mass is located at the center point G, and it has a mass M and moment
of inertia IM . The inertia parameters of the limbs and moving platform are given in
Table 1. Furthermore, since in the LAR application the manipulator is cable driven,
it is assumed that due to the elongation in the cable length, the mass of the limbs
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Figure 6. Free-body diagram of the macro manipulator’s limb and moving platform.

varies. It is also assumed that the cables are homogeneous, with a circular cross-
section, and have a density per unit length of ρM . The cables are considered to
be in a straight line and modeled as rigid bodies, with varying mass of Mi = ρMLi

depending on the cable length. The moment of inertia of the cables also vary and can
be calculated assuming that they are slender bars with varying length. The moment
of inertia of the cables about the fixed point Ai is given by:

I
Ai

M = 1

3
ML2

i = ρM

3
L3

i . (51)

The time derivative of the mass and moment of inertia of each limb is:

Ṁ = ρML̇i, İ
Ai

M = ρML2
i L̇i . (52)

With these assumptions consider the free-body diagrams of the limbs and the mov-
ing platform as illustrated in Fig. 6. The reaction forces at fixed points Ai are
illustrated componentwise, and denoted by FN

Ai
and FS

Ai
, in which Ŝ is along the

limb direction and N̂ is perpendicular to the limb. Similarly, the internal force at
points Bi are denoted componentwise as FN

Bi
and FS

Bi
. The velocity and acceler-

ation of the limb center of mass, vCi
and aCi

, are also shown in Fig. 6. Assume
that the only external disturbance force and moment acts on the macro manipulator
moving platform, and is denoted by FD = [fDx , fDy , τD]T.

Let us first derive the equations of motion of the limbs. The Newton–Euler equa-
tions for a varying mass system can be written as:

∑
Fext = d

dt
(MivCi

) = MiaCi
+ ṀivCi

(53)

∑
MAi

= d

dt

(
I

Ai

M α̇i

) = I
Ai

M α̈i + İ
Ai

M α̇i . (54)
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In which,
∑

Fext is the summation of all external forces acting on the each limb
and

∑
MAi

denotes the resulting external moments about the fixed point Ai , and
the linear velocity and acceleration of each limb at the center of mass, vCi

,aCi
are

given in (44) and (45), respectively. Considering the free body diagram of the limb
in Fig. 6, the resulting forces and moments can be determined in vector form as:

(
FS

Ai
+ FS

Bi

)
Ŝi + (

FN
Bi

− FN
Ai

)
N̂i = MiaCi

+ ṀivCi
(55)

FN
Bi

Li = I
Ai

M α̈i + İ
Ai

M α̇i . (56)

Substituting vCi
and aCi

from (44) and (45), and writing (55) componentwise in the
Ŝi and N̂i direction, with some manipulations this result in:

FS
Ai

+ FS
Bi

= ρM

2

(
LiL̈i − (Liα̇i)

2 + L̇2
i

)
(57)

FN
Bi

− FN
Ai

= ρM

2

(
α̈iL

2
i + 3LiL̇i α̇i

)
(58)

FN
Bi

= ρM

3

(
L2

i α̈i + 3LiL̇i α̇i

)
. (59)

Note that in these equations FN
Ai

is the pivot reaction force and can be determined
by substitution of (59) into (58). By some manipulation:

FN
Ai

= ρM

6

(
L2

i α̈i + 3LiL̇i α̇i

)
. (60)

Furthermore, note that FS
Ai

is the actuator forces acting on the limbs and denote

it by FS
Ai

= τAi
. Therefore, from (57) and (59) the interacting forces between the

limbs and the moving platform, i.e., FN
Bi

and FS
Bi

, are derived, and will be used in
the dynamic equation of the moving platform:

FS
Bi

= τAi
− ρM

2

(
LiL̈i − (Liα̇i)

2 + L̇2
i

)
(61)

FN
Bi

= ρM

3

(
L2

i α̈i + 3LiL̇i α̇i

)
. (62)

Now, the equation of motion of the moving platform is derived, using the free-
body diagram depicted in Fig. 6. The Newton–Euler equation of the moving plat-
form is:

∑
Fext = fD −

4∑

i=1

(
FS

Bi
Ŝi + FN

Bi
N̂i

) = MaG (63)

∑
MG = τDK̂ −

4∑

i=1

Ei × (
FS

Bi
Ŝi + FN

Bi
N̂i

) = IMφ̈K̂. (64)

Writing the force equation (63) componentwise, with some manipulation:

MẍG − fDx +
4∑

i=1

(
FS

Bi
Six − FN

Bi
Siy

) = 0 (65)
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MÿG − fDy +
4∑

i=1

(
FS

Bi
Siy + FN

Bi
Six

) = 0 (66)

IMφ̈ − τD −
4∑

i=1

(
FS

Bi
(EiySix − EixSiy) − FN

Bi
(Ei · Ŝi )

) = 0. (67)

Equations (65)–(67) are the governing equations of motion of the macro manipula-
tor, in which FD = [fDx,fDy, τD]T is the disturbance force/torque vector exerted
on the moving platform, and the interaction forces between the limbs and the mov-
ing platform FS

Bi
and FN

Bi
are derived from the limb dynamics, and given in (61)

and (62), respectively. Furthermore, vectors Ei , and Ŝi , can be found from (17)
and (18). Therefore, (65)–(67) can be viewed in an implicit vector form of:

f(X, Ẋ, Ẍ,FD,τA) = 0. (68)

The use of this equation is 2-fold. The first use of it is to evaluate the actuator
forces τA needed to produce a prescribed trajectory X(t) = [xG(t), yG(t), φ(t)]T

in the presence of the disturbance forces and moments FD = [fDx , fDy , τD]T. De-
tails of the implementation of this application are given in Section 5.1. The most
important application of these dynamics equations is in the controller strategies for
the system which is elaborated separately in Ref. [19]. Furthermore, the governing
equations of motion of the macro manipulator can be implemented for dynamic
simulation of the system. In forward dynamic simulation, it is assumed that the
actuator forces τA(t) are given and the manipulator motion trajectory X(t) needs
to be determined. As is elaborated in Section 5.2, due to the implicit nature of the
dynamic equation, special integration routines capable to integrating implicit dif-
ferential equations are used for these simulations.

4.2. Macro–Micro Dynamics

In this section the dynamic equation of the macro–micro manipulator is derived us-
ing the Newton–Euler formulation. Consider the free-body diagrams of the micro
manipulator limbs and moving platform as illustrated in Fig. 7. Similar to the macro
manipulator, the reaction forces at points ai are illustrated componentwise and de-
noted by Fn

ai
and F s

ai
, in which, as illustrated, ŝ is along the micro limb direction

and n̂ is perpendicular to the micro limb. Similarly, the internal force at points bi are
denoted componentwise as Fn

bi
and F s

bi
. The velocity and acceleration of the micro

limb vci
and aci

are also shown in this Fig. 7, acting on the center of mass of each
micro limb. Assume that an external disturbance force and moment are acting on the
micro manipulator moving platform, which is denoted by Fd = [fdx , fdy , τd ]T. It is
assumed that the moving platform center of mass is located at the center point g,
and it has a mass of m and moment of inertia Im. The inertia parameters of the
limbs and moving platform are given in Table 1. Furthermore, similar to the macro
manipulator, it is assumed that the micro cables are homogeneous, with a circular
cross-section, and have the density per unit length of ρm. Hence, the mass of each
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Figure 7. Free-body diagram of the micro manipulator’s limb and moving platform.

limb is mi = ρm�i . The moment of inertia of the cables also vary and can be calcu-
lated by the varying length of the cables. The moment of inertia about the center of
mass ci is given by:

I ci
m = 1

12
m�2

i = ρm

12
�3
i . (69)

Hence, the time derivative of mass and moment of inertia of each limb is:

ṁ = ρm�̇i, İ ci
m = ρm

4
�2
i �̇i . (70)

Similar to the macro manipulator, the Newton–Euler formulation for the micro limb
can be written as:

∑
Fext = d

dt
(mivci

) = miaci
+ ṁivci

(71)

∑
Mci

= d

dt
(I ci

m β̇i) = I ci
m β̈i + İ ci

m β̇i, (72)

in which
∑

Fext is the summation of all external forces acting on each micro limbs
and

∑
Mci

denotes the resulting external moments about the center of mass of each
limb ci . Furthermore, the linear velocity and acceleration of each limb at the center
of mass, vci

,aci
are determined before in (49) and (50), respectively. Considering

the free body diagram of the limb in Fig. 7, the resulting forces and moments can
be determined in a vector form as:

(
F s

ai
+ F s

bi

)
ŝi + (

Fn
bi

− Fn
ai

)
n̂i = miaci

+ ṁivci
(73)

(
Fn

ai
+ Fn

bi

)�i

2
= I ci

m β̈i + İ ci
m β̇i . (74)
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Substituting vci
,aci

from (49) and (50), and writing (73) componentwise in the ŝi
and n̂i direction, yields the following equations after some manipulations:

F s
ai

+ F s
bi

= Psi + ρm

2

(
�i �̈i − (�iβ̇i)

2 + �̇2
i

)
(75)

Fn
bi

− Fn
ai

= Pni + ρm

2

(
�2
i β̈i + 3�i �̇i β̇i

)
(76)

Fn
ai

+ Fn
bi

= ρm

6

(
�2
i β̈i + 3�i �̇i β̇i

)
. (77)

In which Psi and Pni are two intermediate variables as follows:

Psi = ρm

(
(�iaGx + �̇ivGx )six + (�iaGy + �̇ivGy )siy − φ̇2�i((Ei + di) · ŝi )

)

+ ρm

(
(�iφ̈ + �̇i φ̇)((Eix + dix)siy − (Eiy + diy)six)

)
(78)

Pni = ρm

(
(�iaGx + �̇ivGx )(−siy) + (�iaGy + �̇ivGy )six

+ (�iφ̈ + �̇i φ̇)((Ei + di) · ŝi )
)

+ ρm

(
φ̇2�i((Eix + dix)siy − (Eiy + diy)six)

)
. (79)

In order to cancel Fn
ai

, and derive relations for F s
bi

and Fn
bi

, add (76) and (77) and
simplify:

F s
bi

= τai
− Psi − ρm

2

(
�i �̈i − (�iβ̇i)

2 + �̇2
i

)
(80)

Fn
bi

= 1

2
Pni + ρm

3
(�2

i β̈i + 3�i �̇i β̇i), (81)

in which, F s
ai

are the actuator forces acting on the micro limbs and are denoted by
F s

ai
= τai

. The reaction forces Fn
ai

can be derived by subtraction of (77) from (76):

Fn
ai

= 1

2
Pni + ρm

6

(
�2
i β̈i + 3�i �̇i β̇i

)
. (82)

Now, the equation of motion of the micro moving platform can be written using
the free-body diagram depicted in Fig. 7. The Newton–Euler equations of the micro
moving platform are as follows:

mẍg − fdx +
4∑

i=1

(
F s

bi
six − Fn

bi
siy

) = 0 (83)

mÿg − fdy +
4∑

i=1

(
F s

bi
siy + Fn

bi
six

) = 0 (84)

Imψ̈ − τd −
4∑

i=1

(
F s

bi
(eiysix − eixsiy) − Fn

bi
(ei · ŝi )

) = 0. (85)
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The equation of motion of the macro moving platform is derived next, noting that
not only the cable forces FS

Bi
and FN

Bi
, are acting on it, but the macro manipulator

interaction forces −F s
ai

and −Fn
ai

are present on this platform:

MẍG − fDx +
4∑

i=1

(
FS

Bi
Six − FN

Bi
Siy

) +
4∑

i=1

(
τai

six − Fn
ai

siy
) = 0 (86)

MÿG − fDy +
4∑

i=1

(
FS

Bi
Siy + FN

Bi
Six

) +
4∑

i=1

(
τai

siy + Fn
ai

six
) = 0 (87)

IMφ̈ − τD −
4∑

i=1

(
FS

Bi
(EiySix − EixSiy) − FN

Bi
(Ei · Ŝi)

)

−
4∑

i=1

(
τai

(
(Eix + dix)siy − (Eiy + diy)six

) + Fn
ai

(
(Ei + di) · ŝi

)) = 0.

(88)

Equations (83)–(88) are the governing equations of motion of the macro–micro ma-
nipulator, in which FD = [fDx,fDy, τD]T and Fd = [fdx, fdy, τd]T are the vectors
of disturbance force/torque exerted on the macro and micro moving platforms, re-
spectively. Moreover, the internal forces FS

Bi
, FN

Bi
, FS

bi
, FN

bi
and Fn

ai
are derived in

(61), (62), (80), (81) and (82), respectively. Furthermore, the vectors Ei , and Ŝi , are
given in (17) and (18), and the vectors ŝi and di are given in (29) and (30). There-
fore, the set of six inverse dynamic equations of the macro–micro manipulator, i.e.,
(83)–(88), can be written in an implicit vector form of:

f(x, ẋ, ẍ,X, Ẋ, Ẍ,Fd,FD,τ a,τA) = 0. (89)

As explained for the macro manipulator, this vector equation can be used directly
for an inverse dynamics control scheme or for forward dynamic simulation of the
system. The details of implementation and the numerical simulation results are re-
ported in the next section.

5. Implementation of the Formulations

As explained earlier, the dynamic equation of the macro–micro manipulator can be
used in two applications. In the first application, which is simulated in Section 5.1,
the Cartesian and actuator forces required to produce a prescribed trajectory for
the system are determined numerically. The most important use of this type of im-
plementation of dynamics equations is in the proposed controller strategies for the
system which is elaborated in detail in Ref. [19]. The second application of the dy-
namic equations of the macro–micro manipulator is the direct dynamic simulation
of the system. In this case it is assumed that the actuator forces are given and the
manipulator motion is to be determined. Due to the implicit nature of the dynamic
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Figure 8. Flowchart of the inverse dynamics implementation sequence.

equations, the usual numerical integration routines such as the Runge–Kutta meth-
ods [20] cannot be used to solve this problem. As it is elaborated in Section 5.2,
special integration routines, which are able to integrate implicit differential equa-
tions, are used for these simulations.

5.1. Inverse Dynamics Simulation

In inverse dynamic simulations, it is assumed that the trajectory of the macro–micro
manipulator is given and the actuator forces required to generate such trajectories
in the presence of disturbances are to be determined. Due to the implicit nature of
the dynamic equations, as illustrated in Fig. 8, the inverse dynamic formulation is
implemented in the following sequence.

The first step is the optimal trajectory generation of the macro–micro manipu-
lator. Macro–micro structures such as the one being investigated in this paper are
kinematically redundant. In order to generate complete planar motion for the mi-
cro moving platform, only the micro or macro actuators are sufficient. However, in
order to obtain very accurate positioning, a set of complete actuation levels is redun-
dantly added to the manipulator design. Although the availability of the extra d.o.f.
can provide dexterous motion of the micro moving platform, proper utilization of
this redundancy is an important issue to be considered. For a macro–micro manip-
ulator, the desired trajectory of the final micro manipulator xd is usually given, and
due to the inherent kinematic redundancy of macro–micro manipulator, infinitely
many self motion trajectories for the macro manipulator location Xd , and joint vari-
ables �̇ and L̇ exist to perform the maneuver required for the micro manipulator. In
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Ref. [21] an analysis based on macro–micro Jacobian matrices is performed to de-
sign optimal trajectories for the macro and micro manipulators. Two scenarios are
examined in which in the first case the relative motion for the micro manipulator
is minimized, while in the second case for some singular configuration the optimal
trajectory is designed to maximize the manipulability measure of the macro–micro
manipulator. As shown in Ref. [21], for trajectories away from singular configu-
rations, the optimal trajectory which minimized the micro manipulator motion is
xd(t) = Xd(t). However, in cases where the singularity can be experienced the sin-
gularity avoidance optimization method can be used. For the sample trajectory of
the manipulator which is illustrated below in Fig. 16, the first case is considered.

The next step is to solve the inverse kinematics of the manipulator and to find
L(t),α(t), �(t) and β(t), using (8), (9), (12) and (14), respectively. Then the ma-
nipulator Jacobian matrices JM , Jm and Jt are calculated through (21), (33) and
(37), respectively. This implies that L̇(t), α̇(t), �̇(t) and β̇(t), are calculated as well.
Next the accelerations are evaluated using the acceleration analysis equations (41),
(43), (47) and (48). Finally, all the interaction forces, i.e., FS

Bi
,FN

Bi
,F s

bi
,F n

bi
and

Fn
ai

, are computed from (61), (62), (80), (81) and (82), and are substituted in the
governing inverse dynamic equations of the macro–micro manipulator. Let us de-
note the resulting Cartesian force applied to the macro and micro moving platforms
Ft . In this definition Ft = [FM,Fm]T is the resulting Cartesian force applied to the
macro and micro manipulator moving platform, and calculated from the summation
of all inertial and external forces excluding the actuator torques τ t = [τA,τ a]T in
the dynamic equations (83)–(88). Hence, Ft = JT

t τ t is the projection of the actuator
forces on the moving platform and can be uniquely determined from the dynamic
equations by excluding the actuator forces from the dynamic equations. If the ma-
nipulator has no redundancy in actuation, the Jacobian matrix, Jt , is squared and the
actuator forces can be uniquely determined by τ t = J−T

t Ft , provided that Jt is non-
singular. For redundant manipulators, however, there are infinity many solutions
for τ t to be projected into Ft . The simplest solution would be a minimum norm so-

lution, which is found from the pseudo-inverse of JT
t , by τ t = JT

t
†Ft . This solution

is implemented in the simulation studies reported in this section. Other optimiza-
tion techniques can be used to find the actuator forces projected from Ft subject to
more detailed manipulator constraints, whose details are reported in Ref. [19].

The inverse dynamics of the macro–micro manipulator are simulated for two
cases. In the first set of simulation results the inverse dynamic solution is computed
in absence of any disturbance forces FD = Fd = 0. The simulation results are illus-
trated in Figs 9–12. Typical third-order polynomial trajectories for the manipulator
are considered in these simulation, as depicted in Fig. 16. The Cartesian forces at
the macro moving platform, FM = [FX,FY ,Fφ]T, are illustrated with the solid
line in Fig. 9. As is seen, the Cartesian forces have a similar pattern to the desired
trajectory accelerations, which are linear for the cubic trajectories. In order to com-
pare the contribution of the moving platform inertia compared to that of the limb
inertial terms, the moving platform inertia forces are depicted by the dashed line in



972 H. D. Taghirad, M. A. Nahon / Advanced Robotics 22 (2008) 949–981

Figure 9. Cartesian forces of the macro manipulator FM : the total force (solid) and neglecting limb
inertia (dashed).

Fig. 9. As is seen, the effect of the limb inertia forces are about 10% of the total
for such a trajectory. Similarly, the actuator forces of the macro manipulator, with
the indication of moving platform inertia contributions, are illustrated in Fig. 10.
It is observed that since the manipulator moves in positive x and y directions, the
actuator forces of the first and third limbs are dominant. Figures 11 and 12 illustrate
the Cartesian and actuator forces of the macro manipulator, in a similar fashion as
that in the macro manipulator. It is observed that the contribution of the micro limb
dynamics is negligible.

In the second set of simulations, the effect of disturbance forces acting on the
system is analyzed. A set of experimental disturbance forces is considered in this
study to be applied to the macro–micro manipulator. The disturbance forces due
to the wind turbulence are measured in a one-third scale prototype of the multi-
tethered aerostat subsystem [7], which is implemented in Penticton. The horizontal
measured forces are scaled-up by a factor of 27 and applied on the macro manipula-
tor, in order to replicate the behavior of the full-size system. The exerted disturbance
forces on the macro manipulator are given with the dotted line in Fig. 13. The Carte-
sian and actuator forces of the macro manipulator in presence of such disturbance
are depicted in Figs 13 and 14, respectively. As is seen, the contribution of the
disturbance force into the total Cartesian forces on the manipulator is dominant.



H. D. Taghirad, M. A. Nahon / Advanced Robotics 22 (2008) 949–981 973

Figure 10. Actuator forces of the macro manipulator τA: the total force (solid) and neglecting limb
inertia (dashed).

Comparing the values of forces in Figs 9 and 13, it is observed that the total inertial
forces contribute about 10% of the total forces for such typical disturbance. Noting
that the limb dynamics contributes only 10% of inertial forces, it can be neglected
in the full simulation of the system in the presence of external disturbances.

5.2. Forward Dynamics Simulation in the Closed Loop

As explained before, the dynamic equations of motion of the macro–micro ma-
nipulator can be used for forward dynamic simulation of the system. In this case
it is assumed that the actuator forces are given and the manipulator motion is to
be determined. Due to the implicit nature of the dynamic equation, usual numeri-
cal integration routines such as the Runge–Kutta methods [20] cannot be used to
solve the problem. However, a special integration routine (ode15i function of
Matlab), which is able to integrate implicit functions, can be used for dynamic
simulations. The Block diagram of forward dynamic simulation in the closed-loop
form is given in Fig. 15. As it is illustrated in this block diagram, the inverse dy-
namic equations of motion, i.e., (83)–(88), are the main equations to be integrated
using an implicit integration routine. These equations, written in vector form in
(89), are integrated numerically using a repeating algorithm with respect to time,
given the function input arguments, x, ẋ,X, Ẋ,Fd,FD,τ a and τA, and the initial
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Figure 11. Cartesian forces of the micro manipulator, Fm.

conditions for the function states x(0), ẋ(0),X(0) and Ẋ(0). The experimental dis-
turbance forces Fd and FD , explained in the previous section, are used in dynamic
simulation of the macro–micro manipulator in hand. Furthermore, as shown in
Fig. 15, pseudo-inverse of the total Jacobian, J†

t , is used as the redundancy res-
olution scheme. The controllers used in these simulations are decentralized PD
controllers for macro and micro manipulators, in which the gains are tuned such
that, despite the saturation limit in actuator efforts, the required tracking perfor-
mance is achieved. For a typical actuator saturation limit of 5 KN for the macro
manipulator and 50 N for the micro manipulator actuators, the PD gains used in the
simulations are KP = 106 · I3,KD = 108 · I3,Kp = 105 · I3 and Kd = 107 · I3, in
which the capital indices are used for macro manipulator gains and I3 is the 3 × 3
identity matrix.

The closed-loop tracking performance of the macro–micro manipulator is illus-
trated in Figs 16 and 17. The desired trajectory is as in previous simulations and is
illustrated in Fig. 16. As seen in Fig. 16 the desired and final closed-loop motion
of the system is not distinguishable. As seen in more detail in Fig. 17, a decentral-
ized PD controller for the macro and micro manipulators is capable of reducing the
tracking errors to less than 1 mm in position and less than 0.2◦ in orientation for the
macro manipulator. Moreover, due to the macro–micro structure of the manipulator
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Figure 12. Actuator forces of the micro manipulator, τa .

Figure 13. Cartesian forces of the macro manipulator FM , in the presence of empirical distur-
bance Fd .
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Figure 14. Actuator forces of the macro manipulator τA, in the presence of empirical disturbance Fd .

Figure 15. Block diagram of PD control.

the final tracking error of the system is reduced to less than 0.1 mm in position
and 0.02◦ in orientation in the presence of experimentally measured disturbance
forces acting on the system. This results confirms the original idea of using the
macro–micro structure for extra accurate positioning devices and shows that when
using this structure the tracking errors can be reduced to 1/10th of that in the first
stage of the macro–micro structure. It should be noted that, although the desired
trajectories in the x- and y-directions are considered identical, but because of the
desired orientation φd , which is negative in this typical trajectory, the order of error
in the y-direction is less than that in the x-direction. However, this is not a general
case for all trajectories, i.e., if the orientation direction is changed, the order of the
positioning error in the x-direction becomes less than that in the y-direction.
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Figure 16. Closed-loop tracking performance of the macro–micro manipulator.

In order to examine the effect of disturbances on the actuator forces, Fig. 18
illustrates the macro actuate force. As seen in Fig. 18, the macro actuator effort
is well below the empirical saturation limit of 5 kN. The simulation results verify
the fact that the decentralize PD controllers are able to provide the desired tracking
performance in the closed loop. The redundancy resolution technique used in here,
however, is very simple and, as shown in Ref. [19], it can be developed optimally, in
order to guarantee that the cable-driven actuators are in tension in all configurations
of the macro–micro maneuvers.

6. Conclusions

In this paper the kinematic and dynamic analysis of a macro–micro parallel ma-
nipulator is studied in detail. The analyzed manipulator is a planar version adopted
from the structure of the LAR, the Canadian design of next-generation giant radio
telescopes. In the LAR design the telescope receiver package is supported by a ten-
sion structure consisting of multiple long tethers and a helium-filled aerostat. The
positioning structure of the receiver is designed as a macro–micro manipulator, in
which at both the macro and micro levels two redundantly actuated cable-driven
parallel manipulators are used and both manipulators experience 6-d.o.f. motion
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Figure 17. Macro and micro tracking errors: macro (solid) and micro (dashed).

in space. The planar structure used in this paper is a simplified version of the LAR
design, in which the two important features of the main mechanism, i.e., the macro–
micro structure and actuator redundancy, are preserved in a planar structure. This
structure is composed of two 3-d.o.f. parallel redundant manipulators at the macro
and micro level, both actuated by cables. A thorough analysis of the kinematics and
dynamics of the described macro–micro parallel manipulator has been performed,
and some closed-loop control topologies are proposed and simulated for this sys-
tem. In this paper the kinematic and dynamic analysis of this system is presented.
It is shown that a unique closed-form solution to the inverse kinematic problem
of such a structure exists. Moreover, the Jacobian and acceleration analysis for the
macro–micro manipulator is reported. Next, the dynamic equation of motion of the
macro–micro manipulator is derived using the Newton–Euler formulation. Then,
the dynamic equations of the system are used in two sets of simulations. First, the
inverse dynamic simulations are presented, in which the required actuator torques
required to generate a prescribed trajectory are computed. It is shown that for a
typical trajectory, the limb inertial forces contributes only in 10% of the dynamic
forces and the total dynamic forces contribute only 10% of external forces in the
presence of some experimentally measured disturbance forces. Finally, the inverse
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Figure 18. Closed-loop actuator forces of the macro manipulator, τA.

dynamic equations are used in a special implicit integration routine in order to sim-
ulate the dynamic behavior of the system in closed-loop form and in the presence
of disturbances. It is shown that, for a typical trajectory and in the presence of
experimentally measured disturbance forces, using the macro–micro structure will
increase the positioning accuracy of the system 10 times more than that for the first
stage of the macro–micro structure.
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