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Abstract –In this paper, the design and implementation of the H

controller for flexible joint robot (FJR) is presented and the 

capability of the controller to deal with actuator saturation is 

investigated in practice. The new procedure of design is 

introduced to avoid an instability caused by unmodeled phase 

behaviour which can not be encapsulated in multiplicative 

uncertainty. In order to avoid instability caused by unmodeled 

phase behaviour, the robust controller design is divided into two 

stages: H  controller design and checking closed loop sensitivity 

function. Simulation results reveal the capability of the controller 

to stabilize the closed loop system and to reduce the tracking 

error in the presence of the actuator limitation.

I. INTRODUCTION

Joint flexibility is one of the main reasons of robotic systems 
complexities. In practical implementations, in order to achieve 
better tracking performance, joint flexibility must be taken 
into account in both modeling and control [1]. However, joint 
flexibility and nonlinearity, in addition to the increasing 
complexity of robot modeling, is a potential factor of system 
uncertainty that can affect favorable features of system and 
even in some case, leads to instability. Due to existing joint 
flexibility, actuators position (for angle of motors' shaft) does 
not depend directly on the driven arms position. This is not 
favorable for applications with high precision. Moreover 
unwanted oscillations due to joint flexibility, imposes 
bandwidth limitation on all algorithms designed based on rigid 
robots and may create stability problems for feedback controls 
that neglect joint flexibility. In addition, the actuator saturation 
has been considered by the designers as an important practical 
limitation. Over the last decade, the control research 
community has shown a new interest in the study of the effects 
of saturation on the performance of the closed loop system [2, 
3]. The saturation can deteriorate the performance of the 
closed loop system by causing some limitations such as slow 
responses, undesirable transitions, or even it can cause 
instability. Most researches on FJRs have concentrated on 
nonlinear control schemes. In order to linearize the system, 

acceleration and jerk feedback is required whose measurement 
is very costly. To avoid the acceleration and jerk feedback the 
idea of composite control is employed [3]. In adaptive 
methods many algorithms are developed for FJR's, in most of 
which a term due to the fast subsystem is added to the 
adaptive algorithm based on rigid models [3]. In robust 
methods considering model uncertainties the stability of fast 
subsystem is first analyzed and, by the use of robust control 
synthesis, a robust controller is designed for the slow 
subsystem [4,5]. 

 The simulation results, has been illustrated the capability of 
the robust linear controller [6], the H  controller and the 
composite H  controller [7], and the composite QFT controller 
[8] to control the motion of FJRs. And the anti-saturation 
strategy is proposed for practical issues [2]. The special 
flexibility added to KNTU FJR's joint makes the control 
problem more challenging than the usual flexibility caused by 
applying harmonic drives. In addition, due to added joint 
flexibility, the precise structure of the system is unknown and 
we respect various peaks in model of the system. This makes 
it suitable to be identified by nonparametric methods and be 
controlled by H  controller. Due to this high flexibility and 
complicated dynamical behavior of the joint, the characteristic 
of the phase behavior is impossible to model precisely while it 
can not be encapsulated in uncertainty bound to be applied in 
H  controller design. Therefore, a two stage procedure is 
proposed to encounter this type of uncertainty.  

II. EXPERIMENTAL SETUP: KNTU FJR

The laboratory set up, which is a 2 DOF flexible joint 
manipulator and has been used for implementation, is shown 
in figure 1. The flexible element used in power transmission 
system of the 2nd joint, shown in figure 2, is made of 
polyurethane which has a very high flexible characteristic. The 
equivalent spring constant, 8.5 N.m/rad makes a challenging 
control problem. In order to control the system by means of a 



PC, a PCL-818 I/O card and a PCL-833 encoder handling card 
of the ADVANTECH Company, are used for hardware 
interfacing. The “Real Time Windows Target” facilities of 
MATLAB SIMULINK are used as user interface. The “Real 
Time Windows Target” is a PC solution for prototyping and 
testing real time systems. It can be used when a single 
computer is as a host and target. The sampling time of the 
blocks in RTW is regulated as 0.01 sec. The block diagram of 
the system is shown in figure 3. 

Figure 1:  Experimental Setup:  KNTU FJR.

Similar to any other practical systems, we have a limitation on 
the amplitude of control signal. The hardware implementation 
of the controller and using I/O cards, imposes the bounds on 
u(t), that means u(t) should be in the range of [-128 128]. To 
avoid the control signal being out of this range, we used a 
saturation block in RTW interface.  

Figure 2: The Flexible Element

III. CONTROLLER DESIGN

A. H SYNTHESIS

Since the required objectives of robust stability, fast and 
suitable tracking response and disturbance attenuation despite 

the limited control effort, are well suited into an H  design 

framework, in this section the FJR controller design is 
reformulated such that this methodology can be applied. In 

order to apply H  synthesis to this problem, the nonlinear 

model of FJR is represented by a linear model and the 
multiplicative uncertainty, using spectral identification 
scheme. In this representation the nominal model replicated 
the dynamic behavior of the system, only at nominal 
conditions, and all nonlinear interactions, unmodeled 
dynamics and disturbances are encapsulated via an 
unstructured uncertainty representation [9]. 

Figure 3:  Block Diagram of the System

In order to represent a system into this form, suppose the true 
system belongs to a family of plants , which is defined by 
using the following perturbation to the nominal plant Po:

1 oP s P s s W s P s (1)

In this equation W(s) is a stable transfer function indicating the 
upper bound of uncertainty and (s) indicates the admissible 
uncertainty block, which is a stable but unknown transfer 
function with < 1. In this general representation 

(s)W(s) describes the normalized perturbation of the true 
plant from nominal plant, and is quantitatively determined 
through identification at each frequency: 
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Where, W(j )  represents the amplitude of the uncertainty 
profile with respect to frequency. Nominal plant Po, can be 
evaluated experimentally, through a series of frequency 
response estimates of the system in the operating regime [9].  

The objectives of controller design are robust stability and 
good tracking performance in presence of torque disturbances, 
despite the limited control effort. All these objectives can be 
simultaneously optimized by the solution of a mixed 
sensitivity problem formulated on the generalized plant 
illustrated in figure 4. The robust stability is guaranteed by 
minimizing the infinity norm of weighted transfer function 

from yd to z1, which is equivalent to the weighted 



complementary sensitivity function: WT <1 (small gain 

theorem) [10]. The tracking performance and disturbance 

attenuation is obtained by minimizing the infinity norm of yd

to z2, or the weighted sensitivity function Ws S <1.  

Figure 4: Block diagram representation of mixed sensitivity        

solution for the system.

B. H CONTROLLER DESIGN FOR FJR

In a linear system, different frequencies pass through the 
system independently of each other. Hence we can use the 
following equation to calculate the estimate of the transfer 
function: 

(4)

The estimate of (4) is called the empirical transfer function 
estimate (ETFE). Due to poor variance properties of the 
ETFE, we assume that the values of the true transfer function 
are related. So the best way to estimate the transfer function 
by ETFE is to form a weighted average of measurements. 
Each measurement is weighted according to its inverse 
variance, ( ). If the transfer function is not constant over the 
interval 0- 0 0+ , it is reasonable to use an 
additional weighting that pays more attention to frequencies 
close to 0.

(5) 

Here, the W ( ) is a weighting function concentrated around 
=0 and  is a shape parameter. There are some standard 

shapes of weighting functions in literature [11]. In spectral 
analysis, W ( ) is often called frequency window. The 
amount of  describes the length of the frequency window, so 
a large value of  corresponds to a narrow window. The 
"wide" window leads to a small variance of estimate. At the 
same time, it will involve frequency estimates farther away 
from 0. This will cause large bias [11]. This procedure is 
used to identify the family of plants we need in H  control. 
The amount  is called frequency resolution in Matlab. This 
technique is implemented through the Matlab function 'spa' to 
achieve a trustful result in KNTU FJR's 2nd link identification 
by selecting spectral model estimation in system identification 
tool of Matlab and regulate the 'Frequency Resolution'  by an 
experimental procedure. 

There is a trade-off between the bias and the variance of the 
estimate which is controlled by the frequency resolution. In 
other words, the trade of is between the frequency resolution 
and the uncertainty of the estimate: the better the resolution, 
the more uncertain the system. By using this technique, from 
the set of input-output information, a set of linear models are 
estimated for the system, which can be considered as the set 

. Figure 5 illustrates some frequency response estimates of 
the system, chirp functions with different amplitudes and 
frequencies are used as input. 

Figure 5: Frequency response estimate; Nominal plant and 

uncertainty profile. 

The nominal model of the system is determined from average 
of the estimated models. Our aim is to achieve an unstructured 
uncertainty bound. The uncertainty weighting function is 
estimated as W(s) =29(s+29)3/(s+100)3. Relatively small 

uncertainty at low frequencies is promising a suitable H
controller design, but sharp increase of the uncertainty at =
29 rad/sec warns about the limitations on achievable closed 
loop bandwidth for this system. 

Figure 6: Nominal Model and the Fitted Model.

The next step is to adapt a linear model to this nominal model. 
The final Po, after numerous iterations is illustrated in figure 6. 

2 2

2 2 2

28000 (s+6)  (s+5) (s   + 1.2s + 4.36)

(s+1.5) (s+10) (s+11) (s   + 1.8s + 1.3) (s   + 2s + 9.41) (s   + 16s + 1828)
oP

 After designing some controllers using different performance 
weighting functions, we figured out that some shapes of Ws
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lead to stabilizing controllers whereas the others make the 
closed loop system unstable. However based on simulations, 
we expected the closed loop behaviour of all those cases to be 
the same. 

Figure 7: Difference between phase behaviour between Nominal 

Model and Fitted Model.

To analyse this problem, let us reconsider the nominal model 
and the fitted model. As it can be seen in figure 7, we can 
achieve an admissible estimation for amplitude which is not 
the case for phase. Specially in the frequency range [1~ 4] 
rad/s, which is depicted in figure 8, the fitted model differs 
from the true system. 

Considering the point that this specific frequency is located at 
the middle of system's usual frequency range of work, we 
expect that the uncertainty in phase of nominal model has 
significant effects on the stability and performance of the 
closed loop system. Our crucial assumption is that there is a 
nonlinear element in true system that makes the modelling too 
complicated. As it is clear in figure 8, we can not model the 
behaviour of phase of system due to it's variation in different 
identification experiments. The problem of modelling in our 
case occurs in modelling of phase, but W(s) contains only the 
uncertainty of amplitude. So it is essential to find another 
solution to compensate ignoring of phase uncertainty. 

IV. CASE STUDY AND IMPLEMENTATION

In order to verify the effect of phase uncertainty on closed 
loop behavior of system, consider the following performance 
weighting functions,  

1 2

10

( 1)( 2 2.44)
SW

s s s (6) 

2 2

15

( 4 4.5)
SW

s s (7) 

Then the mixed sensitivity problem is solved for the obtained 
fitted model, with an upper bound for control effort 

corresponding to   . In spite of Ws2, Ws1 leads to 
unstable closed loop system and the related control signal, 

stimulates the vibration dynamical modes of FJR. Then the 
sensitivity function is calculated in two different ways: by 
using the fitted model and the nominal model. 

Figure 8: The close up , the  phase behaviour  in frequency range 

 [1~ 4] rad/s 

Figure 9: The two different performance weighting functions that 

theoretically lead to similar closed loop performance. 
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Figure 10.a, illustrates the sensitivity function obtained by 
using fitted model for both controllers, while figure 10.b 
illustrates the sensitivity functions obtained by using nominal 
model. It is obvious that there is a big difference between 
these two sensitivity functions in frequency range [1 4] rad/s. 
hence it means that k1 and k2 have to result in approximately 
same behaviour in closed loop system theoretically. But in 
practice, they lead to different closed loop behaviour. The 
uncertainty of phase in frequency range [1 4] rad/s, leads the 
controller not to guarantee closed loop stability in practice. 
Hence, it is essential to add another stage to the procedure of 

the H  controller design. After designing the H  controller, 

the sensitivity function obtained by nominal model should be 
re-checked. If the sensitivity function is relatively small in 
frequency range of phase uncertainty, it results into a 
stabilizing controller while the robustness is preserved. The 
upper limit of acceptable closed loop sensitivity function can 
be obtained experimentally. The details of the performance 
weighting function design are elaborated in the next section. 
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(a) 

(b)

Figure 10: the two sensitivity function of k1 and k2 ; a: using Fitted 
Model, b: using Nominal Model. 

Designing Wu(s) and Ws(s) are not independent procedures , 
hence, during each stage of designing Ws(s), not only the 
sensitivity function should be checked, but also Wu(s) should 
be regulated. Note that the function Wu(s) can be chosen to be 
a constant level as Wu(s) =  which may cause U(s) <1/ .
This selection will limit the magnitude of U(s) in all 
frequencies which may limit the resultant bandwidth. As an 
alternative, Wu(s) can be shaped in the frequency domain. 
Increasing the function Wu(s) in high frequency region will 
result in decreasing the level of the control action fast 
transients or jumps. This can be seen empirically in simulation 
studies. The following is chosen for Wu(s): 

50

500
u

s
W

s (9)

The performance weighting function is determined in order to 
have solution for the mixed sensitivity problem as well as to 
have maximum reachable bandwidth. After the procedure of 
checking the resultant sensitivity function, the resultant Ws(s)
and controller are: 

2
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SW
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( 0.5 2.1)( 41 17)( 5.2)( 5.8)

s s j s s
K

s j s j s s

(11)

The related sensitivity function is shown in figure 11 and 
being relatively low in frequency range of phase uncertainty 
guaranties the closed loop system to be robustly stable. To 
analyse the performance of the closed loop system, the 
controller is implemented for the FJR. First a sinusoid 
reference trajectory with frequency 2rad/sec is considered and 
the closed loop response is illustrated in figure 12.   

Figure 11: sensitivity function of the stable closed loop system  

Figure 12: tracking of the 2 rad/s sinusoid  reference and control     

signal

The tracking error is quite small despite the limited control 
effort. Considering the point that the saturation limit of control 
signal is ±128, the resulting control signal is acceptable. 
Figure 13 illustrates the closed loop tracking performance in 
which the reference signal is smoothed square wave in order 
to avoid saturation, which is usual in practical tests. As it can 
be seen, the settling time is quite suitable and the steady state 
error is about 10%. This amount of error comparing to 
simulations [7], which is usually about 5%, is quite well in 
practice. 

The better steady state behaviour is reachable by regulating 
performance weighting function based on proposed procedure. 

The steady state error of this system is straight result of dead 
zone of the motor which is about ±10. As it can be seen when 
the angle of the link reaches to steady state, the control signal 
enters to the dead zone. In order to modify the steady state 
error we should shape the performance weighting function to 
lead to a controller with higher dc gain. 
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Figure 13: tracking of the smoothed square wave and control signal 

The other solution is to improve the dc motors' characteristics. 
Finally, the above results indicate the capability of H
controller to motion control of the flexible joint robot with 
relatively high flexibility characteristics. 

V. CONCLUSIONS 

In this paper, the ability of H  controller to design a suitable 
controller for an uncertain FJR is investigated in practice. The 
identification experiments demonstrate a type of phase 
behaviour that can not be modelled accurately. Ignoring this 
unmodeled behaviour may results in generating a control 
signal which stimulates the oscillatory modes of FJR. A new 
procedure of design is proposed to avoid the instability caused 
by this unmodeled phase behaviour that can not be 
encapsulated in multiplicative uncertainty. The effectiveness 
of the proposed procedure is thoroughly investigated by 
different tests. At the end, the experimental results reveal the 
capability of the controller to stabilize the closed loop system 
and to reduce the tracking error in the presence of the actuator 
limitation. 
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