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Abstract— This paper is devoted to the control of a cable
driven redundant parallel manipulator, which is a challenging
problem due the optimal resolution of its inherent redundancy.
Additionally to complicated forward kinematics, having a wide
workspace makes it difficult to directly measure the pose of the
end-effector. The goal of the controller is trajectory tracking in
a large and singular free workspace, and to guarantee that the
cables are always under tension. A control topology is proposed
in this paper which is capable to fulfill the stringent positioning
requirements for these type of manipulators. Closed–loop
performance of various control topologies are compared by
simulation of the closed–loop dynamics of the KNTU CDRPM,
while the equations of parallel manipulator dynamics are
implicit in structure and only special integration routines can
be used for their integration. It is shown that the proposed
joint space controller is capable to satisfy the required tracking
performance, despite the inherent limitation of task space pose
measurement.

I. INTRODUCTION

Increasing performance requirements necessitates design

of new types of manipulators working in a larger dexterous

workspace with higher accelerations. Parallel manipulators

can generally perform better than serial manipulators in

terms of stringent stiffness and acceleration requirements

[1]. In parallel manipulators, each actuated leg has to

carry only a part of the payload, and therefore, the robot

can handle heavy load to weight ratios. However, limited

workspace and existence of many singular regions inside the

workspace of a typical parallel manipulator, limits the use

of parallel manipulators in various applications. In the case

of cable driven redundant parallel manipulators (CDRPM),

the conventional linear actuators of a parallel manipulators

are replaced with electrical powered cable drivers. This

novel engineering design idea leads immediately to a wider

workspace, and higher accelerations of the moving platform

due to the fact of using light moving parts [2]. The payoffs of

these significant advantages of CDRPM is some challenging

topics of research which has attracted the robotics commu-

nity attention. Generally, forward kinematics of a parallel

manipulator like CDRPM is very complicated and difficult

to solve [3]. Cables are sagged under compression forces

[4], and therefore, to achieve tension forces on cables in

a dextrous workspace, moving platform must be designed

over–constrained [5]. In this case m = n + 2 cables

are used in order to move the redundant actuated end–

effector in an n–dimensional space. Redundancy resolution

is needed to assure tension force existence along each

cable, however, this is usually computationally expensive

[6]. The control algorithms developed for serial counterparts

to parallel manipulators with redundant actuation in [7]. A

controller with positive tension for six degrees of freedom

cable suspended robot is designed in [8]. A target tracking

manipulation method is developed in [9], which can control

position and contact force of robotic manipulators with an

acceptable error without requiring the solution for both direct

kinematics and inverse kinematics. Among the many control

topologies reported in the literature, the control of redun-

dantly actuated parallel manipulators has been considered

by fewer researchers. However, only a few of the proposed

topologies can be implemented in a cable driven redundant

parallel manipulator.

In this paper different control topologies examined for

possible implementation on KNTU CDRPM are introduced.

KNTU CDRPM uses a novel design to achieve high stiff-

ness, accurate positioning and high-speed maneuvers. In

here, position control of this parallel manipulator is studied

in detail. The inverse kinematics is derived first. The tra-

ditional Newton–Euler formulation is used for the dynamic

modeling of this manipulator [10]. Two control topologies

based on inverse dynamics in the workspace and joint space

coordinates are analyzed in this paper. It is demonstrated

that the inverse dynamics control in the joint space is

more suitable for possible implementation on the cable

driven redundant parallel manipulator. Finally, a new control

topology is proposed that can be used for these type of

manipulators. The proposed controller structure is not only

preserving the advantages of joint space controller, but also

promising fully tension forces on the cables, in a more

trusted fashion.

Fig. 1. The KNTU CDRPM, a perspective view
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II. KINEMATICS AND DYNAMICS

A. Kinematics

The KNTU Cable Driven Redundant Parallel Manipula-

tor is illustrated in figure 1. This figure shows a spatial

six degrees of freedom manipulator with two degrees of

redundancy. This robot has eight identical cable limbs.

The cable driven limbs are modeled as spherical-prismatic-

spherical(SPS) joints, for cables can only bear tension force

and not radial or bending force. Two cartesian coordinate

systems A(x, y, z) and B(u, v, w) are attached to the fixed

base and the moving platform. Points A1, A2, . . . , A8 lie on

the fixed cubic frame and B1, B2, . . . , B8 lie on the moving

platform. The origin O of the fixed coordinate system is

located at the centroid of the cubic frame. Similarly, the

origin G of the moving coordinate system is located at

centroid of the cubic moving platform. The transformation

from the moving platform to the fixed base can be described

by a position vector −→g =
−−→
OG and a 3 × 3 rotation matrix

ARB . Consider ai and Bbi denote the position vectors of

points Ai and Bi in the coordinate system A and B, re-

spectively. Although in the analysis of the KNTU CDRPM,

all the attachment points, are considered to be arbitrary, the

geometric and inertial parameters given in table I are used

in the simulations. Similar to other parallel manipulator,

CDRPM has a complicated forward kinematic solution [3].

However, the inverse kinematic analysis is sufficient for

dynamic modeling. As illustrated in figure 1, the Bi points

lie at the vertexes of the cube. For inverse kinematic analysis

of the cable driven parallel manipulator, it is assumed that

the position and orientation of the moving platform x =
[xG, yG, zG]

T
, ARB are given and the problem is to find

the joint variable of the CDRPM, L = [L1, L2, . . . , L8]
T

.

From the geometry of the manipulator as illustrated in figure

2 the following vector loops can be derived:

A−−−→AiBi +A −→ai =A −→g + Ei (1)

in which, the vectors g,Ei, and ai are illustrated in figure

2. The length of the i’th limb is obtained through taking the

dot product of the vector
−−−→
AiBi with itself. Therefore, for

i = 1, 2, . . . , 8:

Li =
{

[g + Ei − ai]
T [g + Ei − ai]

}

1

2 . (2)

TABLE I

GEOMETRIC AND INERTIAL PARAMETERS OF THE KNTU CDRPM

Description Quantity

fa: Fixed cube half length 1 m
fb: Fixed cube half width 2 m
fh: Fixed cube half height 1 m
C : Cubic the moving platform half dimension 0.1 m
M : The moving platform’s mass 5 Kg
I: The moving platform’s moment of inertia 0.033 Kg · m2

ρ: The limb density per length 0.007 Kg/m

Fig. 2. ith Attachment point on the moving platform and related vectors

B. Dynamics

Newton-Euler method is used for dynamic modeling of

CDRPM [10]. According to acceleration of rotating velocity

vector [11], [10], the Newton-Euler equations for varying

mass cable results into:

F Bi = −
1

2
ρL2

i [
.

Liωi × Ŝi +
.
ωi × Ŝi + ωi × (ωi × Ŝi)]

−
ρ

2
(

.

Li

2

+ LiL̈i)Ŝi + F Ai (3)

Where F Bi, F Ai, L̇i, Ŝi, ωi and ω̇i are resultant acting force

on the each moving attachment point, acting forces on the

Ai fixed joint, cable linear velocity along its straight, the

unit vector on ith cable straight as shown in figure 2, the ith

cable angular velocity about the fixed attachment point and

the ith cable angular acceleration about the fixed attachment

point respectively. By using light weight cables such as the

ones used in this manipulator, the gravity force effects on

the cables can be ignored compared to the dynamic induced

forces [12]. The cable’s tension force applied by cable driver

unit, FS
Ai, can be represented by:

F S
Ai = −τ (4)

Relations between actuator forces and the end-effector af-

fected forces had been studied in cable-affected forces.

Writing the Newton-Euler equations for moving platform

describes the relation between forces, torques and accelera-

tion of the moving platform as following:

M ẍ = F D + G +
n

∑

i=1

F Bi (5)

IGθ̈ = τD −

n
∑

i=1

Ei × F Bi (6)

In which, M and IG are moving platform’s mass and moment

of inertia and n is number of the cables. G is effect of

gravity force on the end-effector, FD and τD are disturbance

forces and torques effects on moving platform with respect
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Fig. 3. IDC block diagram in the workspace coordinate

to fixed frame coordinate. Therefore, equations 5 and 6 can

be viewed in a implicit 6 × 1 vector differential equations

of the form:

ff (x, ẋ, ẍ,FD, τ ) = 0 (7)

Where, FD is the vector of disturbance forces and moments.

The governing motion equations of the manipulator can be

implemented for dynamic simulation of the system. For

dynamic simulation, it is assumed that the actuator forces

τ (t), are given and the manipulator motion trajectory x(t),
is needed to be determined. As it is explained in sections

III-B and III-A due to the implicit form of the dynamic

equation, special integration

III. CONTROL

In a thorough study of the dynamic behavior of the

system it has been shown that due to high stiffness of the

robot, there are inherent oscillations observed around the

equilibrium points [10]. Therefore a controller is needed to

damp the oscillations and for accurate trajectory tracking.

The inverse dynamic control (IDC) [13], sometimes called

as computed-torque controller for serial manipulators, is a

popular position controller proposed for serial manipulators

[1]. This technique is considered as the basis of the proposed

controller topology in this paper, while different configura-

tions applied on workspace and the joint space coordinates

are examined. The details, and benefits of each topology is

addressed, and simulation results are given as following by

closed–loop numerical solution.

Angular and linear acceleration of each cable ω̇i and L̇i

in equation 3, depends on the end-effector acceleration. The

dependency makes the motion equations implicit. Owing

to implicit nature of the dynamic equation of the parallel

manipulators, usual numerical integration routines such as

Runge–Kutta methods [14], cannot be used to solve the

problem, and a special implicit numerical solution is used to

derive dynamical behavior of the CDRPM [15]. Therefore,

all the dynamic components including the controller, inverse

and forward dynamics and redundancy resolution routines,

have to be solved simultaneously by an implicit solver as

ODE15i in Matlab software [16].

A. IDC in the Workspace Coordinate

Assume that the desired trajectory of the manipulator is

given. Notice that the governing equation of motion of the

manipulators are six implicit differential equations given

in equations 7. However, due to the actuator redundancy
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Fig. 4. KNTU CDRPM performance with IDC in the workspace.

in the manipulator the number of unknown variables are

eight. Therefore, there are infinitely many solutions for the

eight actuator forces to solve the dynamic equations. Let

us denote the resulting cartesian force/torque applied to the

manipulator moving platforms F . In this definition F is

calculated from the summation of all inertial, and external

forces excluding the actuator torques τ in the dynamic equa-

tions 7. Due to the projection property of the Jacobian matrix

[17], F = JT τ is the projection of the actuator forces on

the moving platform, and can be uniquely determined from

the dynamic equations by excluding the actuator forces from

the dynamic equations. If the manipulator has no redundancy

in actuation, the Jacobian matrix, J , would be squared

and the actuator forces could be uniquely determined by

τ = J−T
F , provided that J is nonsingular. For redundant

manipulators, however, there are infinity many solution for τ

to be projected into F . The simplest solution is a minimum

norm solution, which can be found from the pseudo–inverse

of JT , by τ = JT †
F . This solution can result into tension

or compression for the cables. As mentioned above the

cable actuators can’t generate compression forces. Thus a

constrained optimization technique is used here to resolve

the redundancy. In this optimization the norm of actuator

efforts are minimized subject to a minimum limit for the

cable tension. In this paper, a gradient-based method which

gives minimum norm of τ is used. The method is under two

constraints as:

τ > τmin (8)

τ = JT †
F (9)

The first non-equality constraint assures that the cables are

always under tension. The second equality constraint assures

that the joint space forces, τ are the right projection of

the cartesian force F . Other optimization techniques can be

used to find the actuator forces projected from, F which can

minimize a user defined cost function [6].
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Fig. 5. The KNTU CDRPM tracking error with IDC in the workspace.

The block diagram of IDC in the workspace coordinate is

given in figure 3. The minimum norm solution, with the op-

timal condition is used as the redundancy resolution method.

The controller used in this simulation is a decentralized

PD controller, in which the gains are tuned such that the

required tracking performance is achieved. The gains are

given in table II. A linear trajectory with parabolic blends is

considered in this simulation. As illustrated in figure 3 the

vector force, F , in the workspace coordinate is obtained by

equation 10.

F = FPD + FIDC (10)

Where FPD is the created vector force by PD controller

FPD = Kpe(t) + Kv ė(t). where e(t) = xd(t) − x(t) is

the trajectory tracking error and Kp,Kv are same appro-

priate position and velocity gain matrix, whose values are

given in table II. FIDC is the generated vector force by

IDC. Inverse dynamics generated force, preserves the end-

effector’s current state of acceleration and obtains required

force in the workspace coordinate in the form of a feedback

linearization:

FIDC = M̂ẍd + Ĝ (11)

Where, M̂ẍ, Ĝ are inertia and gravity computed forces of the

end-effector represented in the task coordinate. Time varying

inertia and gravity forces of the cables are neglected in the

controller because of high real time process costs and very

low contribution in the amount of controller forces. FIDC

is a 6x1 wrench vector composed of the computed force and

torque. There is no term containing ẋ in this equation, and

this is due to the fact that no damping effect is modeled on

the end-effector. Also, a proportional derivative controller

can effectively reduce the tracking errors of the end-effector

in the presence of disturbance force/torques. Note that due to

the insignificance of the cables’ inertia terms, these terms are

ignored in the feedback linearization routine [10]. Hence, the

resultant control forces acting on the system are as follows:

Mẍ = FD + FPD + FIDC + G (12)

By canceling the nonlinear terms through the proposed

feedback linearization method in the workspace, it is ex-

pected that a decentralized PD controller would result into

an acceptable control performance, which is verified in the

simulation results. The tracking performance of the CDRPM
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is illustrated in figures 4 and 5. As seen in the figure 5,

this control topology is capable of reducing the tracking

errors less then 0.4 mm in position and less than 0.1o in

orientation. The actuator force of the CDRPM is shown

in figures 6. As seen in this figure the simple redundancy

resolution technique proposed here can efficiently distribute

the cartesian force into actuator forces. However, constrained

optimization routine is proposed for redundancy resolution

to guarantee that the cables always remain in tension for all

configuration of CDRPM maneuvers. However, the proposed

topology suffers from two important implementation limita-

tions. Firstly, the position and orientation of the platform

have to be measured during the control process. Accurate

measurement of the position and orientation of the platform

is very difficult and expensive [18]. Moreover, it is not

desirable to obtain the pose of the platform using direct

kinematics, due to the complexity of calculations, [19]. Thus,

IDC in joint space is advised to be implemented in this

application [4].

B. IDC in the Joint space Coordinate

The control scheme is shown in figure 7. As seen in this

figure, in this topology the actuators length L are measured

and its time derivative L̇ are either measured or estimated.

Let Ld, L̇d denote the desired cable length and its velocity

which can be easily obtained through computing the inverse

kinematics. In this proposed topology the PD controller is
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designed in joint space, and the control efforts are directly

applied through the cable driver units. This topology leads to

various benefits; the resulting actuator torques can be easily

studied in detail, where, the limitation of the driver’s power

boundaries, specially upper limit of actuators, can be easily

implemented. In this structure the control law is as follows:

τ = τPD + τ IDC (13)

in which, τ is an 8x1 tension force vector along each cable,

and τPD is part of the tension force in the joint space

coordinate that is provided by PD controller by τPD =
Kpe + Kv ė, in which, the values for Kp and Kv are

presented in table II. These gains are tuned such that the

required tracking performance is achieved. Let e(t) = Ld−L

and ˙e(t) = L̇d− L̇ denote the error of actual cable length to

that of the desired one and its derivative. Force optimization

unit distributes the computed force vector [FIDC ]6×1, along

the actuator torques, τ IDC . The simulation results are shown

in figures 8 and 10. As seen in figure 10, this control

topology is capable of reducing the tracking errors less then

0.2 mm in position and less than 0.02o in orientation.

The performance of the two controllers are compared

and the result of comparison is given in table II. As it

is shown in the third and forth rows of this table, the

obtained two–norm and infinity–norm of the tracking errors

are admissible for both controllers. Furthermore, positive

amounts of minimum actuator forces τmin reveals that cables

remains always under tension, and moreover, considering

maximum actuators forces τmax, it is obvious that none of

the actuators reach the saturation limited boundary 1000
N . Therefore, both control topologies satisfy the required

tracking performance of the manipulator, despite the actuator

limitations.

Note that in the joint space topology, PD controller

generates part of force vector in the joint space coordinate,

however, computed force by IDC is in the workspace coor-

0 1 2 3 4 5
0

0.5

1

time(sec)

X
G

(m
)

CDRPM

Desired

0 1 2 3 4 5
0

0.5

1

time(sec)

Y
G

(m
)

0 1 2 3 4 5
0

0.5

1

time(sec)

Z
G

(m
)

0 1 2 3 4 5
0

5

10

time(sec)

θ
X

G

(d
e

g
)

0 1 2 3 4 5
0

10

20

time(sec)

θ
Y

G

(d
e

g
)

0 1 2 3 4 5
0

2

4

6

time(sec)

θ
Z

G

(d
e

g
)

Fig. 8. KNTU CDRPM cable length with IDC in the joint space.
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Fig. 10. The tracking error with IDC in the joint space.

dinate. Thus, we need optimization routine to project force

vector in the workspace into the joint space. As shown in

figure 11 the actuator forces are all positive tension. If this

error becomes large, the amount of vector force generated

by PD controller, can be greater than that of the force vector

computed by IDC. This event influences the redundancy

resolution. Thus, positive tension forces can not be assured

by this configuration. In order to remedy this problem, a new

controller topology is proposed in this paper and illustrated

in figure 12.

In this structure actuator forces are transformed from joint

space into workspace by F = JT τ . Hence, the previous

redundancy resolution method can be employed in this

structure similar to that elaborated in subsection III-A. This

controller structure not only preserves the advantages of joint

space controller, but also guarantees fully tension forces on

the cables, in a more trusted fashion.

TABLE II

CONTROLLER PARAMETERS OF THE KNTU CDRPM

Parameters IDC in Workspace IDC in Jointspace

Kp 105 × I6×6 105 × I8×8

Kv 105 × I6×6 105 × I8×8

103 · ‖Ex‖2
1.5, 1.3, 1.8, 1.2, 1.2, 0.9,
0.4, 0.9, 0.2 0.3, 0.8, 3.3

103 · ‖Ex‖∞ 0.35, 0.30, 0.41, 0.16, 0.16, 0.15,
0.10, 0.20, 0.05 0.05, 0.09, 0.31

τmin(N) 35, 10, 3, 3, 35, 7, 4, 1,
26, 3, 36, 10 25, 0.5, 42, 5

τmax(N) 558, 81, 558, 42, 556, 89, 556, 44,
606, 47, 605, 59 604, 43, 603, 62
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Fig. 11. KNTU CDRPM actuator forces with IDC in the joint space.
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IV. CONCLUSIONS

In this paper the control of KNTU CDRPM is studied

in detail. KNTU CDRPM has two redundant actuators in

order to move its end-effector with 6 degrees of freedom.

These degrees of actuator redundancy is used to keep

the cables always in tension. In this paper the kinematics

and Jacobian formulation of the manipulator is derived,

and the dynamic modeling is performed through traditional

Newton–Euler method. A decentralized controller consist of

an inverse dynamics controller (IDC), and a PD controller,

is proposed first, which optimally generates the required

workspace forces by actuator forces using a constrained

optimization technique. The closed-loop performance of the

manipulator is simulated in computer, and the results has

been analyzed. Since the position, velocity and acceleration

of the end-effector is needed to implement this algorithm

and in practice, the measurement of these variables are

expensive, another controller topology in the joint space is

proposed. In this method neither the end-effector position

nor the solution to forward kinematics is needed. It is shown

that the obtainable tracking performance by this means is

less 0.2mm in position and less than 0.02o in orientation,

for this topology. This method is promising and can be used

in real time implementation. The last investigated control

topology can be carefully generalized for the other cable

parallel redundant manipulators.
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