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Abstract: Presented method in this paper aims to develop an accurate motion model and SLAM algorithm, 
which is only based on the Laser Range Finder (LRF) data. Proposed method tries to overcome some 
practical problems in traditional motion models and SLAM approaches, such as robot slippage, and 
inaccuracy in parameters related to robot’s hardware. Novel insights specific to process and measurement 
model, and making use of them in the IEKF framework, give rise to the real time method with drift-free 
performance in restricted environments. Furthermore, uncertainty measures, calculated through the 
method, are valuable information for fusion purposes and also an accurate motion model, derived in this 
method, can be used as a robust and an accurate localization procedure in different structured 
environments. These issues are validated through experimental implementations; experiments verify 
method’s efficiency both in pure localization and in SLAM scenarios in the restricted environments, 
involving loop closures.  

1. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) has 
received immense attention of many researchers in the last 20 
years. SLAM has been formulated in different frameworks; 
however, crossing over into practical systems confronts with 
substantial issues. Focus of the work presented here is on 
developing a theory, which can overcome some problems, 
come into view in practical implementations. The problems, 
considered here, stem from unmodeled dynamics of the 
system, such as robot slippage, surface type changing, and 
imprecision in the parameters of robot's hardware. In other 
words, method aims to circumvent traditional encoder-base 
dynamic modeling and propose a robust process model with 
respect to mentioned problems. 

The key contributions given in this paper include accurate 
covariance calculation for robot displacement derived from 
feature based laser scan matching, and the use of this 
information to establish a robust motion model. This is 
accomplished based on extracted features’ individual 
covariances. Exploiting calculated covariance and features’ 
individual covariances, the Extended Kalman Filter (EKF) 
framework, is established to estimate robot’s and features’ 
states, only based on the laser range finder information. 
Together, these add up to an efficient and robust algorithm 
achieves real time implementation with single LRF hardware.   

To fuse the LRF data with the other sensors, it is necessary to 
calculate reliability of obtained information. This information 
could be in feature measurement layer or in pose displacement 
layer. Our method calculates covariances as reliability 
measures in the both of these, which can be used as valuable 
information for fusion purposes. In a nutshell, intention of this 
work is to show that it is indeed possible to achieve real-time 
localization and mapping with a single laser range finder as 
the only data source. This is certainly of both theoretical and 
practical importance, particularly, when the only reliable data 
is the LRF’s data. 

2. RELATED WORK 

Various sensors have been utilized to carry out the SLAM 
problem. However, the most impressive results in terms of 
mapping accuracy and scale have been reported for robots 
using laser range finder sensors. Main body of literature, 
relate on laser range scan matching, falls into two categories: 
point to point and feature to feature matching methods. The 
most popular point-wise methods usually follow the iterative 
closest point (ICP) algorithm. There are two fundamental 
simplifying assumptions in the ICP method, which are 
somehow optimistic and decrease this method's accuracy, as 
follows: i) Matching assumption: the corresponding points of 
two scans are successfully matched. ii) Correspondence 
assumption: the points of two scans, which are correctly 
matched with each other, correspond to exactly the same point 
of the environment's boundary.  

Variants of ICP, such as [1], [2], [3], and [4], try to exclude 
ICP from these assumptions. However, consequent inaccuracy 
due to these assumptions is not completely eliminated. 
Besides, in these algorithms, computational complexity is in 
order of O(nk) in which k>1 and n is the number of scan 
points. In the point-wise approaches, n is approximately two 
orders of magnitude more than that in feature-based methods. 
Besides, because of the lack of features, the map, constructed 
using these algorithms, cannot be used for recognizing 
previously seen areas, and thus it would lead inevitably to 
drift in localization.  

On the other hand, [5], [6], [7], and [8] are the state-of-art 
methods, which exploit natural features, extracted from range 
scans, for localization. Inability to closing loops, drift in 
localization, and lack of any reliability measure such as 
covariance for calculated pose shift are main drawbacks of 
these methods. Nevertheless, owing to the feature-based 
essence of these methods, they are more suitable for real-time 
applications. Besides, matching assumption here is more 
realistic in comparison with point-based methods, especially, 
if method exploit the local properties of scan around features 
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Fig.2. Extracted features from the scan, previously shown in fig. 1, along
with their associated uncertainties. Ellipsoids in magenta represent the
measurement covariance (OUE) of each feature and cyan ellipsoids
(WUE) related to whole covariance of each feature, consisting of the
observation and quantization errors.  
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Fig. 1. Blue dots represent the scanned data, and dashed lines are ground
truth of environment's boundary. Circles in green are extracted features of
this scan. Squares are coinciding with variant features, which are
established due to occlusion. Triangle shows a variant feature, which is
established due to the lack of reflected ray. (Since incidence angle is near
to zero.) 

[9]. In addition, feature-based essence of these methods 
allows enriching the landmark-templates with the information 
collected from different sensors, such as cameras [10]. The 
addition of more information allows the building of high 
dimensional landmarks, which makes them more distinctive 
and makes the association process very robust [10]. 

3. FEATURE EXTRACTION 

A concept that can be used to obtain salient features from the 
laser scan data is the local curvature value. Features extracted 
from local curvature are viewpoint invariant measures and, 
this means that they can be used as robust features in SLAM. 
In our system, features fall into two types: 1) Jump-edges 
which are scan measurements associated to discontinuities in 
scanning process. 2) High curvature points within segments, 
such as corners. Feature detection is composed of three main 
procedures: scan data segmentation, detection of high 
curvature points, and discarding variant features. There exist 
two cases in which variation is observed in features: i) The 
edges, which are established due to the occlusion, not to the 
real landmark in the environment. ii) When an edge of a 
segment established due to the sensors low range or lack of 
reflected laser beam, occurs when incidence angle between 
laser ray and obstacle's surface is about 0 or 180 degrees. 
Discarding these features made features’ set reliable for 
SLAM. Figure 1 shows the extracted features and discarded 
ones from a sample scanned data. 

In order to include these features in an EKF-based SLAM 
algorithm, it is necessary to estimate their uncertainties. 
Uncertainty of each feature has two major causes, rooted in 
physical properties of LRF: measurement process noise and 
quantized nature of rays' angles. Thus, if fk is the true position 
of the 'k th  feature of map (in robot's coordinate) and pi is the 
candidate point of the scan for being k'th  feature, we have:  

, ,k i ob i q if p e e= + +  (1) 

In which eob,i denotes the imposed error due to observation 
uncertainty and eq,i is the quantization error. Expected value 
and covariance of fk has been calculated in [5]. Figure 2 shows 
the associated uncertainty with each of features previously 
shown in fig. 1. Shown ellipsoids are illustrated by the scaling 
factor of 10, indicating the 95 percent confidence region of 
each feature’s covariance. 

4. MOTION PREDICTION 

Every motion model, which is used in prediction stage, must 
stop at some level of detail and there exist some discrepancies 
between obtained model and reality. In traditional models for 
a wheeled robot, based on encoders' data, these discrepancies 
take account of factors such as wheel slippage, unequal wheel 
diameters, unequal encoder scale factors, inaccuracy about the 
effective size of wheel base, surface irregularities, and other 
predominant environmental effects which have not been 
modelled. These discrepancies are much more considerable in 
tracked mobile robots. Traditional prediction methods based 
on a model such as follows: 

1 ( , , )k k k kx f x u w+ = (2) 

One can consider the prediction procedure as a black box (see 
fig. 3a), whose outputs are expected value of the state 
prediction and covariance of this prediction. Here, alternative 
procedure is proposed for producing desired outputs, which is 
pictured in fig. 3b. This novel insight to prediction model 
comprises of three steps: matching step, an optimization 
process, which aims to predict robot's next pose, and 
uncertainty propagation step based on the implicit function 
theorem. 

 
Owing to the fact that features' topology cannot change 
fundamentally between two consecutive scans, adequate 
information is available for matching. Here, the matching 
method, proposed in [5], is adopted. In the second step, 
algorithm aims to predict robot's next pose through 
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Fig. 3. a) Traditional prediction method, and b) Proposed prediction
method. 
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calculating its displacement. Based on Gaussian-based 
maximum likelihood concept, following error function must 
be minimized (The hat symbol  (^) above a variable, indicates 
its expected value.):  

1

, , , ,
1

ˆ ˆ ˆ ˆ( ( )) ( ( ))
m

t

j pre j new j j pre j new
j

E f Rf T C f Rf T−

=

= − + − +�  
 
(3) 

m is the number of pairs resulted from matching algorithm. 
Fj=[fj,new  fj,pre] is j'th matched pair, and fj,pre and fj,new have 
been respectively extracted from the reference and new scans. 

, ,
ˆ ˆ( ( ))j pre j newj f Rf Tν − +=  is the j’th innovation vector and Cj 

is its covariance. Assuming errors in two different scans are 
independent, one can write: 

cov( ) cov( )pre pre new new t
j ob q ob qC e e R e e R= + + +  (4) 

Using quaternion, desired variables can be reshaped in vector 
form, X=(q1  q2  t1  t2)t, in which 

2 2
11 2 1 2

2 2
21 2 1 2

2
&

2

tq q q q
R T

tq q q q
− −

= =
−

� � � �
� � � �

� �� �  

 
(5) 

t1 and t2 denote translations in x and y direction. To fulfil such 
optimization, linearization and iteration methods can be 
utilized [11]. Here, Sequential Quadratic Programming (SQP) 
method [12] is applied for solving this optimization problem. 
Owing to the fact that the number of summation terms in the 
objective function, equation 3, in feature-based methods is 
often reduced to 0.01 of that in point-based methods, SQP 
method produces an accurate solution for desired variables in 
a small portion of computing time. 

Assume X* is the robot displacement between two consecutive 
steps that minimizes E in equation 3; For calculating 
covariance of  X*, there should be a Jacobian that projects 
features' uncertainty onto X* uncertainty. If there exists an 
explicit function, g, which relates  X* to F, vector of all 
matched features, then we have: 

*

1 2( ) , [ ]mX g F F F F F= = �  
(6)

Taylor expansion of g around E[F] results in: 
*

* 2ˆ ˆ ˆ( ) ( ) ( )XX g F F F O F F
F

∂= + − + −
∂  

 
(7) 

in which O(.)2 denotes the terms of order 2 or higher. Jacobian 
between X* and F projects uncertainty of F onto X*. 

*cov( ) cov( ) TX J F J=  (8) 

However, there is no explicit function between F and  X*, and 
they relate to each other through an implicit function 
I(X*,F)=0, which derived from �E/�X=0. The implicit 
function theory can provide such Jacobian via below equation: 

11 2 2
*

* 2

E E
J J at X X

X F X F X

−−∂ϒ ∂ϒ ∂ ∂
= − = − =

∂ ∂ ∂ ∂ ∂

� � � �� � � � 	� � � � � � � �� � � � � � � �
(9) 

Letting 1t

j j j jE v C v−= , yields to: 
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1

m
j

j

EE
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∂∂
=
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(10) 

(s,t) element of mentioned differentiation in equation 10 is 
calculated as follows: 

( )
2 2 1

1

1
1

2 1 1

2 2

2
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t t
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� �∂ ∂ ∂ ∂� � � � � �
+ + � �� � � � � � � �∂ ∂ ∂ ∂� � � � � � � �

� � � �∂ ∂ ∂� �
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Calculations of current terms in equation 11 are complicated 
but a tractable matter of differentiation, which leads to a 
closed-form expression. For calculating second term in 
equation 9, firstly, it should be expanded: 

2 2 22
1 2

1 2

m

m

E E EE
F X F X F X F X


 �∂ ∂ ∂∂ = � ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �
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(12) 

(ix, jm)(s,t) element of �2E/(�Fj �X  ) is calculated as follows: 

( )

( ) ( )

2 2
1 1

1 1

2 2
( ) ( ) ( )

(13)
( ) ( )
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� � � �∂ ∂ ∂ ∂� �
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� � � �� � � �∂ ∂ ∂ ∂
+ +� � � �� � � �� � � �� � � �∂ ∂� � � �� � � �

 

Again calculating differentiations determined in equation 13, 
is tractable procedure. Substituting equations 11 and 13 into 9 
yields to the desired Jacobian matrix. Independency of 
features in one scan leads to a block diagonal covariance 
matrix for their total covariance. Besides, assuming features, 
extracted from two consecutive scans, are independent, each 
pair's covariance takes the below form: 

( )
( )

( )

( )
( )

1
,

,

cov 0

cov

0 cov

cov 0
cov( )

0 cov
,

m

j new

j

j pre

F

F

F

f
F

f
= =

 � 
 ��  � �  � � �� � �

�
  

(14) 

Now, substituting 9 and 14 into 8 results in the uncertainty of 
displacement. This covariance reveals the reliability of 
displacement estimation and can be used as valuable 
information for fusion purposes. Robot’s pose at time step k is 
denoted by xr,k =[xr1,k xr1,k xr1,k] ,in which xr1,k and xr2,k denote 
robot's position along x and y axis and xr3,k denotes robot's 
heading angle, all in step k. Robot's next pose is computed 
through below equation: 

3,

1

, 1 , 2

ˆ ˆcos sin 0
ˆ ˆ ˆˆ ˆ ˆsin cos 0 ,

0 0 1
k

k k

r k r k k k k r

t
x x t x

θ θ
θ θ θ

θ
+

� �− � �� �� �= + =� �� �� �� �Δ� �� �� �

 
 
 
(15) 

In which t1 and t2 are translations along x and y axis,  
respectively, during time span between k and k+1.� �� is the 
rotation angle during same interval and derived from��
���������	
�����	�. Calculating covariance of Xr,k+1, needs its 
differentiation with respect to stochastic parameters in the 
right-hand side of the equation 15.  
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Fig. 4. Melon, the mobile robot equipped with low range laser scanners

Noticing to the dependency among the elements of the 
quaternion, Jp can be calculated as 

1 2

1 2
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p k k k k
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− − −� �
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(17) 

Regard to the independency of xr,k and X, Covariance of the 
right-hand side parameters of equation 15 takes the below 
form: 

( )
( )
3 4

*
4 3

cov 0

0 cov
kp

P
X

×

×

� �
′ � �=
� �
� �  

 
(18) 

And thus the covariance of xr,k+1 can be computed as 

, 1cov( ) t
r k p px J P J+ ′=  (19) 

System's state vector, xk, comprises of robot's state, xr,k, and 
stacked state of all features, xf,k.  Now, let system's state 
vector and its covariance be as follows before prediction:  

, , , ,

, , ,,
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(20) 

Robot's displacement does not affect features' state; therefore, 
outputs of prediction box take the bellow form: 
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(21) 

Because of the fact that, uncertainty of robot's displacement is 
uncorrelated with the uncertainty of features in the map, pJ ′ is 
the truncated form of Jp includes only differentiation of xr,k+1 
with respect to xr,k. 

Finally, outputs of prediction box are listed as: 1ˆkx + and 
cov(xk+1), the predicted robot pose and associated covariance 
with this prediction, respectively. ( )

1ˆkx −
+  and ( )

1cov( )kx −
+  are the 

alternative notation for them, which will be used in filtering 
section. 

5. FEATURE MEASUREMENT AND MAP UPDATE 

For data association, firstly, the positions of the existing 
features in the map have to be predicted relative to the robot. 
This is accomplished through an observation model. 
Observation model for the i'th feature is as follows: 

( , )r map
i i r if h x f=  (22) 

In which 1 2( , )T
i i if f f=  and Superscripts r and map denote the 

robot's and world's coordinates, respectively. Observation 
uncertainty has been calculated in [5] and distributed over 
features. In our system hi takes the below form: 

2 2
1 1 2 2

1

2
2

1

( ) ( )

arctan( )

map map
r i r i r

i
map

r i
i map r

i

f x f xf
ff

f θ

� �− + −� � � �=� � � �� � −� � � �
� �  

 
 
(23) 

Total observation model, h, is obtained by considering all 
features in a single vector simultaneously as equation 6. Thus, 

it would be represented as a function of system’s state vector, 
namely h. 

Batch data association methods, where measurements are 
considered simultaneously, greatly reduce the ambiguity in 
data association process. Here, JCBB method [13] is adopted 
for data association. The features, which are not matched with 
any existent feature in the map, through data association 
process, are added to the map as new entries. On the other 
hand, features, which are matched with map's features, 
construct new relations between persistent objects in the map. 
In this case the system state vector and covariance matrix do 
not increase in size but constrained by the new relation and 
will be updated. Obtained information from sensors in current 
scan is described with a measurement function, equation 24.  

( )
1ˆ

ˆ ˆˆ ˆ( , ) ( )
( )cov( ) cov( )

r map
r

r
x x x

kx x

F h x F h x
h xF H x H where H

x −
+=

= =
∂= =

∂

 
 
 
(24) 

Because of the fact that process and observation models are 
not linear and in addition noise variables are assumed to be 
drawn from normal distributions, Iterated Extended Kalman 
Filter (IEKF) is chosen for filtering stage. The error in the 
estimation due to the nonlinearities in h can be greatly 
reduced by iteration, using IEKF. [14] 
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(25
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Where 

( ) ( )
1,0 1

( )
1,ˆ

( ) ˆ ˆ,x k k

k ix

h xH x x
x

+ −
+ +

−
+

∂= =
∂

 

 
(26) 

The i'th estimate of the state is used to evaluate the weight 
matrix, K, and is the argument to the non-linear sensor 
function, h. we observe that almost always after few, 2 or 3, 
iterations, there is little further improvement in the estimate 
and iterations can be terminated. The final estimate of the 
covariance need only be computed at the end of iteration, 
rather than at each step, since the intermediate system 
covariance estimates are not used.1 

                                                 
1 In EKF, process and observation models must be 
uncorrelated but in our work they seem to be correlated.  
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Fig. 8a. Robot’s pose error in x direction, resulted in LSLAM. Maximum
measured error is about 1.7 cm. 
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Fig. 8b. Robot’s pose error in y direction, resulted in LSLAM. Maximum
measured error is about 1.3 cm. 

 
Fig. 7a. The map produced by ICP method using only LRF’s data. 

 
Fig. 7b. The map produced by HAYAI method using only LRF’s data. 

 
Fig. 7c. The map produced by proposed method using only LRF’s data. 

6. RESULTS 

This section shows experimental results of the proposed 
method. Proposed method was implemented on the Melon, 
tracked mobile robot, which is equipped with two low range 
Hokuyo URG_X002 LRFs, span 360 degrees around robot 
(see figure 5.) The maximum measurable distance of these 
scanners are 4095mm. Their angular resolution per step is 
(180/512)=0.3515 degrees. Noise/maximum-range ratio in 
these laser scanners, are considerably more than high range 
sensors. In the experiments the following values are used by 
statistical analysis of measurement data: �a=0.005, �b=1mm 
and ��=0.001 degree. All reported graphs are scaled in 
centimetres. Robot moves in a maze-type hand-made 
environment, similar to the one in Robocup rescue league.  

First of all, we demonstrate pure localization results to verify 
accuracy and robustness of proposed process model. For the 
sake of comparison, we also reported the results of a point-
wise and a feature-based method using the only LRFs' data 
(on the same data). ICP method [1] has been chosen as a 
popular point-wise method and HAYAI method [6] as the 
state of the art in feature-based methods. Figures 7a to 7c 
show the maps constructed by means of these methods. These 
maps are results of superimposing all scans gagged during 
drive in the environment. It should be mentioned that the only 
sensor used here is LRF and none of the map improving 
algorithms such as global relaxation [11] or cycle detection 
and correction [15] are considered in these experiments. 

Figure 7a demonstrates the map, produced by the ICP method. 
Prior information about robot's displacement plays an 
important role in ICP-based methods, so that in the lack of 
such information, matching assumption is generally not 
satisfied. Also, ICP method suffers from correspondence 
assumption. These assumptions are the sources of ICP 
method's misreckoning. 

HAYAI method produces impressive results in term of 
process speed [6]. However, in low range sensors with high 
noise and meager chance of capturing salient features, its 
accuracy declines (see figure 7b). The main reason of this 
imprecision rooted in feature extraction way of this method. It 
filters the scanned data at a fixed cut frequency so that it 
cannot extract features in different scales. Therefore, in the 
absence of highly salient features, it is inevitable to use filters 
with high cut frequency (which is the case in [6]). 
Nonetheless, such filters are not robust with respect to the 
noise and give rise to undesirable features. Besides, HAYAI 
does not reject variant features and also all features have the 
same contribution in pose shift calculation. 

As it is shown in figure 7c, map is relatively well extracted by 
the proposed method. Exploiting iterative method for feature 
extracting, which uses different cut frequencies, method is 
capable to cope with noisy scanned data, to extract features of 
different scales, and to reject variant features. Calculating the 
reliability measure for features leads to a fair discrimination 
between their effects in robot's localizing based on their 
uncertainty. Finally, contrary to previous methods, owing to 
the both calculation of robot's displacement covariance and 
constructing an observation model, method has a potential to 
close loops and turn into full SLAM. To produce a ground 
truth of the trajectory, travelled during the experiment, robot 
stops at every 20 step and its accurate position is marked on 
the ground. Thus, comparison between estimated pose and 
ground truth is fulfilled in every 20 steps. Calculated errors in 
these steps are connected to each other via straight lines to 
construct a rough estimate of error curve along whole path. 
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Fig. 9a. The feature-based map constructed by LSLAM. 
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Fig. 9b. Left figure shows zoomed view of robot and the ellipsoid, which
indicates the 95 percent confidence region of robot pose estimate by scaling
factor 10, in the last step of path. Right figure demonstrates the zoomed
view of a feature. The feature itself is shown by ‘+’ and again associated
ellipsoid represents its uncertainty. 

Although maximum error and produced map (see fig. 7c) is 
acceptable for a pure localization method, in the presence of 
the noisy scanned data, converting the method from pure 
localization into SLAM restricts the errors in much less 
bounds. Standard deviation of error does not increase 
boundless and its limits are a function of number of features 
in the map, which come in the robot’s field of view in varying 
sequences. Figure 8a proves this point visually. Due to the 
features distribution and the configuration of the path, 
travelled by the robot, most of the features in the environment 
remain in robot’s field of view during significant interval of 
time. In other words, loops of many different sizes and 
interlinking patterns are frequently closed. Consequently, 
standard deviation of error does not intensify during robot 
movement. Fig 8b shows the same information about the 
robot’s error in y direction. 

Figure 9 shows the feature-based map at the end of path 
constructed by proposed SLAM method. Features and their 
associated covariances are shown in this figure. Solid lines 
depict the ground truth of the environment map. As it is seen 
in figure 9, features are well extracted and spurious features 
are rejected, and estimates of most of features are accurate. 
Zoomed view of the robot and a feature at the last step of the 
path are shown in figure 9b. 

7. CONCLUSION 

In this paper we have explained a method for SLAM, only 
based on the laser range finder data. The chief tents of our 
approach are i) introducing robust motion model with respect 
to robot slippage and inaccuracy in hardware-related 
measures, ii) calculating reliability measure for robot’s 
displacement derived through the feature-based laser scan 
matching, iii) probabilistic mapping of extracted features, and 
iv) construct an IEKF framework merely based on laser range 
finder information. We have presented experimental 
implementations which demonstrate the applicability of the 
method, and we hope that it will have an impact in application 

areas in which other sensors data such as encoders’ are not 
reliable. We have planned to generalize the method to 3D 
SLAM and also fuse the information, calculated in this 
method, with other sensors’ information. 
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