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Abstract— KNTU CDRPM is a cable driven redundant par-  applicable for applications with low acceleration and heavy
allel manipulator, which is under investigation for possible moving platform. A more suitable solution is to achieve
implementation of large workspace applications. This newly tangion forces in the cables within the whole workspace,

developed manipulators have several advantages compared th h trained struct 61 In oth d
to the conventional parable mechanisms. In this paper, the rough an over—constrained structure [6]. In other words,

governing dynamic equation of motion of such structure is DYy using additional cables compared to the required degrees
derived using the Newton-Euler formulation. Next, the dynamic  of freedom, and carefully resolve the redundancy in order to

equations of the system are used in simulations. It is shown keep all the cable forces in tension can significantly remedy
that on the contrary to serial manipulators, dynamic equations the problem [7]

of motion of cable-driven parallel manipulators can be only ) .
represented implicitly, and only special integration routines The design process of KNTU CDRPM consists of many

can be used for their simulations. In order to verify the steps and requires careful investigation in various perspec-
accuracy and integrity of the derived dynamic equations, open—tives. The basic step is the geometrical workspace analysis of
and closed—loop simulations for the system is performed and he gesign. Kinematics and singularity analysis have signifi-

analyzed. Also, the effects of mechanical assembly tolerances on t role in th timal . t of the desi t
the closed—loop control performance of a cable driven parallel cantroie in the optimal assignment oI the design parameters.

robot are studied in detail, and the sensitivity analysis of the Dynamic analysis provides the designer a tool to analyze
precision in the construction and assembly of the system on the and compare the dynamical behavior of different designs.

closed-loop behavior of the KNTU CDRPM is performed. Closed—loop performance of such mechanisms can be further
analyzed using the dynamic simulation tool. Furthermore,
the dynamic analysis can be used to perform a sensitivity
KNTU CDRPM is the name of a project defined on cablexnalysis on the accuracy of different component, and the
driven redundant parallel manipulator by ARAS (Advancegnechanical assembly to the final precision performance to
Robotics and Automated Systems) group of K. N. Tooshe robot. In this paper the dynamic analysis of a cable driven
University of Technology. The main goal of this projectredundant parallel manipulator is reported. Such analysis is
is design, analysis and implementation of a universal pagn essential step to design such manipulators to guarantee the
allel manipulator structure which uses cable driven actusccomplishment of the required task, within its entire large
ators instead of any other type of linear actuators for @orkspace[8]. In order to perform dynamic analysis for such
stiff, precise and high speed positioning task in a largetructures Newton—Euler formulation, the principle of virtual
workspace. The objective becomes more interesting in casgérk, and Lagrange formulation can be used. The traditional
where the workspace is so wide that cannot be reachegwton—Euler formulation has been used extensively in the
with usual serial manipulators. [1]. A rigid jointed paralleljiterature to derive dynamic equations of general parallel
manipulator possess more stiffness and is capable to runmanipulators [9], and also for the Stewart platform, which
higher acceleration compared to that to a serial manipulat@s. the most celebrated parallel manipulator [10]. In this
However, as it is the case for many parallel mechanismgrmulation all the reaction forces can be computed, which
a limited workspace with large singular regions within thes very insightful for the design of KNTU CDRPM. On the
workspace, is not a suitable solution for the above mentioned
applications [2]. A spacious workspace with the capacity
of high payload per moving mass can be easily achieved
using a cable driven parallel mechanism. As an example
in a large adaptive reflector (LAR) akm? area can be
manipulated with such mechanisms [3]. Nevertheless, one
inherent limitation of any CDRPM is that the driven cables
can apply only positive tension forces to the end—effector. To
overcome this problem, in LAR application the end—effector
is kept under high tension using a helium filled aerostat
[4], while in the NIST RoboCrane design the problem
is tackled by suspending the end-effector from the roof
and using the gravity force [5]. These remedies are only Fig. 1. The KNTU CDRPM, a Perspective View

I. INTRODUCTION
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B. Inverse Kinematics

Similar to other parallel manipulator, CDRPM has a
complicated forward kinematic solution [11]. However, the
inverse kinematic analysis is sufficient for dynamic model-
ing. As illustrated in figurg]1, thé; points lie at the vertexes
of the cube. For inverse kinematic analysis of the cable driven
parallel manipulator, it is assumed that the position and
orientation of the moving platform = [$G7yg,ZG]T ,ARp

5 are given and the problem is to find the joint variable of the
_ , _ CDRPM, L = [Ly, Lo, ..., Ls]" . From the geometry of the
Fig. 2. ith Attachment point on the moving platform and related vectorsmanipulamr as illustrated in figu@ 2 the following vector
loops can be derived:

other hand, the equations of motion for each limb and the AABi+ a, =" g+ E,; (1)

moving platform must be derived, which inevitably leads to . . i
a more extensive calculations in which, the vectorgy, E;, anda; are illustrated in figure

It is shown that on the contrary to serial manipulatorsl,g' The length of thé'th limb is obtained through taking the

—
dynamic equations of motion of parallel manipulators caffot Product of the vector; B; with itself. Therefore, for
usually be represented implicitly. Therefore, special integrd-— 1,2,....8

tion routines are needed for the numerical integration of such o ‘ aT _ A
equations. In order to verify the accuracy and integrity of Li={lg+Bi—al'lg+ Bi — ai}
the derived dynamics, open— and closed—loop simulations

for the system is performed and analyzed. Moreover, th
dynamical behavior of the manipulator is studied to validat
the simulation results and to describe open—loop responseslacobian analysis plays a vital role in the study of robotic
of the robot. Finally, in order to obtain an insightful tool tomanipulators.Let the actuated joint variable be denoted by
identify the significance of the construction and assemblg vector L and the location of the moving platform be
procedure in the robot, a thorough sensitivity analysis igescribed by a vector. Then the kinematic constrains
performed. In this analysis the contribution of the inaccuracynposed by the limbs can be written in the general form
of the assembly of different components of the manipulataf (z, L) = 0 by differentiating with respect to time, we

=

)

. Jacobian

into the closed-loop performance is identified. obtain a relationship between the input joint rates and the
end-effector output velocity as follows :
[1. KINEMATICS Joi = J L 3)

A. Mechanism Description whereJ,, = % andJr, = —% . The derivation above leads

The KNTU Cable Driven Redundant Parallel Manipula+to two separate Jacobian matrices Hence the overall Jacobian
tor is illustrated in figurd |1. This figure shows a spatiamatrix J can be written as:
six degrees of freedom manipulator with two degrees of . .
redundancy. This robot has eight identical cable limbs. L=J-2 )
The cable driven limbs are modeled as spherical-prismatigzhere J — leJm_ Jacobian matrix not only reveals the
spherical(SPS) joints, for cables can only bear tension forggjation between the joint velocitieg and the moving
and not radial or bending force. Two cartesian coordinaigiatform velocitiess, but also constructs the transformation
systemsA(z,y, z) and B(u, v, w) are attached to the fixed needed to find the actuator forcesfrom the forces acting
base and moving platform. Points;, A, ..., Ag lie on the  on the moving platformF. When J;, is singular and the
fixed cubic frame andB,, By, ..., Bg lie on the moving || space ofJ,, is not empty, there exist some nonzefo

platform. The originO of the fixed coordinate system is yectors that result zerd: vectors which called serial type
located at the centroid of the cubic frame. Similarly, the

origin G of the moving coordinate system is located at
centroid of the cubic moving platform. The transformation
from the moving platform ti:che fixed base can be described

TABLE |
GEOMETRIC AND INERTIAL PARAMETERS OF THEKNTU CDRPM

" N . .
by a posmon vectofg = OG and a3 x 3 rota.tllon matrix Description Quantity
ARp. Considera; and Bb; denote the position vectors fa: Fixed cube half length Tm
of points 4; and B; in the coordinate systemi and B, Jv: Fixed cube half width 2m
respectively. Although in the analysis of the KNTU CDRPM Jn: Fixed cube half height Lm
p Y- 9 . Y ; . ’ C : Cubic moving platform half dimension 0.1m
all the attachment points, are considered to be arbitrary, the as: The moving platform’s mass 5 Kg
geometric and inertial parameters given in tgble | are used I: The moving platform's moment of inertia 0.033 Kg - m?
p: The limb density per length 0.007 Kg/m

in the simulations.
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singularity and whenJ,, becomes singular, there will be aHence,
non-zero twist rate: for which the active joint velocities are
zero. This singularity is called parallel type singularity [2].FE‘i
In this section we investigate the Jacobian of the CDRPM p ool . , R
platform shown in figur¢]1. For this manipulator, the input —5Li [Li“’i X S+ wi x S+ wi x (wi x 5))
vector is given byL = [Ll,LQ,...,Lg]T, and the output (10)
vector can be described by the velocity of the centrGid

and the angular velocity of the moving platform as followsin which, L; andw; are linear and angular accelerations of
i'th limb. Unfortunately, they depend on the acceleration of

&= { Va } (5) the end-effector. This dependency causes implicit differential
wa equations of motion. By using light weight cables such as

Jacobian matrix of a parallel manipulator is defined as th&e ones used in this manipulator, the gravity force effects on
transformation matrix that converts the moving platfornthe cables can be ignored compared to the dynamic induced
velocities to the joint variable velocities, as given in equatiofiorces [13]. As shown in figurg] 3F5 the cable’s tension
M. Therefore, the CDRPM Jacobian matdixs a non-square force applied by cable driver unit can be represented by
8 x 6 matrix, since the manipulator is a redundant manipF'a = —7 . Relations between actuator forces and the end-
ulator. The Jacobian matrix can be derived by formulatingffector affected forces had been studied in cable-affected
a velocity loop-closure equation for each limb. Thus, théorces. Writing the Newton-Euler equations for moving
CDRPM Jacobian matriy is derived as following [12]. platform, describes the relation between forces, torques and
acceleration of moving platform as following:

= Fa— g (Liz + EiLi>

Sl (El X gl)T n
Sy | (Byx So)T Mi = Fp+G+ )Y Fg (11)
J = . . (6) i=1
S | (Bs x 8¢)7 Ic0 = 7p-) E;xFg (12)
i=1
in which, S; is the unit vector along'th cable. In which, M and I are moving platform's mass and

moment of inertia anch is the number of the cable€z

o is the effect of the gravity force on the end-effectdtp

A. Kinetics andTp are the disturbance forces and torques acting on the
The main approach of dynamic analysis of CDRPM ignoving platform with respect to the fixed frame coordinate.

Newton-Euler method. In this approach the free-body diEquationsg I[l anfl 12 can be viewed as an implicit 1

agrams of each component is considered separately. Téet of differential equations as a relation between position

Newton-Euler equations are applied to all limbs and moving, velocity @, accelerationz, disturbance wrenclp, and

platform containing external, contact and inertia forces aactuators torque- of the form:

torques. It is assumed that the moving platform center of -

mass is located at the geometrical center p&irand it has fi(@ 2,8 8p,7) =0 (13)

a mass ofM and moment of inertid. Furthermore, since The use of these equation is twofold. The first use of it

the manipulator is cable-driven, the mass of the limbs depengl to evaluate the actuator forces needed to produce a

on cable lengthyn = pL; in which the cables have circular prescribed trajectoryc(t) in presence of the disturbance

cross section, and a constant density per unit lengtp. of wrenchFp. However, the governing equations of motion of

Thus, the cables’ moments of inertia are varying, and can lige manipulator can be implemented for dynamic simulation

calculated assuming that they are slender bars with circulef the system. For dynamic simulation, it is assumed that the

cross section and with varying length as illustrated in figuractuator forcesr(t), are given and the manipulator motion

[3. Non—zero elements of the moment of inertia of the cablagajectoryx(t), is needed to be determined. Due to implicit

about the fixed point4; is given by: nature of the dynamic equation special integration routine

IIl. DYNAMIC ANALYSIS

1
Iyy =1 = gpLi (7)

The velocity vector of the center of mass of each limb
consists of rotational and linear elements:

1. . .
Ve = §(LiSi + Liw; x S;) 8

The Newton-Euler equations for varying mass cable can be
written as:

0 0
Z Fey = a(mivci)y Z My = Q(IAiwi) (9) Fig. 3. th Cable’s moving coordinate and force elements
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Fig. 4. Response of the dynamic model while actuator forces have same L*
magnitude.
Fig. 5. The same actuator forces are applied: the sum is nonzero.

capable of integrating implicit differential equations, are used
for simulations. Using the manipulator geometry, it can be shown that si-

nusoid of the angles and « are a function of only the
B. Model Verification variable as following:

As explained before, the most important application of sin(o) = friz — 2
the dynamic equations of the CDRPM is the direct dynamic Li Li 7’

simulation of the system. In this case, it is assumed that the,.c S forces have the same magnitudes while acceler-
actuator forces are given and the manipulator motion is to bg;i,ns ;rle small. Substituting equatigng 16, in equdfign 15

determined. Due to implicit nature of the dynamic equationye Newton-Euler equations in z direction can be simplified
usual numerical integration routines such as Runge-Kutiai, the following differential equation:

methods [14], cannot be used to solve the problem. However,

special integration routine[15], which is capable to integrate Mz=CF,-W a7
implicit functions, can be used for dynamic simulations. ) _ o ) )
Simulations are performed to first verify the derived dynami€ollecting all fixed coefficients, and replacing them with
equations and then to study the behavior of the systefyVO constant parametef,, and K, simplifies the dynamic
Thus, the model is simulated in some scenarios in whickduation into:

the behavior of the system can be predicted by intuition. Mz =k, — k2 (18)

In order to study the cable constrained motion of therhus, the system behaves similar to a free vibrating system

moving platform, all tension forces of the cables; are . S . . L
set to100N. In order to describe the simulated behavior o%r.] ¢ direction without damping. As shown in figuf¢ 4, the

L . . f5|mulation results of the dynamical model verifies a free
the system, it is simpler to consider only the front view of ., ~ =~ . - o . . .
vibration in z direction. Similar scenarios are simulated in

CDRPM as shown in figurg]5. In this scenario, the initial
geometry of the moving platform is symmetric with respec
to the z, y, and z axes, and all actuator forces acting on
the moving platform have the same size. Therefore, the \erification of Cable Modeling

forces and torques are balanced statically and the resultant . , . . .
force acting on moving platform is zero. The simulation In the dynamical simulation equations, the_cable (_jrlven
results confirms the static balance of the manipulator in th{iNPS are modeled as slender bars. However, in practice the

case. Nevertheless, when any other force or displacemé'fi"ﬂble_S can only bear tension .force and neither radius nor
disturbance is applied, statical equilibrium is disturbed, anHend'ng forces can be transmitted through cables. In order

as illustrated in figure |5, in which? is the gravity force to exa(;tly mgdelIGtheTﬁgbles, a f|nt|.te elemkent ter\]pproaghl'can
effect on the moving platform, changes the force balance. PF performed [16]. This examination makes the modeling

this case. the resultant for@F. is in the  direction and °° complicated, and unsuitable for further inverse dynamics
the result,ing motion is shown iZn’ figupé 4 control development. The over-constrained design of the ma-

nipulator, and using two degrees of redundancy in actuation,

; sin(a) (16)

rder to verify the dynamic behavior of the system, and in
Il cases similar correspondences are observed.

Actuator’s Tension Force 107 Inertia Force

8
CF.=) F} (14)
i=1

5o

The magnitude of the resulting force can be derived as:

Forces (N)

o kb N W
s

4
CF, = QZ B RS (sin(o) — sin(a)) (15)
i=1

0.5 1 15 2 25 3 (9 0.5 1 15 2 2.5 3
time(sec) time(sec)

Where the angles and o ?—re ShOYVﬂ In flgurE]S, and '.S Fig. 6. In comparison to tension forces, inertia terms of the cables are
measured counter clockwise andis measured clockwise. much smaller.
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makes the overall stiffness of the system higher than fully- ATCqd
constrained mechanism. Thus, if the force distribution is well 3

conditioned, the tension forces in the cables must be much = %
higher than the bending forces. Dynamic simulations can be Ey S
used to verify this issue in more detail. If this is true the EngElecty

assumption of considering cables as slender bars will cause
negligible effect into the true dynamics of the system.

As shown in figur¢ |6, the amounts of the radial forces on
the cables, are less th&h0.1 of the tension forces applied
through the cables, while the end-effector has abdilt /-
acceleration. Also it is valuable for the designer to know each
attachment point has to carry aba@4#0N along each cable
for aforementioned acceleration of end-effector in all 3 axes.

V. SENSITIVITY ANALYSIS Fig. 8. Generated alternative points

As shown in figuré ]7, a joint space controller is proposed
to examine the clos_ed loop performance OT the dynamQ‘Lr:ame's attachment points;s. Note that, all the induced
model. Since there is no measurement available from the :

L o efrors are caused because of calculation errors. Other sources

actual position of the end-effector, in this proposed controllef .
of errors such as the actuator and the other mechanical and

the control law depends only on the cable length measure- :
measurement errors may be added to the induced errors.

ments and the desired trajectory. A full description of this A typical trajectory is considered for this analysis as

paE?rhls ?lveini 'rr: [:rl'?]' irements make the or f ri]ntroduced in [17]. A point inside of the fixed frame’s ATS
; 9: b ecdso qul € feths ii € P ocs;s N tco is assumed agl’ and a point inside of the moving frame’s
struction and assembly of the robots more stringent ango".. <<\ med a8, as shown in figuré]s.

expensive [18]. On the other hand, most of the production E " . )

. . L ) or, the position vectors of the new points become:
methods have their own inherent limitations in terms of
production tolerances. On the other hand, the exact location ;;’ =TT, Ez —E+57 (19)
of the attachment points at both fixed and moving frames
can significantly affect the KNTU CDRPM's kinetic and 7 and s* are homogenous distributed random generated
dynamic behavior and the overall closed—loop performancgectors, inside of the ATS region of the fixed and the moving
It is essential to notice that, the position and direction ofttachment points:
the cable in the attachment point cause the direction of
actuated force on the end-effector. Sensors range is too
small to cover the large workspace of a CDRPM [2], [19]Thus, the inverse kinematics formulation is changed from
Therefore, usually the desired position is used as the basis iﬁuiuatiorﬂz into:
evaluation of the Jacobian instead of the actual measurements
in the practical implementation of the proposed control law. L;={[g+E;—a}]]"[g + E| — a]]} (20)
Therefore, it is essential to analyze the dynamic behavior . .
of the robot in presence of such construction and assemb?&pd alternative Jacobian becomes:

|7 < rars , I5] < sars

N

tolerances. Therefore, in order to obtain a pre—defined and S"T (B, x S:/)T
repeatable precision for the end-effectors movements, in this A/%r /1 /1 -
section we will obtain an acceptable tolerance region around J = S’y | (B3 x S3) 1)

the attachment points that can fulfill the required closed-loop
performance. This tolerance region is denotedatiswed
tolerance spher€ATS) which has a radius of 47 for the
fixed frame’s attachment pointgl;s, ands g the moving

i :
S's | (Bg x S4)"

Where 5‘; is the alternative unit vector calculated using
Al and B] position instead ofd; and B;. Therefore, after

— replacing all phrases in the equatigns 12, the alternative

qimverse _L%i, Kp points, vectors and all changed equations that affect the

X I — L . dynamic simulation blocks is included in the simulations.

R : > DC ey Optimal Lo & "ol CDRPM : The resulting simulation errors are shown in figufe 9 where,
» the attachment points are modified By and 5". Through
5 ot el this simulation, the computed radius of ATS isndn for
% the moving attachment points and 12m for the fixed

attachment points, in order to retain the desired precision
Fig. 7. Block diagram of the Closed-Loop system of 0.015 mm error norm for position an@.005° error norm
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offset distance of the moving attachment point s, s(m)

°

0.005 001 0015 002 0025 0.03
offset distance of the fixed attachment point, r(m)

error for position and a0.005° error for orientation is
required, the radius of the allowed tolerance sphere for the
fixed attachment pointsA}) is ra7s = 0.012m and that
for the moving attachment points isirg = 0.003m. Thus,
performance of close—loop is four times more sensitive to the
accuracy of thes; points than that of the fixed,; attachment
points. A rationale behind this observation is the exitance

Fig. 9. Effect of attachment points change on the norm 2 of tracking err®f E; terms in the Jacobian matrix and its effect on the

applied torque of the end-effector noting that the vecgy) (
is normalized. Thus, a change in the size or directioEef

for orientation. Let's break down the two norm of the errohas direct effect on the direction &f, and on the Jacobian’s
vector with respect to the components of the tolerances glementsE; x S; size and direction. While a change in the
position and orientation of the attachment points. The error is; will only influence the direction of5;. Furthermore, it is
generated from the difference of the closed—loop simulatioshown that the most significance factor in the assembly of
output and the corresponding desired position. By increasirge attachment points is theaxis orientation precision.

r or s the norm of the error will be increasing as shown
in figure[9. The norm of the error is decomposed by the
position and orientation tolerances in the attachment pointd]
As itis seen in this figure, the resulting tracking error is more
sensitive to the tolerances experienced in the moving attachz]
ment point compared to that of the fixed attachment pointsl3]
Fortunately, the end-effector’s attachment poifiss, are |4
usually much closer to each other than the fixed attachment
points. Thus, a CMM (Coordinate-measuring machine) [20]
or any ordinary calibration tool should be used to ensure thg’]
required tolerances in thE,. Furthermore, it is seen that the [6]
resulting tracing error is also more sensitive to the orientation
errors compared to that to the position errors. This is mor
critical for the tolerances in axis orientation. Thus, if there
exists any offset of end of arm tooling from the moving
platform, precision of positioning will be affected specially
in z direction.

(8]

[9]
V. CONCLUSIONS
In this paper, the dynamic analysis of the KNTU CDRPM

is studied in detail. This manipulator is a cable driverdl0]
redundant parallel manipulator, which is under investigation
for possible high speed applications. Dynamic analysis is dmn]
essential step to design such manipulators in a way to accom-
plish the required performance within its entire workspace. If 7
this analysis the inverse kinematics and Jacobian matrices of
the manipulator is derived first. Then the motion equations 3{3]
the manipulator are derived using Newton—Euler formulatior.
In this formulation all the reaction forces can be computed,
which is very insightful for the design of the CDRPM. In[14]
order to verify the integrity and the accuracy of the dynamig;;
equations, cable model is verified. Then, a simulation study
is performed on the system for the open— and closed-lod}’!
scenarios. The integrity of the models are verified through the
open-loop simulations, while it is shown that a decentralizefd7]
PD controllers are able to reduce the induced vibration
caused by the cable structures in these manipulators. It ig;
shown that the obtainable tracking performance is less than
0.1 mm in position and less thaf.05° in orientation. The
dynamic simulations are finally used to examine the effe&g]
of construction and assembly tolerances to the closed-loop
performance of the system. It is shown that if a 0.0a5  [20]
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