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Abstract— KNTU CDRPM is a cable driven redundant parallel
manipulator, which is under investigation for possible high
speed application such as 3D laser cutting machine. This newly
developed mechanisms have several advantages compared to the
conventional parable mechanisms. Its rotational motion range
is relatively large, its redundancy improves safety for failure in
cables, and its design is suitable for high acceleration motions.
In this paper, the inverse kinematic analysis of this structure
in is presented first, and then the Jacobian matrices of the
manipulator are derived. Furthermore, the governing dynamic
equation of motion of such structure is derived using the Newton-
Euler formulation. Next, the dynamic equations of the system
is used in simulations. It is shown that on the contrary to
serial manipulators, dynamic equations of motion of parallel
manipulators can be only represented implicitly, and only special
integration routines can be used for their simulations. In order
to verify the accuracy and integrity of the derived dynamics,
open– and closed–loop simulations for the system is performed
and analyzed. It is shown that high gain PD controllers are able
to reduce the induced vibration caused by the cable structures
in these manipulators.

I. INTRODUCTION

Increasing performance requirements necessitates design of
new types of manipulators with larger dexterous workspace
with higher accelerations. Parallel manipulators can generally
perform better than serial manipulators in terms of stringent
stiffness and acceleration requirements. In parallel manipula-
tors, each actuated leg has to carry only a part of the payload;
this is quite energy efficient and the robot can handle heavy
load to weight ratios. On the other hand, it also implies
that the end-effector moves slower than the actuated joints.
However, limited workspace and existence of many singular
regions inside the workspace of the parallel manipulators
limits the applications of parallel manipulators. Moreover,
mechanical elements such as spherical joints make it difficult
to manufacture such mechanisms at a low cost [1]. In the
cable driven redundant parallel manipulators (CDRPM), the
hydraulic linear actuators of parallel manipulators are replaced
with electrical powered cable drivers which leads immediately
to a wider workspace. As an example consider the Sky-Cam,
which is a cable driven robotic camera that covers wide area of
a Football stadium [2], [3]. Higher acceleration of the moving
platform imposed at longer times frames, can be reached by
CDRPM as a result of using light moving parts, such as the
one used in the WARP virtual acceleration robot [4]. Having
over–constrained low mass moving platform, ultra–high speed
with more than 40g can be attained by this manipulator [5].

Fig. 1. The KNTU CDRPM, a Perspective View

The payoffs of these large advantages of CDRPM is some
challenging topics of research in the robotics community. A
CDRPM has complicated forward kinematics [6], cables are
sagged under compression forces, and redundancy resolution
is a necessity in these type of robots. NIST RoboCrane design
have tried to solve these problems with an under–constrained
moving platform that suspended from the roof with the gravity
force. This approach is useful only for low accelerated heavy
moving platform applications such as shipping crane, or a
such platform for serial manipulators [7]. To achieve tension
forces on cables in a dextrous workspace, moving platform
have to become over–constrained [8]. In this paper, such
specific structure which is called as CDRPM for brevity.
KNTU CDRPM refers to the manipulator under investigation
which is designed in the K.N. Toosi University of Technology
for 3D Laser cutting applications. KNTU CDRPM uses a novel
design to achieve stiffness, precision and high-speed moving
platform.

In this paper the dynamic analysis of this parallel ma-
nipulator is studied in detail. Such analysis is an essential
step to design such manipulators in a way to accomplish the
required task, within its entire workspace. In this analysis the
inverse kinematics and Jacobian matrices of the manipulator
is derived first. The traditional Newton–Euler formulation is
used for the dynamic analysis of general parallel manipulators
[9], and also for the Stewart platform, which is the most
celebrated parallel manipulator [10]. In this formulation all



the reaction forces can be computed, which is very insightful
for the design of CDRPM. On the other hand, the equations
of motion for each limb and the moving platform must be
derived, which inevitably leads to a large number of equations.
It is shown that on the contrary to serial manipulators, dynamic
equations of motion of such parallel manipulators can be only
represented implicitly. Therefore, special integration routines
are used for the simulations and verifications. Among the many
control topologies reported in the literature, the dynamics
and control of redundantly actuated parallel manipulators has
been considered by fewer researchers [11]. In order to verify
the accuracy and integrity of the derived dynamics, open–
and closed–loop simulations for the system is performed and
analyzed. It is shown that a decentralized PD controllers are
able to reduce the induced vibration caused by the cable
structures in these manipulators.

II. KINEMATICS

A. Mechanism Description

The KNTU Cable Driven Redundant Parallel Manipulator is
illustrated in figure 1. This figure shows a spatial six degrees
of freedom manipulator with two degrees of redundancy.
This robot has eight identical cable limbs. The cable driven
limbs are modeled as spherical-prismatic-spherical(SPS) joints
because cables can only bear tension force neither radius
nor bending force. The moving platform is illustrated as a
cubic box in here for simplicity, However, in the analysis
it is considered to have arbitrarily chosen attachment points,
in order to simulate the end-effector of a 3D laser cutting
machine. For the purpose of analysis, two cartesian coordinate
systems A(x, y, z) and B(u, v, w) are attached to the fixed
base and moving platform. Points A1, A2, · · · , A8 lie on the
fixed cubic frame and B1, B2, · · · , B8 lie on the moving
platform. The origin O of the fixed coordinate system is
located at the centroid of the cubic fixed frame. Similarly,
the origin G of the moving coordinate system is located at
centroid of the cubic moving platform. The transformation
from the moving platform to the fixed base can be described by
a position vector −→g =

−−→
OG and a 3× 3 rotation matrix ARB .

Consider ai and Bbi be the position vectors of points Ai and
Bi in the coordinate system A and B, respectively. Although in
the analysis of the KNTU CDRPM, all the attachment points,
can be arbitrarily chosen, the geometric and inertial parameters
given in table I is used in the simulations.

B. Inverse Kinematics

Similar to other parallel manipulator, CDRPM has compli-
cated forward kinematics [6], and inverse kinematic is used for
dynamic modeling. Therefore, in this section, the kinematic of
the system is studied in detail. As illustrated in figure 1,the Bi

points lie at the vertexes of the cube. For inverse kinematic
analysis of the cable driven parallel manipulator, it is assumed
that the position and orientation of the moving platform x =
[xG, yG, zG]T , ARB is given and the problem is to find the
joint variable of the CDRPM, L = [L1, L2, . . . , L8]

T . From
the geometry of the manipulator as illustrated in figure 2, the
loop closure equation for each limb, i = 1, 2, . . . , 8, can be
written as,

A−−−→AiBi +A −→ai =A −→g +A T B(B−→bi ) (1)

Fig. 2. ith Attachment Point on the Moving Platform and Related Vectors

in which, AT B is the homogeneous transformation matrix
corresponding to the moving frame B with respect to the fixed
frame A. The length of the i’th limb is obtained through taking
the dot product of the vector

−−−→
AiBi with itself. Therefore, for

i = 1, 2, . . . , 8

L2
i = [Ag +A T B(Bbi)−A ai]T [Ag +A T B(Bbi)−A ai] (2)

As shown in figure 2

Li =
{
[g + Ei − ai]T [g + Ei − ai]

} 1
2 (3)

If the solution of Li becomes a complex number, then the
location of the moving platform is not reachable.

C. Jacobian

Jacobian analysis plays a vital role in the study of robotic
manipulators [14]. Let the actuated joint variable be denoted
by a vector L and the location of the moving platform
be described by a vector x. Then the kinematic constrains
imposed by the limbs can be written in the general form
f(x,L) = 0 by differentiating with respect to time, we obtain
a relationship between the input joint rates and the end-effector
output velocity as follows :

Jxẋ = JLL̇ (4)

where Jx = ∂f
∂x and JL = − ∂f

∂L . The derivation above leads
to two separate Jacobian matrices Hence the overall Jacobian
matrix J can be written as:

L̇ = J · ẋ (5)

where J = J−1
L Jx. Jacobian matrix not only reveals the re-

lation between the joint velocities L̇ and the moving platform

TABLE I
GEOMETRIC AND INERTIAL PARAMETERS OF THE KNTU CDRPM

Description Quantity
fa: Half of the length of the fixed cube 1 m
fb: Half of the width of the fixed cube 1.5 m
fh: Half of the height of the fixed cube 2 m
C : Half of dimension of the cubic moving platform 0.1 m
M : The moving platform’s mass 5 Kg
I: The moving platform’s moment of inertia 0.033 Kg · m2

ρ: The limb density per length 0.007 Kg/m
Kp: The gain of proportional 100
Kd: The gain of derivative 10



velocities ẋ, but also constructs the transformation needed
to find the actuator forces τ from the forces acting on the
moving platform F . When JL is singular and the null space
of JL is not empty, there exist some nonzero L̇ vectors that
result zero ẋ vectors which called serial type singularity and
when Jx becomes singular, there will be a non-zero twist ẋ
for which the active joint velocities are zero. This singularity
is called parallel type singularity [15]. In this section we
investigate the Jacobian of the CDRPM platform shown in
figure 1. For this manipulator, the input vector is given by
L = [L1, L2, . . . , L8]

T , and the output vector can be described
by the velocity of the centroid G and the angular velocity of
the moving platform as follows :

ẋ =
[

V G

ωG

]
(6)

Jacobian matrix of a parallel manipulator is defined as the
transformation matrix that converts the moving platform ve-
locities to the joint variable velocities, as shown in equation 5.
Therefore, the CDRPM Jacobian matrix J is a non-square 8×6
matrix. The Jacobian matrix can be derived by formulating
a velocity loop-closure equation for each limb. Referring to
figure 2, a loop-closure equation for the ith limb is written
in equation 1. In order to obtain the Jacobian matrix, let us
differentiate the vector loop equation 1 with respect to time,
considering the vector definitions Ŝi and

−→
Ei illustrated in

figure 2. Hence, for i = 1, 2, · · · , 8:

VG + ωG ×Ei = L̇iŜi + Li (ωi × Ŝi) (7)

Furthermore ωi denotes the angular velocity of i’th limb with
respect to the fixed frame A. To eliminate ωi, dot-multiply
both sides of equation 7 by Si.

L̇i = ŜiV G + (Ei × Ŝi) ωG (8)

Rewriting equation 8 in a matrix form:

L̇i =
[

Si Ei × Ŝi

]
·
[

V G

ωG

]
(9)

Using equation 9 for i = 1, 2, . . . , 8 the CDRPM Jacobian
matrix J is derived as following.

J =


Ŝ

T

1 (E1 × Ŝ1)T

Ŝ
T

2 (E2 × Ŝ2)T

...
...

Ŝ
T

8 (E8 × Ŝ8)T

 (10)

Note that the CDRPM Jacobian matrix J is a non-square 8×6
matrix, since the manipulator is a redundant manipulator. To
eliminate Li, cross multiply both sides of equation 7 by Ŝi :

Li ωi = Ŝi × V G + Ŝi × ωG ×Ei

ωi =
1
Li

· (Ŝi × V G + Ŝi × ωG ×Ei) (11)

Therefore, Jω defined as the matrix relating the vector of
moving platform velocities, ẋ to the vector of the limbs’
passive joints angular velocities as:

ω̇i = Jωi
· ẋ (12)

in which, for i = 1, 2, . . . , 8,

Jωi =
1

Li

2
4

0 −Siz Siy EixSix EixSiy EixSiz

Siz 0 Six EiySix EiySiy EiySiz

−Siy Siz 0 EizSix EizSiy EizSiz

3
5

(13)
When Jωi becomes singular, there exists a non-zero ẋ that
results zero ω̇i.

D. Accelerations

Acceleration analysis of the limbs and the moving platform
is needed for Newton–Euler formulation. In this section, the
acceleration analysis for the CDRPM manipulator is per-
formed. Let us compute the linear and angular velocities of
each limb in terms of the velocity and angular velocity of
moving platform. The velocity of a point Bi, denoted as V bi,
is found by taking the time derivative of the right-hand side
of equation 1:

V bi = V G + ωG ×Ei (14)

Transforming V bi to the i’th limb frame yields iV bi =
iTAV bi. The velocity of Bi can also be written in terms of
the angular velocity of the i’th limb by taking the derivative
of the left-hand side of equation 1 with respect to time. We
obtain the angular velocity of limb i :

iωi =
1
Li

(iSi ×i V bi) (15)

The acceleration of the ball point Bi, expressed in the fixed
frame, is found by taking the time derivative of equation 14:

˙V bi = ˙V G + ω̇G ×Ei + ωG × (ωG ×Ei) (16)

Expressing V̇ bi in the i’th limb frame gives ˙iV bi = i(TA)V̇ bi.
The acceleration of Bi can be expressed in terms of the angular
acceleration of the ith limb:

˙iV bi = L̈i
iSi+Li

˙iωi×iSi+Li
iωi×(iωi×iSi)+2L̇i

iωi×iSi

(17)
Dot-multiplying both sides of equation 17 by iSi, we obtain

L̈i = iv̇biz
+ Li

iω2
i (18)

in which, iv̇biz is the z component of the limb acceleration
vector ˙iV bi. Cross multiplying both sides of equation 17 by
iSi, we obtain the angular acceleration of limb i:

˙iωi =
1
Li

iSi × ˙iV bi −
2L̇i

Li

iωi (19)

The required acceleration components for the dynamic analy-
sis of CDRPM is fully derived.

III. DYNAMIC ANALYSIS

A. Dynamic Modeling

The main approach of dynamic analysis of CDRPM is
Newton-Euler method. In this approach the free-body di-
agrams of the components are considered separately. The
Newton-Euler equations are applied to all limbs and moving
platform containing external, contact and inertia forces or
torques.

It is assumed that the moving platform center of mass
is located at the geometrical center point G and it has a
mass of M and moment of inertia IG. Furthermore, since the
manipulator is cable-driven, the mass of the limbs depend on



cable length. It is also assumed that the cables have circular
cross section, and a constant density per unit length of ρ.

m = ρLi (20)

Thus, the cables’ moments of inertia are varying, and can be
calculated assuming that they are circle section slender bars
with varying length. As illustrated in figure 3, the moment of
inertia of the cables around the fixed point Ai is given by:

IAi =
1
3
ρLi

 0 0 0
0 1 0
0 0 1

 (21)

Center of mass velocity vector for each limb contains two
rotational and linear elements:

vci =
1
2
(L̇iŜi + Liωi × Ŝi) (22)

Ŝi is the unit vector along i’th cable, and the other unit vectors
of cable’s rotative coordinate are N̂ i and R̂i. They can be any
unit vectors that make an orthogonal coordinate on the Ai fixed
point. Thus, N̂ i and R̂i are defined as:

N̂ i =
Ŝi ×Ei

‖Ŝi ×Ei‖
(23)

R̂i = Ŝi × N̂ i (24)

The Newton-Euler equations for varying mass cable can be
written as: ∑

F ext =
∂

∂t
(mivci) (25)∑

MAi =
∂

∂t
(IAiωi) (26)

According to acceleration of rotative velocity vector [16].
equations 25, 26 derived to:

F Bi−F Ai =
1
2
ρL2

i [
.

Liωi×Ŝi+
.
ωi×Si+ωi×(ωi×Ŝi)] (27)

F N
Bi + F R

Ai =
1
Li

(
.

IAiωi + IAi
.
ωi) (28)

By using light weight cables such as the ones used in this
manipulator, the gravity force effects on the cables can be
ignored compared to the dynamic induced forces [17]. As
shown in figure 3, FS

Ai the cable’s tension force applied by
cable driver unit can be represented by:

F S
Ai = −τ Ai (29)

Relations between actuator forces and the end-effector af-
fected forces had been studied in cable-affected forces. Writing
the Newton-Euler equations for moving platform, describes the
relation between forces, torques and acceleration of moving
platform as following:

M ẍ = F D + M [0, 0, −9.81]T +
n∑

i=1

F Bi (30)

IGθ̈ = τD −
n∑

i=1

Ei × F Bi (31)

In which, M and IG are moving platform’s mass and moment
of inertia and n is number of the cables. FD and τD are

Fig. 3. ith Cable’s rotative coordinate and force elements

disturbance forces and torques effects on moving platform with
respect to fixed frame coordinate. Therefore, equations 30 and
31 can be viewed in two implicit 3 × 1 vector differential
equations of the form:

ff (x, ẋ, ẍ,F D, τ ) = 0 (32)

f tau(θ, θ̇, θ̈, τD, τ ) = 0 (33)

The use of these equation is two fold. The first use of it is to
evaluate the actuator forces τ needed to produce a prescribed
trajectory x(t) in presence of the disturbance forces and mo-
ments F D, τD. However, the governing equations of motion
of the manipulator can be implemented for dynamic simulation
of the system. For dynamic simulation, it is assumed that the
actuator forces τ (t), are given and the manipulator motion
trajectory x(t), is needed to be determined.

B. Dynamical Validation

As explained before, the most important application of
the dynamic equations of the CDRPM is the direct dynamic
simulation of the system. In this case it is assumed that the
actuator forces, are given and the manipulator motion is to be
determined. Due to implicit nature of the dynamic equation,
usual numerical integration routines such as Runge–Kutta
methods [13], cannot be used to solve the problem. However,
special integration routine1, which is capable to integrate
implicit functions, can be used for dynamic simulations. The
first simulations is performed to verify the dynamic equations
in order to have a trusted model. Thus, the model is tested in
some scenarios in which the behavior of the system can be
predicted by intuition.Free falling test of the moving platform
results in an accelerated motion in -z direction. The free fall
is slower than a free falling of the cubic body in the same
condition which is reveals the effect of the cable inertia terms
in the motion. In order to study the cable constrained motion
of the moving platform, all tension forces of cables τAi are
set to 100N . In order to describe the simulated behavior of
the system it is simpler to consider only the front view of
CDRPM as shown in figure 4. In this scenario, the initial
geometry of the moving platform is symmetric with respect
to the x, y, and z axes, and all actuator forces acting on the
moving platform have the same size. Therefore, the forces and

1ode15i function of Matlab



Fig. 4. Applied actuator forces: the vector sum is zero

torques are balanced statically and the resultant force acting
on moving platform is zero. The simulation results confirms
the static balance of the manipulator in this case. Nevertheless,
when any other disturbance or displacement is applied, statical
equilibrium is disturbed, and as illustrated in figure 5, in which−→
W is the gravity force effect on the moving platform, has
changed the force balance. In this case, the resultant force
is in the z direction and the resulting motion is shown in
figure 5. In order to study the motion of the moving platform
in z direction, let us nominate CF z as the resulting actuator
forces in z direction:

CF z =
8∑

i=1

F z
Bi (34)

As shown in figure 4, the resultant of the actuator forces F Bi

is in z direction and its magnitude can be given by:

CFz = 2
4∑

i=1

BFS
Bi(Sin(σ)− Sin(α)) (35)

Where σ angle is measured counter clockwise and α is
measured clockwise. Using the manipulator geometry it can
be shown that the sinusoid of the angles σ and α are a function
of only the z variable as following:

Sin(σ) =
ffix − z

Li
(36)

Sin(α) =
ffix + z

Li
(37)

since, FS
Bi forces have same magnitudes while accelerations

are small. Substituting equations 36, and 37 in equation 35,

Fig. 5. Applied same actuator forces: the sum is nonzero

Fig. 6. Response of open–loop excitation by constant gravity force

the Newton-Euler equations in z direction can be simplified
as the following differential equation:

Mz̈ = CF z −W (38)

collecting all fixed coefficients, and replacing them with two
constant parameter Ko, and K1. simplifies the dynamic equa-
tion into:

Mz̈ = ko − k1z (39)

Thus, the system behavior becomes similar to a free vibration
in z direction without damping. As shown in figure 6, the simu-
lation results of the dynamical model is also a free vibration in
z direction, similar to the expected behavior. Similar scenarios
are simulated in order to verify the dynamic behavior of the
system, and in all cases similar correspondences are observed.
Hence, the dynamic equation is used to analyze the closed
loop performance of the system.

IV. CLOSED–LOOP PERFORMANCE

In order to analyze the closed–loop performance of the ma-
nipulator in hand a position control topology is simulates. Let’s
assume that the desired trajectory of the manipulator is given,
and the actuator forces required to generate the trajectory must
be generated. Notice that the governing equation of motion of
the manipulators are six implicit differential equations given in
equations 32 and 33. However, due to the actuator redundancy
in the manipulator the number of unknown variables are eight.
Therefore, there are infinitely many solutions for the eight ac-
tuator forces to solve the dynamic equations. Let us denote the
resulting cartesian force/moments applied to the manipulator
moving platforms F . In this definition F is calculated from
the summation of all inertial, and external forces excluding the
actuator torques τ in the dynamic equations 32 and 33. Due to
the projection property of the Jacobian matrix [14], F = JT τ
is the projection of the actuator forces on the moving platform,
and can be uniquely determined from the dynamic equations
by excluding the actuator forces from the dynamic equations.
If the manipulator has no redundancy in actuation, the Jacobian
matrix, J , was squared and the actuator forces can be uniquely
determined by τ = J−TF , provided that J is nonsingular.
For redundant manipulators, however, there are infinity many
solution for τ to be projected into F . The simplest solution

Fig. 7. Block Diagram of Closed-Loop



Fig. 8. Closed–Loop Performance

Fig. 9. Error of Position and Orientation in closed–loop

would be a minimum norm solution, which is found from
the pseudo–inverse of JT , by τ = JT †F . This solution is
implemented in the simulation studies reported in this paper.
Other optimization techniques can be used to find the actuator
forces projected from F which can minimize a user defined
cost function. The Block diagram of dynamic simulation in
closed–form is given in figure 7. As shown in figure 7, pseudo–
inverse of the main Jacobian, JT †, is used as the redundancy
resolution method. The controller used in this simulation is a
decentralized PD controller, in which the gains are tuned such
that the required tracking performance is achieved. The gains
are given in table I. A linear trajectory with parabolic blends
is considered in these simulation. The closed–loop tracking
performance of the CDRPM is illustrated in figures 8 and 9.
As seen in figure 9, a decentralized PD controller for CDRPM
is capable of reducing the tracking errors less than 0.1mm in
position and less than 0.05o in orientation. The redundancy
resolution technique used, however, is very simple, and can be
further investigated to guarantee that the cables are in tension
in all configuration of CDRPM maneuvers.

V. CONCLUSIONS

In this paper the dynamic analysis of KNTU CDRPM is
studied in detail. This manipulator is a cable driven redundant

parallel manipulator, which is under investigation for possible
high speed application such as 3D laser cutting machine.
Dynamic analysis is an essential step to design such manipula-
tors in a way to accomplish the required performance, within
its entire workspace. In this analysis the inverse kinematics
and Jacobian matrices of the manipulator is derived first.
The equation of motion of the manipulator is derived using
Newton–Euler formulation. In this formulation all the reaction
forces can be computed, which is very insightful for the
design of CDRPM. It is shown that on the contrary to serial
manipulators, dynamic equations of motion of such parallel
manipulators can be only represented implicitly. Therefore,
special integration routines are used for the simulations and
verifications. In order to verify the integrity and the accuracy
of the dynamic equations a simulation study is performed
on the system for the open– and closed–loop scenarios.
The integrity of the models are verified through the open–
loop simulations, while It is shown that a decentralized PD
controllers are able to reduce the induced vibration caused by
the cable structures in these manipulators. It is shown that the
obtainable tracking performance is less 0.1mm in position and
less than 0.05o in orientation.
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