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Abstract We assessed on Monte-Carlo simulated excitatory
post-synaptic currents the ability of autoregressive (AR)-
model fitting to evaluate their fluctuations. AR-model fitting
consists of a linear filter describing the process that gen-
erates the fluctuations when driven with a white noise. Its
fluctuations provide a filtered version of the signal and have
a spectral density depending on the properties of the linear
filter. When the spectra of the non-stationary fluctuations of
excitatory post-synaptic currents were estimated by fitting
AR-models to the segments of current fluctuations, assumed
to be stationary and independent, the parameter and spectral
estimates were scattered. The scatter was much reduced if the
time-variant AR-models were fitted using stochastic adaptive
estimators (Kalman, recursive least squares and least mean
squares). The ability of time-variant AR-models to accurately
fit the current fluctuations was monitored by comparing the
fluctuations with predicted fluctuations, and by evaluating the
model-learning rate. The median frequency of current fluctu-
ations, which could be rapidly tracked and estimated from the
individual quantal events (either Monte-Carlo simulated or
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recorded from pyramidal neurons of rat hippocampus), rose
during the rise phase, before declining to a lower steady-state
level during the decay phase of quantal event, whereas the
variance showed a broad peak. The closing rate of AMPA
channels directly affects the steady-state median frequency,
whereas the transient peak can be modulated by a variety of
factors—number of molecules released, ability of glutamate
molecules to re-enter the synaptic cleft, diffusion constant of
glutamate in the cleft and opening rate of AMPA channels.
In each case, the effect on the amplitude and decay time of
mEPSCs and on the current fluctuations differs. Each factor
thus leaves its own kinetic fingerprint arguing that the con-
tribution of such factors can be inferred from the combined
kinetic properties of individual mEPSCs.

1 Introduction

The analysis of current fluctuations or noise analysis has been
widely used in the past for the study of stochastic nature of
membrane currents, and was very important in understand-
ing the basic properties of ion conduction across membranes
(Derksen and Verveen 1966; Katz and Miledi 1972; Fishman
1973). At present the method is used when the single chan-
nel conductance is low and channels inaccessible, as is often
the case with synaptic currents in the central nervous sys-
tem (Robinson et al. 1991; Traynelis and Jaramillo 1998;
Benke et al. 2001; Mozrzymas 2004). It is now clear that
the fluctuations of the excitatory post-synaptic currents are
highly non-stationary (Aristizabal and Glavinović 2003). A
high degree of non-stationarity is not surprising given the
time course of glutamate concentration in the synapse, which
rises very quickly and decays in a multi-exponential man-
ner, though more slowly (Clements 1996; Glavinović and
Rabie 1998), and the concentration dependence of several
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rates of the kinetic scheme of AMPA channels (Colquhoun
et al. 1992). Moreover, the desensitization of AMPA recep-
tors, which develops rapidly during the time course of unitary
excitatory post-synaptic currents, contributes significantly to
shaping the time course of mEPSCs (Jones and Westbrook
1996; Glavinović and Rabie 1998; Hirasawa et al. 2001; Wall
et al. 2002; Jackson et al. 2003; Yelshansky et al. 2004). The
gating mechanism of transmitter-activated channels, such as
ACh and AMPA channels are complex (Katz and Thesleff
1957; Trussell and Fischbach 1989), and their desensitization
is associated with a progressively changing pattern of bursts
and clusters (Sakmann et al. 1980), which renders the spec-
tra of their current fluctuations non-stationary, even when
activated by constant and spatially uniform pulses of trans-
mitter (Aristizabal and Glavinović 2003). An assessment of
the spectral or variance changes of non-stationary current
fluctuations ought to provide important insights into the time
course of the transmitter in the synaptic cleft, and the kinetics
of gating of transmitter-activated channels. It would be espe-
cially valuable if it were available from individual quantal
events. The highly non-stationary nature of synaptic current
fluctuations requires estimates of the spectral density simul-
taneously in time and frequency. Traditional Fourier analysis
requires much longer current segments than the mean chan-
nel open time (Silberberg and Magleby 1993). Even if the
individual quantal event is taken as a single current segment
its duration is rarely so long. Wavelet transform, which local-
izes not only in frequency but also in time, and which has
a frequency dependent windowing, provides an alternative
(Rioul and Vetterli 1991; Aristizabal and Glavinović 2003).

In this study, we explore how much the time-frequency
resolution and accuracy can be further improved by a para-
metric spectral analysis (Rao 1970; Grenier 1983; Pardey
et al. 1996). The parametric spectral methods differ from
the non-parametric methods as they provide, not only the
graphic representation of the spectral estimates (which the
non-parametric methods such as Fourier and Wavelet also
give), but also their representation in a compact mathemati-
cal form, i.e. they not only provide the spectral estimates but
also the model parameters. Moreover, the model fits provide
a filtered version of the signal, from which a significant frac-
tion of the extraneous noise is removed. What is less clear is
whether the time-invariant autoregressive (AR) models can
be used to fit the segments of current fluctuations, which
are assumed to be stationary and independent. If the cur-
rent fluctuations are highly non-stationary the estimates of
AR parameters and variables (such as the variance and the
frequency of current fluctuations) are likely to be scattered
(Pardey et al. 1996). We, therefore, used not only the static,
but also the AR-models with the time-varying parameters
for model fitting. Several ‘stochastic’ adaptive approaches
are known: (1) the least mean square algorithm (LMS), (2)
the recursive least square (RLS) algorithm and (3) Kalman

filter. Static AR-model fitting provided scattered estimates of
AR parameters or variables (variance and median frequency
of current fluctuations), but the adaptive AR-model fitting
provided smooth and accurate estimates even when the spec-
tral or variance properties of the current fluctuations changed
rapidly. Moreover, the estimates could be determined from
individual quantal events.

A preliminary account has appeared (Krnjević and
Glavinović 1999).

2 Methods

2.1 Solutions and recording and graphical presentation

The experiments were performed on brain slices of Sprague-
Dawley (100–125 g) rats (Dingledine 1984). The rats were
anaesthetized with ether and decapitated. The brain was then
rapidly removed, and immersed in oxygenated (95% O2, 5%
CO2) ice-cold artificial cerebrospinal fluid (ACSF) of the fol-
lowing composition (mM): NaCl 125, KCl 3, CaCl22, MgCl2
1.3, NaHCO326, NaH2PO41.25 and glucose 10, and gassed
with 95% O2 and 5% CO2 (pH 7.3). Patch pipettes were filled
with (mM): CsCl, 130; NaCl, 10; ATP-Mg, 3; GTP 0.3; 4-(2-
hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES),
10; ethyleneglycol-bis(amino-ethylether) N,N,N′,N′-tetra-
acetic acid (EGTA), 10; pH was adjusted to 7.2–7.3 with
NaOH. The osmolarity of the internal solution was routinely
measured, and ranged from 295 to 300 mOsm−1. Caesium
was chosen as the main cation in order to block potassium
conductances.

Hippocampal slices (400µm thick) were cut using a
Campden microslicer and incubated at room temperature in
ACSF for at least 1 h before use. The slices were subsequently
transferred to a recording chamber in which they were kept
fully submerged in ACSF, flowing at 3.0–4.0 ml min−1, at
27◦C to which tetrodotoxin (TTX;1 mM) and bicuculline
methiodide (10µM) were added (at least 10 min before
recordings started) to suppress action potential-dependent
transmitter release and inhibitory (GABAA) synaptic cur-
rents. Spontaneous miniature excitatory postsynaptic cur-
rents (mEPSC’s) were recorded ‘blindly’ (Isaacson and
Nicoll 1991), in the deeper areas of the pyramidal cell layer
of the CA1 region using a whole cell patch clamp recording
system (Axopatch-1D; Axon Instruments, Foster City CA,
USA). The holding potential was −60 mV. At the end of all
experiments kynurenic acid (1 mM) was added to the bath
solution. A complete blockade of all synaptic activity was
evidence that the spontaneous unitary events were mEPSCs.
dl-2-amino-5-phosphonovaleric acid (APV - 10µM; Sigma;
Lot No 108F3810) was used to block NMDA activated chan-
nels.
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The series resistance, which ranged from 3 to 8 M�, was
not compensated to obtain low noise recordings, but was
monitored throughout the experiment. If it changed by more
than 15% the cell was abandoned. Data were stored on a vid-
eotape recorder (RCA) with a VCR adapter (Model PCM-4,
Medical Systems). They were subsequently replayed, anti-
alias filtered with a Bessel filter whose corner frequency was
set at 5 kHz, and digitized with Axotape software package
(Axon Instruments) at 10 kHz into a computer using a Lab-
master data acquisition card (Scientific Solutions) equipped
with a 12-bit A/D converter, and analyzed with Axotape
(Axon Instruments). The graphics were done using Origin
(Microcal Software, Northampton, MA), and the simulations
using Matlab (MathWorks Inc., Natick Mass., USA) on a Dell
computer.

2.2 Monte-Carlo simulations

Synaptic transmission in the excitatory synapse in the hippo-
campus was simulated using a Monte-Carlo method (Wahl
et al. 1996; Franks et al. 2003; Ventriglia 2004). At each dis-
crete time step: (1) every transmitter molecule had a position
(x, y, z), and was flagged either as free or bound—free mole-
cules move randomly in all three dimensions or interact with
the receptors, (2) every receptor had a fixed position and
was considered to be in one of the states of a given kinetic
scheme—every receptor had a finite probability of changing
to another state according to the same kinetic scheme. The
changes of the receptor states were assumed to be Markov-
ian (i.e. they were assumed to depend only on their present
position and not on their previous history). Since the rise time
of mEPSCs is of the order of ∼100µs, we chose a 0.1µs time
step in our simulation (see below; Wahl et al. 1996).

The distance traveled by a transmitter molecule (in each
of the three dimensions) was chosen randomly from a Gauss-
ian distribution with a zero mean and a standard deviation σ

given by

σ = √
2Dδt (1)

(Glavinović 2002), where the δt is the length of the time
step and D is the diffusion coefficient of the transmitter mol-
ecule. The random numbers were obtained from a random
number generator. The diffusion in a restricted space was
simulated by assuming that the transmitter molecules col-
lide elastically with the ‘walls’ of the space (presynaptic or
postsynaptic membranes). Finally, all molecules that reach
the synaptic edge and diffuse ‘away’ into the ‘infinite’ space
(similarly bound by two membranes but lacking receptors),
or return from it into the synaptic cleft, were also followed.
In some simulations however, glutamate molecules, which
exited from the synaptic cleft were not permitted to return
and were removed from the system (see Sect. 3).

Fig. 1 Models of glutamate diffusion in the synaptic cleft and the
kinetics of gating of AMPA receptors. a Diagram (approximately to
scale) depicts how glutamate molecules, after release from an instanta-
neous point source, diffuse in synaptic cleft; b kinetic scheme of gating
of AMPA receptor-channels by glutamate, used for the Monte-Carlo
simulations. U, SB, DB and O indicate the unbound, singly bound, dou-
bly bound and open state, respectively. D1, D2 and D3 are three desen-
sitized states. The rate constants, taken from Jonas et al. (1993), were
adjusted for the temperature of simulations (37◦C), assuming a Q10 of
3.0. They are: K+1 =2.38 × 107M−1s−1, k−1 =2.22 × 104s−1, K+2 =
14.8 × 107M−1s−1, k−2 = 1.69 × 104s−1, K+3 = 6.60 × 106M−1s−1,

k−3 = 237s−1 for glutamate binding; α = 2.203 × 104s−1, β = 4676
s−1, for channel opening; and α1 = 1.50 × 104s−1, β1 = 204s−1, α2 =
894s−1, β2 = 3.78s−1, α3 = 92.0s−1, β3 = 20.8s−1, α4 = 87.3s−1,

β4 =989s−1 for the desensitization pathway. In some simulations α or
alternatively β were reduced to 1/2, 1/4 or 1/8 of the above values

Synaptic transmission was simulated with glutamate
released from an instantaneous point source facing the synap-
tic cleft, in the center of the synapse, on the membrane oppo-
site to where the post-synaptic AMPA receptors lie (Fig. 1a).
The synaptic dimensions were 200 × 200 × 15 nm; 14 × 14
(or 196) AMPA receptors were distributed equidistantly on
the post-synaptic surface (Wahl et al. 1996; Glavinović and
Rabie 1998). The kinetic scheme used was as given by Jonas
et al. (1993, Fig. 1b). In all simulations, the temperature was
assumed to be 37◦C. All rates were adjusted by assuming
Q10 = 3.0 and using the following equation:

Kt2 = Kt1 × Q(t2−t1)/10
10 (2)

where the rates at temperatures t1 and t2 are Kt1 and Kt2. The
diffusion coefficient of glutamine (D = 760µm2s−1 mea-
sured in water at 25◦C; Longsworth 1953), was the diffusion
coefficient of glutamate in bulk and adjusted for the temper-
ature difference by assuming Q10 = 1.3 (Wahl et al. 1996;
Glavinović and Rabie 1998; Ventriglia 2004). Lower diffu-
sion constants (one eighth to one half of the above value) were
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also used (see Sect. 3). The single channel current amplitude
was 1 pA.

According to the kinetic scheme of channel gating
(Fig. 1b) a receptor can be unbound (UB), in a single or
in a double bound state (SB and DB respectively; these are
also called activatable states), open (O), or in one of the
three desensitized states (D1, D2 and D3). Each state of the
receptor is associated with a surface area and a probability of
binding, given that a transmitter molecule “hits” this recep-
tor surface (Glavinović and Rabie 1998). The inverse of the
receptor surface area is taken to be the density of the receptor
molecules (σr) at the postsynaptic membrane. The probabil-
ity (Pb) that a transmitter molecule, after hitting the receptor
surface, will bind in a given time step (δt) is related to the
macroscopic rate constant by

Pb = ((σrκ)/Na)
(√

(πδt)/D (3)

where Na is Avogadro number and κ is the appropriate rate
constant of binding (in M−1 s−1). For steps in the kinetic
scheme that did not involve binding of the transmitter, the
probability (p) that a receptor will move to a new state in a
given time step (δt) is related to the macroscopic rate constant
by

p = 1 − e−kδt (4)

where k is the appropriate rate constant (in s−1). The time step
(chosen to be 0.1µs in all our calculations) was such that the
probability of a receptor changing state twice within one time
step was <1%. Reducing the time step further does not make
the results more accurate (Wahl et al. 1996). Equation 3 also
applies to the situation when a transmitter molecule unbinds
from a receptor. At unbinding each molecule was moved the
mean length of the random jump (0.67σ ) perpendicularly
away from the receptor surface: (1) to ensure that the proba-
bility of a given receptor making a transition to a bound state
does not depend on the receptor’s previous history; and (2)
because such physical separation between the neurotransmit-
ter and the receptor accurately reproduces the macroscopic
unbinding rate constant (Wahl et al. 1996).

2.3 State–space representation of nonstationary time series

There is often a need to approximate various processes in
physics, engineering and biology with mathematical models.
One class of such processes is the time series. What char-
acterizes such processes is that only the output is available
whereas the input is not. Widely used models of such pro-
cesses are autoregressive moving average or ARMA models.
ARMA model describes the signal yt as:

yt = −
p∑

j=1

a j
t yt− j +

q∑
k=1

bk
t et−k + et (5)

where a j
t and bk

t are ARMA parameters at time t and et is
the measurement error. If the processes underlying the time
series are stationary, the parameters are constant.

If we denote

θt = [−a1
t ,−a2

t , . . . − a p
t , b1

t , b2
t , . . . bq

t ]T (6)

	t = [yt−1, yt−2, . . . yt−p, et−1, et−2, et−q ]T (7)

the time-varying ARMA model can be recast into a matrix
form and be written as:

yt = 	T
t θt + et . (8)

This is a linear observation model of the time series, whereby
	t indicates the regression vector and θt indicates the model
parameters. The order of the ARMA process is (p, q), where
p and q are non-negative integers. The models for which a j

t
coefficients are zero are called moving average (MA) models,
and those whose bk

t coefficients are all zero are called auto-
regressive (AR) models. The non-stationary fluctuations of
excitatory post-synaptic currents were fitted exclusively by
AR-models (see Sect. 4).

2.4 Fitting static AR-models to current fluctuation segments

The AR-models are used not only for simulation but also for
fitting the signals. Given a sampled signal and assuming that
a process underlying the signal is linear and stationary, the
parameters describing such signals can be estimated. Several
approaches exist to calculate the parameters of such models:
(1) forward–backward approach, whereby the sum of a least-
squares criterion for a forward model and the equivalent crite-
rion for a time-reversed model is minimized, (2) Yule–Walker
approach whereby Yule–Walker equations, calculated from
sample covariances, are solved, (3) Burg’s lattice-based
method where the lattice filter equations are solved, using
the harmonic mean of squared forward and backward pre-
dictions errors, (4) least squares approach whereby the stan-
dard sum of squared forward prediction errors is minimized.
The same methods may be used for non-stationary signals if
parameters change very slowly. In such a case (1) the signal
is segmented, (2) stationarity is assumed for each segment
which are taken to be independent and (3) the parameters are
determined for each segment individually.

2.5 Kalman estimation of AR-models

If their properties change rapidly, the parameter estimation
of signals cannot be done adequately with non-adaptive esti-
mation methods, as such methods assume that the parameters
are stationary per window. They require adaptive methods,
whereby the parameters are updated with the arrival of each
data sample (Kalman 1960; Schlogl 2000; Welch and Bishop
2002; Tarvainen et al. 2004). How the ‘adaptation’ problem is
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solved depends on the model of change of ‘true’ parameters.
Since generally all parameters will vary in time, and in the
absence of information about the nature of their change, the
variation of the parameters is usually described as random
walk with a white Gaussian noise, and is formally described
as:

θt+1 = θt + wt (9)

The goal is to find the minimum mean square estimator for
state 
k given the observations y1, . . . , yk . One of the most
commonly used is Kalman algorithm. The equations of the
Kalman estimator are:

θ̂t |t−1 = θ̂t−1 (10)

C
θ̂ t |t−1 = C

θ̂ t−1 + Cwt−1 (11)

Kt = C
θ̂ t |t−1	t (	

T
t C

θ̂ t |t−1	t + Cet )
−1 (12)

C
θ̂ t = (I − Kt	

T
t )C

θ̂ t |t−1 (13)

εt = yt − 	T
k θ̂t |t−1 (14)

θ̂t = θ̂t |t−1 + Ktεt (15)

Given the observations y1, . . . , yt−1, θ̂t |t−1 is the mean
square estimate of state θt , and θ̃t = θt − θ̂t is the state esti-
mation error. The unknown measurement noise et is replaced
by the prediction error εt in every iteration step. Kalman gain
Kt adjusts the state estimate following the arrival of each data
sample. If we denote Pt = Cθ t + Cwt the recursive formulas
become:

θ̂t = θ̂t−1 + Ktεt (16)

εt = yt − 	T
k θ̂t−1 (17)

and Kt and Pt are then transformed into:

Kt = Pt−1	t (	
T
t Pt−1	t + Cet )

−1 (18)

Pt = (I − Kt	
T
t )Pt−1 + Cwt (19)

Though the above equations may appear complex the
meaning of Kalman adaptation can be easily understood intu-
itively. The goal of Kalman estimation is to compute the
parameters of the AR-model at time t as a linear combination
of the parameters of the AR-model at time t-1 and a weighted
difference between an actual measurement at time t (in our
case the current fluctuation) and its prediction at time t based
on the AR-model estimated at time t-1. As the inspection of
the Kt (Kalman gain) reveals, if the measurement noise (Cet )

is small, Kt will be large, i.e. a lot of credibility will be given
to the measurement, when computing the next value of y. In
contrast, if the measurement noise is large, Kt will be small,
i.e. very little credibility will be given to the measurement
when computing the next value of y.

Table 1 Kalman gain Kt vectors Kt and covariance estimates Pt for
RLS, LMS and Kalman filter (KF) algorithms

Kt Pt

RLS Pt−1	t (	
T
t Pt−1	t + χ)−1 χ−1(I − Kt	

T
t )Pt−1

LMS µ	t µ(I − µ	t+1	
T
t+1)

−1

KF Pt−1	t (	
T
t Pt−1	t + Cet )

−1 (I − Kt	
T
t )Pt−1 + Cwt

Note however, that in addition to the Kalman algorithm
several other adaptive algorithms are now available (Haykin
1986; Sayed and Kailath 1994; Schlogl 2000). Table 1 shows
how Kt and Pt were defined in this study for Kalman, RLS
and LMS estimators. Whereas the gain Kt controls the adap-
tation of the Kalman estimator, χ—the forgetting factor,
and µ—the step size, control the adaptation for the RLS
and LMS estimators respectively. Note that the measurement
and state noises et and wt are assumed to be uncorrelated,
Gausssian white noise processes with zero mean and with
covariances Cet = σ 2

e and Cwt = σ 2
w I, respectively. Pro-

cess noise reflects the error propagation in the model of the
signal.

2.6 Spectral estimation

In case of a general ARMA (p, q) model, given the knowl-
edge of its time-varying a j

t and bk
t coefficients, the time-

varying power spectrum density (PSD) estimate is calculated
as:

PSD( f ) = σ 2
ε (t)

fs

∣∣∣∣1 +
q∑

k=1
bk

t e−i2πk f/ f
s

∣∣∣∣
2

∣∣∣∣∣1 +
p∑

j=1
ai

t e−i2π j f/ f
s

∣∣∣∣∣
2 (20)

where σ 2
ε (t) is the time-varying prediction error variance

(which is used instead of the variance of the unknown white
noise process) and which is calculated at every step of iter-
ation over a window of samples; 38). fs is the sampling
frequency (Tarvainen et al. 2004). This is reduced to:

PSD( f ) = σ 2
ε (t)

fs

1∣∣∣∣∣1 +
p∑

j=1
ai

t e−i2π j f/ f
s

∣∣∣∣∣
2 (21)

in the case of the AR-model used in this study.

2.7 Initialization and mean learning rate

Before estimation starts, AR parameters, state noise covari-
ance and prediction error variance must be initialized. This
was done either by randomly initializing the AR parame-
ters, zero initializing the state θt0 and setting the C

θ̂ t0 error
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covariance to 10× I, where I is an identity matrix (this is
termed ‘random initialization’) or by initializing with the
values determined by passing a static AR-model over a short
segment of 50–100 samples from the initial portion of the
signal (‘static’ initialization).

It is often desirable to know how fast the filter converges to
the stationary solutions, when estimating stationary signals,
but also how fast it adapts to new conditions when estimating
non-stationary signals. The learning rate of the Kalman filter
provides such an index (DeFreitas et al. 1998). The learning
rate matrix of the Kalman filter was calculated as:

ρ = Si/σi , (22)

where Si is the uncertainty of the AR parameters whereas σi

is the variance of the predicted signal. The learning rate is a
matrix because each AR parameter adapts at a different rate
to the given signal. We calculated the mean learning rate by
averaging the learning rate over all AR parameters, which is
equal to

ρmean = Tr(Si )/(p × σi ) (23)

where Tr denotes the trace of the covariance matrix and p is
the number of AR parameters.

3 Results

3.1 Non-adaptive AR spectral estimation of the fluctuations
of Monte-Carlo simulated spontaneous excitatory
post-synaptic currents

Figure 2a depicts a miniature excitatory post-synaptic cur-
rent (an mEPSC) simulated using Monte-Carlo technique
(see Sect. 2), together with the best fit of two exponentials
calculated using the least squares fitting method. The best-fit-
ted equation was: i = 157.9×exp−t/0.468×(1−exp−t/0.074),
where i is the current in pA and t is the time from the start in
ms. The mEPSC fluctuations (Gaussian random noise with a
zero mean and a standard deviation of 0.2 pA was added to the
Monte-Carlo simulated mEPSC) are shown in Fig. 2b. The
predicted fluctuations estimated using a second order AR-
model are not very ‘noisy’ (i.e. the fluctuations are mainly due
to the opening and closing of AMPA channels; Fig. 2c). This
demonstrates that (assuming that the extraneous noise shows
no correlation) AR-model fitting, even when non-adaptive, is
highly successful in predicting the ‘true’ signal and filtering
the extraneous noise. The innovations (defined as the differ-
ence between the AR-model prediction and the mEPSC fluc-
tuations) are shown in Fig. 2d. However, the variance of the
fluctuations predicted by AR-model fitting, and even more so
the median frequency (Fig. 2e, f, respectively), are scattered,

especially during the late decay phase of the mEPSC. Finally,
AR parameter estimates are also highly scattered (Fig. 2g).

3.2 Kalman-AR estimation of two concatenated stationary
signals with identical spectral properties but different
variances

Significant improvements in estimation are possible if the
adaptive, instead of non-adaptive, approaches are used.
Figure 3a shows a random signal generated by a concatena-
tion of two signals. In both cases, a zero-mean white Gaussian
random signal with a unitary standard deviation was filtered
by a third order Butterworth filter whose corner frequency
was 0.4 kHz and sampling frequency 1 kHz. The amplitude
of the first half of the signal was then multiplied by 4, and of
the second half by 2. The final ‘true’ variances of so concat-
enated signals were 96.6 and 26.1, respectively. In addition
a zero-mean white Gaussian random signal with a standard
deviation of 0.25 was added to both segments. The Kalman-
AR method (see Sect. 2) was used to: (1) estimate the param-
eters of the second order AR-model, (2) predict a signal based
on such a model and (3) calculate the median frequency and
the variance of the predicted signal. The state noise variance
σ 2

w was 5 × 10−4 (Tarvainen et al. 2004), whereas the win-
dow used for averaging the measurement error variance had
50 samples (Penny and Roberts 1999).

Both σ 2
w and window length influenced the scatter (but not

the magnitude) of the variance of the predicted signal, and the
lag between the predicted and the original signal (see Sect. 2).
Reducing the σ 2

w lowered the scatter (compare Fig. 3c, e).
This is as expected, because σ 2

w controls how much model
parameters are allowed to change for each new data sam-
ple. The scatter was further reduced as the window length
increased. This is also not surprising because the variance
of any set of data diminishes as the number of data points
used for the estimation rises. In both cases, lower scatter
was associated with a longer lag between the variance of the
original signal (i.e. the ‘true’ value of the variance) and its
estimate, but the lag was very small. In general thus there
is a trade-off between the scatter of the estimates and the
lag between the original and estimated variables. Figure 3d,
f, h show how the median frequencies of the spectra of the
predicted signal estimated using Kalman-AR-modeling are
affected as σ 2

w and window length change. The scatter of
the median frequency estimates depends on σ 2

w and window
length in a manner very similar to that of the prediction vari-
ance (i.e. lower σ 2

w and longer window lead to lower scatter).
The magnitude of the median frequency remains however,
independent of σ 2

w or the window length. Finally, even a large
and abrupt change of the signal amplitude in the middle (i.e.
3 ms from the start), had no effect on the magnitude or scatter
of the median frequency estimates.
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Fig. 2 Non-adaptive model
fitting provides scattered
estimates of AR parameters, and
of variance and median
frequency of current
fluctuations. a Simulated
mEPSC together with the best fit
made by the sum of two
exponentials. Note that a
Gaussian random noise with a
zero mean and a standard
deviation of 0.2 pA was added
to the simulated mEPSC. The
amplitude of the single channel
currents was 1.0 pA; b mEPSC
fluctuations; c AR prediction;
d innovations (defined as the
difference between the
Kalman-AR-model prediction
and the signal). e variance of
AR-prediction; f median
frequency of AR prediction is
very scattered especially during
the late decay phase of mEPSC;
g AR parameter estimates are
quite scattered. Each value was
predicted based on a segment of
50 data samples (the overlap of
segments was maximal—49
samples)
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3.3 Kalman-AR estimation of non-stationary signal
generated by concatenation of time-varying AR
parameters

The ability of Kalman-AR method to track the signal whose
spectral properties changed rapidly was also estimated. The
signal shown in Fig. 4a was generated by passing a zero-mean
white Gaussian noise with a variance of 1.0 through a second
order AR-model, whose first and second parameters were as
shown in Figs. 4b, d (thick line). The first parameter was a
concatenation of two sinusoids, which had the same bias of
0.2, and which were of equal duration and amplitude (equal

to 0.5), but whose frequencies differed being 1.25 and 0.625
kHz, respectively. The second parameter was also formed by
a concatenation of two sinusoids of identical amplitude of
0.2 and bias of 0.3, but unequal duration (the second part was
twice as long as the first) and frequency. The frequency of the
first sinusoid was 0.625 kHz and the second 1.25 kHz. Sec-
ond order AR-model was used for Kalman-AR estimation.
The state noise variance σ 2

w was 5 × 10−4, whereas the win-
dow used for averaging the variance of the prediction error
σ 2

ε had 50 samples. Note that the Kalman-AR estimation of
both parameters is excellent even at the points of concate-
nation (Fig. 4b, d). Figure 4c shows the prediction variance
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Fig. 3 Both the state noise
variance σ 2

w and the length of
the averaging window affect the
tracking ability of the
Kalman-AR-model fitting.
a Direct concatenation of two
signals of the same duration,
both generated by passing a
zero-mean white Gaussian
random signal with a unitary
standard deviation through the
same Butterworth filter (see
text), subsequently multiplied
by 4 and 2. Finally, a zero-mean
white Gaussian random noise
with a standard deviation of 0.25
was added to both signals.
b Kalman-AR prediction
estimated assuming a second
order AR-model and state noise
variance σ 2

w of 5 × 10−4; the
window for averaging the
prediction error variance had 50
samples. Variance (c, e and g)
and median frequency (d, f and
h) of the Kalman-AR prediction.
The state noise variances σ 2

ws
and averaging windows as
indicated
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and Fig. 4e the prediction variance. Note that the prediction
error variance was clearly very close to the variance of the
white noise process, which is generally unknown (its ‘true’
value was 1.0 and constant throughout). Finally note that the
changes of the median frequency of the signal and those of
the first AR parameter are similar, indicating that the first
AR parameter largely determines the spectral properties of
the signal.

3.4 Kalman-AR spectral estimation of the fluctuations of
Monte-Carlo simulated spontaneous excitatory
post-synaptic currents

Figure 5a, b depict a simulated miniature excitatory post-
synaptic current (an mEPSC) with the best fit of two expo-
nentials calculated using the least squares fitting method, and
the current fluctuations to which a Gaussian random noise
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Fig. 4 Concatenation of AR
parameters. a The signal
generated by passing a
zero-mean white Gaussian noise
with a variance of 1.0 through a
second order AR-model; b and
d first and second AR
parameter, respectively, were
generated by a concatenation of
two sinusoids (thick lines; see
text). Arrows indicate the times
when concatenation occurred.
Kalman-AR estimates of AR
parameters, (thin lines); c The
prediction error variance; e The
variance of the predicted signal;
f median frequency of the
predicted signal; Second order
AR-model was used for
Kalman-AR estimation, the state
noise variance σ 2

w was 5 × 10−4,
whereas the window for
averaging the prediction error
variance σ 2

ε had 50 samples
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with a zero mean and a standard deviation of 0.2 pA was
added. Same data are shown as in Fig. 2 for a better compar-
ison of the ability of adaptive vs. non-adaptive methods to
fit the current fluctuations. Kalman-AR-model prediction of
the mEPSC fluctuations is given in Fig. 5C. The AR-model
used for the Kalman-AR estimation was second order, the
state noise variance σ 2

w5 × 10−4 and the window of 50 sam-
ples was used for averaging the prediction error variance
σ 2

ε (see Sect.2). The innovations (Fig. 5d) diminished with
time, as did the Kalman-AR prediction error variance (or vari-

ance of innovations), which reached low but non-zero values
(Fig. 5e). Finally, AR-model parameters estimated by the
Kalman-AR-model fitting are shown in Fig. 5f. Following
an initially moderately high level of parameter uncertainty
and relatively rapid change both parameters became more
stationary and very smooth as the time progressed.

The power spectra are smooth, but change with time. Near
the peak of mEPSC (i.e. at 0.2 ms from the start), high fre-
quencies of current fluctuations are more prominent than dur-
ing the decay phase (i.e. at 1.0 ms from the start; Fig. 6a).
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Fig. 5 Adaptive model fitting
provides smooth estimates of
AR parameters. a Simulated
mEPSC with the best fit by the
sum of two exponentials;
b mEPSC fluctuations. Note that
a Gaussian random noise with a
zero mean and a standard
deviation of 0.2 pA was added
to the simulated mEPSC. The
amplitude of the single channel
currents was 1.0 pA. c
Kalman-AR-model prediction
of the signal. d the innovations.
e the variance of the
Kalman-AR prediction error.
f AR parameters estimated by
the Kalman-AR-model fitting.
Note that except initially the
time course of both parameters
is smooth
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The spectral densities do not depend on the choice of the
order of the model used for Kalman-AR fitting. At 1.0 ms
from the start the spectra estimated assuming a second or
a fourth order were completely overlapping, and at 0.2 ms
they were different at low frequencies but only marginally.
The variance of the signal predicted by Kalman-AR-mod-
eling is given in Fig. 6b. Figure 6d depicts two estimates
of the median frequency. In one case, the initialization was
‘random’ (thin line; see Sect. 2), and in another case a short

(100 samples) segment was passed through a static second
order AR-model, and the values of the parameters and states
thus estimated were used for initialization in Kalman-AR-
model fitting (‘static’ initialization; see Sect. 2). The two
estimates differ significantly only in the brief interval at the
start but not subsequently. Higher median frequency, which
is observed at the beginning, with ‘random’ initialization of
the parameters (and zero initialization of the states) suggests
that the model was unable to adapt rapidly enough to find
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Fig. 6 Adaptive model fitting provides smooth estimates of the spec-
tral density, but also of the variance and median frequency of mEPSC
current fluctuations. a The power spectra of the fluctuations of Monte-
Carlo simulated miniature excitatory post-synaptic current (mEPSC)
0.2 (thick solid line) and 1.0 ms (thin dashed line) from the start. n gives
the order of the AR-model used for fitting. Some differences are visible
between the spectra estimated using second order and fourth order AR-
model when the estimates were made 0.2 ms from the start, and even
then only for low frequencies. The spectra estimated at 1.0 ms from
the start are completely overlapping. Note that the spectra are smooth
although the Gaussian random noise with a zero mean and a standard
deviation of 0.2 pA was added to the simulated mEPSC. The amplitude
of the single channel currents was 1.0 pA; b variance of the Kalman-AR

prediction; c median frequency estimates made using the Kalman-AR
(thick line) or RLS-AR (thin line) are similar and change rapidly with
time. The state noise variance σ 2

w controlling Kalman adaptation was
5 × 10−9, whereas the forgetting factor λ of RLS was 0.995 and the
window for averaging the prediction error variance σ 2

ε had 50 samples.
‘Static’ initialization was used in both cases; d median frequency of
the Kalman-AR prediction using either the ‘random’ initialization (thin
line) or the ‘static’ initialization (thick line);e, f mean learning rate of
the Kalman-AR-model, though initially high, declines quickly to low
levels. The mean learning rate during the rise phase of the mEPSC is
lower, if the ‘static’ initialization instead of ‘random’ initialization is
used

the ‘true’ values, partly due to the fact that the difference
between the initial values of the AR parameters and states
and ‘true’ values is large, and partly due to the fact that at

the beginning AR parameters change very rapidly. Figure 6c
compares the estimates of the median frequency made using
RLS-AR and Kalman-AR-model fitting. In both cases the
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Fig. 7 Adaptive model fitting of the noiseless fluctuations of the
Monte-Carlo simulated spontaneous excitatory post-synaptic currents
(mEPSCs) can provide more scattered estimates of AR parameters and
variance and median frequency of current fluctuations. a Simulated
mEPSC with the best fit by the sum of two exponentials; b mEPSC
fluctuations. Note that the fluctuations consist only of the simulated

mEPSC, i.e. there is no noise added. The amplitude of the single chan-
nel currents was 1.0 pA. c Kalman-AR-model prediction of the signal;
d the innovations (defined as the difference between the Kalman-AR-
model prediction and the signal); e the Kalman-AR prediction error
variance; f AR parameters estimated by the Kalman-AR-model fitting.
Note that except initially the time course of both parameters is smooth

initialization was ‘static’. The difference between two esti-
mates is evident only at the beginning and largely disappears
afterwards.

As dynamic conditions change the Kalman-AR-model
adapts to the new data. The adaptation can be monitored using

the mean learning rate (Penny and Roberts 1999; see Sect. 2).
When the model is exposed to new data the mean learning
rate is very high initially, but decreases as the model becomes
exposed to the data whose properties are more stationary, i.e.
well characterized by the model whose AR parameters are
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more stationary and less scattered (Fig. 6e, f). The ability of
the model to adapt to the new dynamical regimes and the
importance of initialization in spectral tracking can be better
appreciated by comparing the mean learning rate with ‘ran-
dom’ initialization and ‘static’ initialization (calculated by
fitting the static AR-model fitted to the short (0.1 ms) segment
of data). There is a clear difference, which is more evident
when shown on the expanded scale (Fig. 6f). Nevertheless,
irrespective of whether the ‘random’ or ‘static’ initializations
were used, after a brief interval of ∼0.1 ms the mean learn-
ing rates were essentially the same. Lower mean learning
rate observed with ‘static’ initialization is in keeping with
the idea that the parameter, state and C

θ̂ t0 error covariance
values obtained from the static AR-model fitted to a 100 sam-
ples data segment are closer to ‘true’ values than random AR
parameters, zero state values and 10× I (I is identity matrix)
C

θ̂ t0 error covariance.
Kalman-AR-model fitting of the ‘noiseless’ mEPSC fluc-

tuations does not lead to highly accurate parameter, median
frequency or variance estimates. Figure 7a,b depict a simu-
lated miniature excitatory post-synaptic current (an mEPSC)
with the best fit of two exponentials calculated using the least
squares fitting method, and the current fluctuations (same
data as in Fig. 5, but without Gaussian random noise added
to the fluctuations produced by the opening and closing of
the AMPA activated channels). Kalman-AR-model predic-
tion of the mEPSC fluctuations (Fig. 7c) was estimated using
the second order AR-model. The state noise variance σ 2

w was
5 × 10−9, and the window for averaging the prediction error
variance σ 2

ε had 50 samples (see Sect. 2). The innovations
diminished with time (Fig. 7d). Figure 7e, f give the vari-
ance and the median frequency of the Kalman-AR prediction.
Finally AR-model parameters estimated by the Kalman-AR-
model fitting are shown in Fig. 7g. Note that the variance
and the median frequency of the Kalman-AR predicted cur-
rent fluctuations, as well as the estimated AR parameters are
highly scattered especially during the late decay phase of the
mEPSC.

3.5 Transient median frequency of current fluctuations
depends not only on number of glutamate molecules
released but also on their ability to re-enter into the
synaptic cleft

As expected mEPSC amplitudes rise when more glutamate
molecules are released, whereas the decay time remains
essentially the same (Fig 8a–c). The median frequency of
current fluctuations, higher during the rise phase and early
decay phase, decreases to a steady level during the late decay
phase. The transient median frequency depends, whereas the
steady-state level is largely independent on how many mol-
ecules are released (Fig. 8f). Note that the transient median
frequency is the highest when the number of glutamate

molecules released is the lowest (1,500 molecules), but if
6,000 molecules are released the transient median frequency
is typically higher than when 3,000 molecules are released.
This dependence is puzzling. If more molecules are released
the occupancy of the double bound state should rise (and
it does; Fig. 8g), and this should produce higher transient
median frequency. So why is the transient median frequency
versus number of molecules released relationship not mono-
tonic? The answer lies in the fact that there is an oppos-
ing tendency. The variability of the occupancy of the double
bound state also influences the median frequency of the cur-
rent fluctuations, and it diminishes when more molecules are
released (Fig. 8h). Both the overall occupancy of the double
bound state and its variability, are influenced by the similar
changes of the cleft glutamate concentration and its variabil-
ity (Fig. 8e), which is as expected because the rate leading
into the double-bound state (from a single bound state) is con-
centration dependent. In all figures, the median frequency of
current fluctuations and the occupancy of the double bound
state are averages from six simulations. The coefficient of
variation (CV=standard deviation/mean) is taken as an index
of the variability. CV values of the occupancy of double
bound state, or cleft glutamate concentration (which are esti-
mated as running values of 50 individual estimates), which
are shown, are also averages from six simulations.

Similar mEPSC amplitude vs. number of molecules relea-
sed relationship is observed if molecules exiting from the
cleft are not able to return. Although the amplitudes are
significantly smaller, the decay times (which are only mar-
ginally shorter) are similarly independent of the number of
molecules released (Fig 9a–c). Contrary to what is observed
in the simulations where molecules are able to return to the
cleft, the peak of the transient median frequency is (1) typ-
ically much greater, and (2) positively correlated with the
number of molecules released (Fig. 9e). This is not surpris-
ing because both the overall occupancy of the double bound
state and its variability are higher when more molecules are
released (Fig. 9f,g). Finally note that these changes are not
due to the changes of the glutamate concentration in the cleft,
because the glutamate concentration diminishes to zero in
20–30µs (Fig. 9d).

3.6 Slower diffusion of glutamate renders mEPSCs
amplitudes greater and decay times longer but markedly
reduces transient median frequency of current
fluctuations

The amplitudes of mEPSCs rise, the decay times lengthen
(Fig. 10a–c), whereas the peak of the transient median fre-
quency diminishes and very significantly (Fig. 10f) when
the diffusion constant of glutamate decreases from the value
equal to that in the bulk solution (1,040µm2/s) to one-eighth
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Fig. 8 Transient median
frequency of the current
fluctuations diminishes albeit
modestly, if the number of
glutamate molecules released
rises, and if the glutamate
molecules are able to return into
the synaptic cleft (see text; f).
a Individual mEPSCs resulting
from a release of 1,500, 3,000
and 6,000 glutamate molecules
with their best fits; b, c as the
number of molecules released
increases the amplitude rises,
but not the decay time; d, e
glutamate concentration in the
cleft decreases
multi-exponentially. The
concentration is greater but less
variable if more molecules are
released; g, h the occupancy of
the double bound (closed) state
also rises and becomes less
variable with more molecules
released
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of it. It is interesting to note that the decrease cannot be
explained by the lower occupancy of the double bound state
(which is in fact higher), but by its significantly lower var-
iability (Fig. 10g, h). Both are associated with, and partly

caused by the changes of the glutamate concentration in the
cleft, which are similar (Fig. 10d, e). The occupancy of the
desensitized state linked to the open state could play only
a marginal role in modulating the median frequency. This

123



Biol Cybern (2008) 98:145–169 159

Fig. 9 Transient median
frequency of the current
fluctuations is much greater,
when more glutamate molecules
are released, if glutamate
molecules are not able to return
into the synaptic cleft (see text;
f). a Individual mEPSCs
resulting from a release of
1,500, 3,000 and 6,000
glutamate molecules with their
best fits; b, c as the number of
molecules released increases the
amplitude rises, but not the
decay time. Amplitudes are
significantly smaller than those
observed when molecules are
able to return into the cleft (see
Fig. 8); d, e glutamate
concentration in the cleft
decreases very rapidly and
mono-exponentially reaching
zero levels in 20–30µs. f, g both
the occupancy of the double
bound (closed) state and its
variability, are greater if more
molecules are released
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occupancy rises following the release of glutamate and the
activation of AMPA receptors. Although it becomes greater
than the occupancy of the double bound (closed) state, it is
higher when the diffusion constant is lower. More importantly

the occupancy of the desensitized state is always much too
small to affect the current fluctuations, because the forward
rate from this desensitized state into the open state is very
low (see Sect. 2).
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Fig. 10 The mEPSCs amplitude rises (b) whereas its decay time
lengthens (c), when the diffusion constant decreases, but the transient
median frequency diminishes greatly (f). a Individual mEPSCs result-
ing from a release of 3,000 glutamate molecules and with diffusion con-
stant of glutamate being 1,040, 520 or 130µm2s−1 with their best fits;
d, e glutamate concentration in the cleft rises, but becomes significantly

less variable if diffusion constant decreases; g, h the occupancy of the
double bound state (closed) also rises and becomes clearly less var-
iable with slower diffusion. The occupancy of the desensitized state
linked to the open state rises to the levels above those of the double
bound (closed) state, but is unlikely to affect the current fluctuations
(see text)
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3.7 Lowering opening rate increases transient median
frequency whereas lowering closing rate decreases
steady-state median frequency

The amplitude of mEPSC also rises and its decay time length-
ens even more clearly when the channel opening rate α

increases (Fig. 11a, c). These changes are also associated with
a smaller peak of the transient median frequency (Fig. 11f).
Lower and less variable occupancy of the double bound state
explain these changes (Fig. 11g, h). Note that the changes
of the occupancy of the double bound state are not due to
the changes of the cleft concentration since neither the gluta-
mate concentration in the cleft nor its variability are affected
(Fig. 11d, e). When the channel closing rate β decreases the
mEPSC amplitude rises modestly, whereas its decay time
lengthens very significantly (Fig. 12a–c). Although this is not
associated with a significant change of the transient median
frequency, the steady-state median frequency diminishes
(Fig. 12f). The occupancy of the double bound state and its
variability change but only modestly (Fig. 12g, h). Finally,
as observed when the opening rates changed neither the glu-
tamate concentration in the cleft nor its variability is affected
(Fig. 12d, e).

3.8 Kalman-AR spectral estimation of the fluctuations
of spontaneous excitatory post-synaptic currents
in rat hippocampal pyramidal cells

Figure 13a gives a spontaneous excitatory post-synaptic cur-
rent (mEPSC) recorded in rat hippocampal pyramidal cell
together with the best fit by the sum of two exponentials cal-
culated using the least squares fitting method. The best-fitted
equation was: i = 50.2 × exp−t/13.6 × (1 − exp−t/0.91). The
recorded current fluctuations and their Kalman-AR-model
prediction estimated using a second order AR-model are
given in Fig. 13b, c respectively. The median frequency of the
Kalman-AR prediction rises to a peak during the rise phase
and early decay phase of the mEPSC, then decreases and
finally settling to an apparent steady-state (Fig. 13d) in agree-
ment with changes of median frequency observed for Monte-
Carlo simulated current fluctuations. The variance estimate
displayed a broader peak (Fig. 13e). Finally, the AR parame-
ters estimated by the Kalman-AR-model fitting were smooth
(Fig. 13f). The state noise variance σ 2

w was 5 × 10−9, the
window for averaging the prediction error variance σ 2

ε had
50 samples, and the initialization was ‘static’. Its values were
obtained from 100 samples segment at the start, which was
passed through a static second order AR-model.

Figure 14 shows three spontaneous excitatory post-
synaptic currents (mEPSCs) of different amplitudes recorded
in the rat hippocampal pyramidal neuron (a1, b1 and c1; three
different cells), together with the best fits by the sum of

two exponentials calculated using the least squares fitting
method, and with the current fluctuations. The best-fitted
equation was: (a1)i = 54.2 × exp−t/11.9 × (1 − exp−t/0.8),

(b1)i = 21.4 × exp−t/9.1 × (1 − exp−t/0.85) and (c1)i =
25.1 × exp−t/10.1 × (1 − exp−t/0.73). The a2, b2 and c2

depict the predicted fluctuations (Kalman-AR prediction),
a3, b3 and c3 give the changes of the corresponding median
frequency of the Kalman-AR prediction of current fluctu-
ations, which have their maxima during the rise phase or
during early decay phase of the mEPSC. Their apparent
steady-state median frequencies rise from ∼0.5 kHz (Vhold =
−60mV; a3) to ∼1.0 kHz (Vhold = −80mV; b3) to ∼1.4 kHz
(Vhold = −100mV; c3), a4, b4 and c4 show the variance of
the Kalman-AR prediction of the current fluctuations. The
initial rise of the variance is followed by a decrease to the
steady-state value, which is similar to the value at the start.
The state noise variance σ 2

w was 5×10−9, the window for
averaging the prediction error variance σ 2

ε had 50 samples,
and the initialization was ‘static’ (it used 100 samples from
the segment at the start, and passed them through a static
second order AR-model).

4 Discussion

4.1 Parametric spectral estimation of the non-stationary
Monte-Carlo simulated excitatory post-synaptic current
fluctuations—AR approach

The evaluation of power spectra using parametric methods
differs significantly from the estimation using non-parametric
methods such as Fourier and Wavelet analyses (Fishman
1973; Rioul and Vetterli 1991; Aristizabal and Glavinović
2003). The evaluation is not done directly from the data.
Instead the data are modeled as the output of the linear
time-invariant system, which is driven not by an unknown
physiological input, but by white noise (Marmarelis and
Marmarelis 1978). The parameters of such a linear system
generating the observed signal are then estimated. Although
this approach does not replicate the way the signals are
generated, it is a highly effective method for estimation of
their spectra. Another feature of the parametric model
fitting—its ability to provide ‘predicted time series’ (i.e. the
fluctuations ‘predicted’ by the model)—is especially use-
ful, because a comparison with the actual time series (mE-
PSC current fluctuations) yields an insight into the ability of
the model to fit the signal that is intuitively easy to grasp.
Their additional strength is that they provide spectral esti-
mations even when the precise nature of the modeled system
is not known, and the kinetic scheme of ion channel gat-
ing is often unknown, or not known fully. The application
of this method requires the signals (such as non-stationary
excitatory post-synaptic current fluctuations) to be divided

123



162 Biol Cybern (2008) 98:145–169

0

0

20

40

0.0

0.4

0.8

0

20

40

0.0

0.2

0.4

0

4

8

12

0.0

0.5

1.0

1.5

0.0 0.5 1.0
0.0

0.5

1.0

0.01

0.1

1

10

B

)
Ap( 

E
D

U
TIL

P
M

A

C

)ces
m( 

E
MI

T 
Y

A
C

E
D

OPENING RATE (1/sec)

α = 2754 1/sec

α = 11015 1/sec

α = 22030 1/sec

A

)
Ap( 

T
N

E
R

R
U

C

α = 22030 1/sec
α = 11015 1/sec
α = 2754 1/sec

G

Y
C

N
A

P
U

C
C

O

α = 22030 1/sec
α = 11015 1/sec
α = 2754 1/sec

F

)z
Hk( 

Y
C

N
E

U
Q

E
R

F 
N

AI
D

E
M

H

α = 22030 1/sec
α = 11015 1/sec
α = 2754 1/sec

V
C

α = 22030 1/sec
α = 11015 1/sec
α = 2754 1/sec

Double Bound

Double BoundCleft Glutamate
 Concentration

E

C
V

TIME (msec)

0.0 0.5 1.0

0.0 0.5 1.0

0.0 0.5 1.0

TIME (msec)

0.0 0.5 1.0 0.0 0.5 1.0

TIME (msec)

D

m
M

10000 20000

0 10000 20000

Fig. 11 The mEPSCs amplitude rises (b) and its decay time lengthens
(c), when the channel opening rate α increases, but the transient median
frequency tends to diminish (f). a Individual mEPSCs resulting from a
release of 3,000 glutamate molecules and with the channel opening rate
α being 22,030, 11,015 or 2,754 1s−1, with their best fits; d, e neither

the glutamate concentration in the cleft, nor its variability is affected by
the changes of α; g, h the occupancy of the double bound state (closed)
decreases, and becomes less variable as α rises. The median frequency
and the occupancy of the double bound state are averages from six
simulations
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Fig. 12 The mEPSCs
amplitude rises modestly (a, b)
and the decay time lengthens
significantly (c), when the
channel closing rate β

decreases, and these changes are
associated with a lower
steady-state median frequency
(f). a Individual mEPSCs
resulting from a release of 3,000
glutamate molecules and with
the channel closing rate β being
1,169, 2,338 and 4,676 1s−1,
with their best fits; d, e neither
the glutamate concentration in
the cleft, nor its variability is
affected by the changes of β;
g, h the occupancy of the double
bound state (closed) increases,
and becomes more variable
as β decreases, but not greatly
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into short segments. An AR-model is subsequently fitted to
each such segment, which is thus assumed to be piece-wise
stationary and independent from other segments.

We used AR-models to fit the current fluctuations because
the fitting algorithm is linear. Using more general ARMA
models enables one to characterize more complex spectral
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Fig. 13 Adaptive model fitting
of the fluctuations of a
spontaneous excitatory
post-synaptic current (mEPSC)
recorded in rat hippocampal
pyramidal cell. a mEPSC with
the best fit by the sum of two
exponentials; b mEPSC
fluctuations; c
Kalman-AR-model prediction
of the current fluctuations d The
median frequency of the
Kalman-AR prediction rises to a
peak during the rise phase and
early decay phase of the
mEPSC, finally settling to an
apparent steady-state; e the
variance of the Kalman-AR
prediction;
f AR parameters estimated by
the Kalman-AR-model fitting.
Note that the time course of both
parameters is smooth. The state
noise variance σ 2

w was 5 × 10−9

and the window for averaging
the prediction error variance σ 2

ε

had 50 samples, and the
initialization was ‘static’.
Holding potential was –60 mV,
temperature was 27◦C
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shapes, but the spectra in these studies are simple, and are
described by a single Lorentzian or a sum of several
Lorentzians (i.e. the spectra are without peaks or notches).
The model order, which determines how many of the previ-
ous data points are taken into account to calculate the chosen
data point, also determines the complexity of the spectral
shapes that can be fitted. Generally the order chosen should
be greater than the expected number of peaks of the spec-

trum. If the order is too low the spectrum will be excessively
smoothed, but if it is too high it will appear too noisy if spu-
rious peaks are introduced. In practical terms the choice of
model order was not difficult (the lowest order was typically
chosen) since the spectra obtained were very comparable to
each other for a wide range of model order values.

The performance of such AR-model fitting revealed how-
ever several shortcomings. Although the estimated spectra
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Fig. 14 Both the variance and
the median frequency of the
predicted fluctuations of
spontaneous excitatory
post-synaptic currents
(mEPSCs; Kalman-AR
prediction) recorded in rat
hippocampal pyramidal neuron
are higher during the rise or
early decay phase of mEPSCs.
The steady-state median
frequency however, appears to
depend on the holding
membrane potential. a1, b1 and
c1 mEPSCs, their bi-exponential
fits and current fluctuations;
a2, b2 and c2 Kalman-AR
prediction of the current
fluctuations; a3, b3 and c3
median frequency of the
Kalman-AR prediction of
current fluctuations. a4, b4 and
c4 variance of the Kalman-AR
prediction of the current
fluctuations. The state noise
variance σ 2

w was 5 × 10−9 and
the window for averaging the
prediction error variance σ 2

ε had
50 samples, whereas the
initialization was ‘static’. The
holding potential was –60, –80
and –100 mV (a, b and c,
respectively). The temperature
was 20–22◦C
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were smooth and the predicted signal well reproduced the
‘true’ current fluctuations free of extraneous noise, the esti-
mates of the median frequencies of current fluctuations and

AR parameters were very scattered. The spectral smoothness
of AR-model fits was due to inclusion of the noise term in the
AR-model. As a result the estimates are based on the signal
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from which most, if not all ‘extraneous’ noise was removed.
This is in contrast to Fourier based spectral estimates, which
are based on the contributions of both the signal (current
fluctuations) and the ‘extraneous’ noise. The reasons for the
scatter of the estimates of the median frequency are of a dif-
ferent nature, and are a consequence of an assumption that
data in each window are independent from those in neighbor-
ing windows, and more importantly because the fluctuations
are considered stationary within individual windows.

4.2 Generation of non-stationary signals by concatenation
of stationary signals of different amplitude
or by concatenation of time-varying AR parameters

The scatter of the estimates of the variance and of the median
frequency of various signals can be much reduced with adap-
tive parametric model fitting. In adaptive models the values
of the free parameters are updated with the arrival of each
new data sample. The ability of such an adaptive parame-
ter estimation method—Kalman-AR-model fitting—to accu-
rately estimate the variance and the spectral properties of
non-stationary synaptic current fluctuations had to be tested
carefully. First, we generated two segments of stationary
processes with different but constant variances and identi-
cal spectral properties, and concatenated them directly. The
spectral evaluation of such concatenated signals is easy to
understand, although they correspond to an unrealistic change
of the physiological process, and at the points of discon-
tinuity the spectral and variance estimates are problematic
(i.e. where two processes of different spectral properties or
variance are joined; Kaipio and Karjalainen 1997). Never-
theless, the Kalman-AR method accurately estimated and
rapidly tracked the changes of variance of signal fluctua-
tions. This is important, because the spectra of the synaptic
current fluctuations are also simple and have a similar shape.
They are described by a few, or even a single Lorentzian, and
are also well characterized by low order AR-models.

Second, we tested the ability of Kalman-AR-model
fitting to estimate AR parameters of signals whose spectral
properties (and not only variance) change rapidly, and gener-
ated the non-stationary signals using second order AR-mod-
els with predefined time-varying parameters. AR-models
have been used before to simulate non-stationary biolog-
ical signals such as EEG signals (Kaipio and Karjalainen
1997; Isaksson et al. 1981; Arnold et al. 1998). Generat-
ing non-stationary fluctuations using AR-models enables one
to directly verify the accuracy and tracking ability of the
Kalman-AR method to estimate model parameters by directly
comparing them with ‘true’ parameters (i.e. the parameters
used for generation of non-stationary signals). Both param-
eters were generated by a concatenation of two sinusoids of
identical amplitudes but different frequencies. Although this
represents a concatenation of parametric representations of

the segments without a discontinuity of the parameter values,
it nevertheless defines a time-varying filter with the coeffi-
cients changing at the points of concatenation in a way unex-
pected from the changes occurring prior to the concatena-
tion loci. Nevertheless Kalman-AR estimated AR parameters
highly accurately even at the loci of concatenation. Taken
together these tests argue that the Kalman-AR-model fitting
should be able to estimate accurately and track rapidly the
spectral changes of the current fluctuations that occur during
the time course of mEPSCs.

4.3 Parametric spectral estimation of the non-stationary
monte-carlo simulated excitatory post-synaptic current
fluctuations – kalman-AR approach

The estimates of the median frequency were indeed less scat-
tered with adaptive model fitting, irrespective of whether
Kalman, RLS or LMS approaches were used. All three algo-
rithms are recursive i.e. the estimate for each state is com-
puted using updating equations. The tracking speed of all
three methods is adjustable, but each method has a different
tool for adjusting the speed of the algorithm. The state noise
variance σ 2

w controls the adaptation (i.e. it controls how much
‘true’ AR parameters are permitted to change; a random
walk is assumed, with a white Gaussian noise) of Kalman-
AR method. χ— forgetting factor and µ—the step size con-
trol the adaptation of RLS and LMS methods, respectively
(Tarvainen et al. 2004). In all cases there is a trade-off between
the tracking speed and the scatter of the parameter estimates,
and faster tracking is associated with greater scatter of
the estimated model parameters. Our choice of the value of
the adaptation coefficient was based on the assessment of the
quality of the signal prediction, but also on the visual inspec-
tion of the variables calculated from the model parameters.
We however did not try to eliminate the lag between the cur-
rent fluctuations and their Kalman-AR prediction, although
the lag can be eliminated using the smoother algorithms
(which utilize not only the past, but also the future mea-
surements when calculating the parameters at a chosen time
instant) together with Kalman filter (Tarvainen et al. 2004).
In the present study the lag was small and was ignored.

The initialization of the Kalman-AR algorithm also affects
the quality of the model fitting. Since it affects the quality of
the estimates only during the convergence time of the algo-
rithm, it is not critical when the signal is of adequate dura-
tion. In the present study, however, the signals were short and
changed rapidly at the beginning, and this required a careful
consideration. Using ‘static’ initialization reduced the con-
vergence time for the estimation of AR parameters or vari-
ables (such as the median frequency of current fluctuations).
How rapidly the filter is converging, when the signal is sta-
tionary, and how well it is adapting, when the signal is non-
stationary, was also monitored using the mean learning rate.
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The mean learning rate clearly decreased with time to low
approximately steady-state levels.

4.4 Transient changes of frequency of current fluctuations
depend on number of glutamate molecules released
and their ability to return to synaptic cleft

The amplitude of mEPSC-s rises if more glutamate mole-
cules are released, whereas the decay time remains unal-
tered. Amplitudes rise irrespective of whether molecules can
re-enter into the cleft. However, the amplitudes are almost
three times larger, if re-entrance from the peri-synaptic cleft
(equally wide as the synaptic cleft and extending into the
infinity) is allowed, whereas the decay times are longer but
only marginally. Note however that in both cases the steady-
state median frequency of current fluctuations is insensi-
tive to how many molecules are released, or whether the
molecular re-entry into the synaptic cleft occurs. By con-
trast the relationship of the transient median frequency of
current fluctuations and the number of molecules released
depends on the re-entry of glutamate molecules. If the molec-
ular re-entry occurs the transient median frequency of current
fluctuations diminishes though modestly as more molecules
are released, whereas in the absence of the re-entry clearly
increases.

In the absence of molecular re-entry into the synaptic cleft
the transient median frequency rises when more molecules
are released because the occupancy of the double bound state
and its variability rise to higher levels. Cleft glutamate mod-
ulates the occupancy of the double bound state only initially,
because the glutamate concentration diminishes to zero val-
ues in 20–30 µs and has no effect subsequently. However,
if re-entry occurs and is significant the cleft glutamate will
persist during the rise phase and decay phase of an mEPSC
altering the occupancy of the double bound state and the
current fluctuations. If more molecules are released the cleft
glutamate concentration rises but modestly, whereas its var-
iability in the cleft diminishes significantly. Their net effect
is lower median frequency of the current fluctuations.

4.5 Transient changes of frequency of current fluctuations
depend on diffusion constant of glutamate in synaptic
cleft

Diffusion constant of glutamate in the synaptic cleft is
unknown. It is typically assumed to be the same as in the phys-
iological bulk solution (Wahl et al. 1996; Glavinović 2002;
Ventriglia 2004), but significantly lower values have also
been assumed (Kleinle et al. 1996) and a recent study sug-
gests that the diffusion constant may be ∼1/3 of the value for
free diffusion in water (Nielsen et al. 2004). However, recent
molecular dynamics simulations of diffusion of glutamate in

the confined space of the synaptic cleft have shown that the
diffusion constant is reduced only if the cleft is very narrow.
If the cleft width is as morphometric studies in the central
nervous system have shown the glutamate− diffusion should
not be slowed by the confinement or membrane charges and
thus is likely to be similar to that in the free solution (Cory
and Glavinović 2006). Nevertheless, we consider it prudent
to evaluate how slower diffusion would affect the amplitude
and the time course of mEPSCs and their current fluctuations.
The amplitude of mEPSCs rises if the diffusion constant of
glutamate in the synaptic cleft decreases. Since the decay
time increases only modestly these changes are similar to
those seen when the number of glutamate molecules released
rises and the molecular re-entry is allowed. However, the
peak of the transient median frequency of current fluctua-
tions decreases much more. Although the underlying causes
of lower transient median frequency are the same, the bal-
ance is different because the cleft glutamate concentration,
and the overall occupancy of the double bound state are only
moderately higher, whereas the variability of the concentra-
tion, and the occupancy of the double bound state are much
lower.

4.6 Closing rate alters steady-state frequency and opening
rate transient frequency of current fluctuations

Greater opening rate α, and to a lesser extent lower clos-
ing rate β also enhance the amplitude of mEPSCs. However,
these changes, but especially lower β significantly lengthen
the decay time of mEPSCs. Their effects on the median
frequency however, are very different. The transient median
frequency of current fluctuations diminishes if α rises,
whereas the steady-state median frequency diminishes when
β decreases. These changes of median frequency are not due
to the changes of the cleft glutamate concentration modulat-
ing the occupancy of the double bound state or its variability,
because neither the overall cleft concentration nor its vari-
ability changed significantly.

4.7 Kalman-AR-model fitting of the non-stationary
excitatory post-synaptic current fluctuations in rat
hippocampal pyramidal neurons

The spectral changes during the time course of individual
quantal events in pyramidal neurons of rat hippocampus are
also rapid, but they can similarly be estimated accurately and
tracked rapidly using Kalman-AR-model fitting of individual
mEPSCs. This is important because the channel properties
underlying individual quantal events in the central nervous
system may differ from one bouton to another. The median
frequency of the current fluctuations typically has a maxi-
mum near the peak of the mEPSC. Subsequently, the median
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frequency reaches an apparent steady state, as observed for
Monte-Carlo simulated current fluctuations. The steady-state
median frequency rises when the holding potential becomes
more hyperpolarized revealing a voltage dependence of the
closing rate of AMPA channels. The estimates of the peak
median frequency of the current fluctuations of recorded mE-
PSCs were typically less elevated than those of simulated
mEPSCs. This is also not surprising given that in all sim-
ulations the release occurred from an instantaneous point
source, whereas physiologically the release occurs from the
vesicle and through the fusion pore, and is not instantaneous.
Alternative explanation is that the diffusion constant of gluta-
mate in the synaptic cleft is lower than in the bulk. The time
course of variance of current fluctuations is also available
from the Kalman-AR-model fits to individual quantal events.
They are thus uncontaminated by the variable contribution
of ‘instantaneous’ glutamate concentration (Kruk et al. 1997;
Glavinović 1999), although the rapidly developing desensi-
tization of AMPA receptors limits their usefulness in deter-
mining the number of AMPA receptors post-synaptically
using a binomial theorem (Aristizabal and Glavinović 2003).
Nevertheless the changes of variance and median frequency
of current fluctuations are likely to provide useful informa-
tion about the gating kinetics of AMPA channels and the
time course of glutamate in the synaptic cleft. Full examina-
tion of these questions is however beyond the scope of this
paper.

5 Conclusion

This study demonstrates the ability of time-variant Kalman-
AR-models to accurately fit the fluctuations of Monte-
Carlo simulated excitatory post-synaptic currents or currents
recorded from pyramidal neurons of rat hippocampus. The
median frequency of current fluctuations could be rapidly
tracked and estimated from the individual quantal events. It
showed an early transient peak before declining to a steady-
state level. The steady-state median frequency is largely
determined by the closing rate of AMPA receptors, but the
transient peak can be modulated by a variety of factors—
number of molecules released, ability of glutamate mole-
cules to re-enter the synaptic cleft, diffusion constant of
glutamate in the cleft and opening rate. In each case the
effect on the amplitude and decay time of mEPSCs and on
the current fluctuations is quite different. Each thus appears
to leave its own kinetic fingerprint arguing that these fac-
tors can be inferred from the kinetic properties of individual
mEPSCs.
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