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Abstract— KNTU CDRPM is a cable driven redundant par-
allel manipulator, which is under investigation for possible
implementation of large workspace applications. This newly
developed manipulators have several advantages compared
to the conventional parable mechanisms. In this paper, the
governing dynamic equation of motion of such structure is
derived using the Newton-Euler formulation. Next, the dynamic
equations of the system are used in simulations. It is shown
that on the contrary to serial manipulators, dynamic equations
of motion of cable-driven parallel manipulators can be only
represented implicitly, and only special integration routines
can be used for their simulations. In order to verify the
accuracy and integrity of the derived dynamic equations, open–
and closed–loop simulations for the system is performed and
analyzed. Also, the effects of mechanical assembly tolerances on
the closed–loop control performance of a cable driven parallel
robot are studied in detail, and the sensitivity analysis of the
precision in the construction and assembly of the system on the
closed–loop behavior of the KNTU CDRPM is performed.

I. I NTRODUCTION

KNTU CDRPM is the name of a project defined on cable
driven redundant parallel manipulator by ARAS (Advanced
Robotics and Automated Systems) group of K. N. Toosi
University of Technology. The main goal of this project
is design, analysis and implementation of a universal par-
allel manipulator structure which uses cable driven actu-
ators instead of any other type of linear actuators for a
stiff, precise and high speed positioning task in a large
workspace. The objective becomes more interesting in cases
where the workspace is so wide that cannot be reached
with usual serial manipulators. [1]. A rigid jointed parallel
manipulator possess more stiffness and is capable to run at
higher acceleration compared to that to a serial manipulator.
However, as it is the case for many parallel mechanisms,
a limited workspace with large singular regions within the
workspace, is not a suitable solution for the above mentioned
applications [2]. A spacious workspace with the capacity
of high payload per moving mass can be easily achieved
using a cable driven parallel mechanism. As an example
in a large adaptive reflector (LAR) a2km2 area can be
manipulated with such mechanisms [3]. Nevertheless, one
inherent limitation of any CDRPM is that the driven cables
can apply only positive tension forces to the end–effector. To
overcome this problem, in LAR application the end–effector
is kept under high tension using a helium filled aerostat
[4], while in the NIST RoboCrane design the problem
is tackled by suspending the end-effector from the roof
and using the gravity force [5]. These remedies are only

applicable for applications with low acceleration and heavy
moving platform. A more suitable solution is to achieve
tension forces in the cables within the whole workspace,
through an over–constrained structure [6]. In other words,
by using additional cables compared to the required degrees
of freedom, and carefully resolve the redundancy in order to
keep all the cable forces in tension can significantly remedy
the problem [7].

The design process of KNTU CDRPM consists of many
steps and requires careful investigation in various perspec-
tives. The basic step is the geometrical workspace analysis of
the design. Kinematics and singularity analysis have signifi-
cant role in the optimal assignment of the design parameters.
Dynamic analysis provides the designer a tool to analyze
and compare the dynamical behavior of different designs.
Closed–loop performance of such mechanisms can be further
analyzed using the dynamic simulation tool. Furthermore,
the dynamic analysis can be used to perform a sensitivity
analysis on the accuracy of different component, and the
mechanical assembly to the final precision performance to
the robot. In this paper the dynamic analysis of a cable driven
redundant parallel manipulator is reported. Such analysis is
an essential step to design such manipulators to guarantee the
accomplishment of the required task, within its entire large
workspace[8]. In order to perform dynamic analysis for such
structures Newton–Euler formulation, the principle of virtual
work, and Lagrange formulation can be used. The traditional
Newton–Euler formulation has been used extensively in the
literature to derive dynamic equations of general parallel
manipulators [9], and also for the Stewart platform, which
is the most celebrated parallel manipulator [10]. In this
formulation all the reaction forces can be computed, which
is very insightful for the design of KNTU CDRPM. On the
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Fig. 1. The KNTU CDRPM, a Perspective View
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Fig. 2. ith Attachment point on the moving platform and related vectors

other hand, the equations of motion for each limb and the
moving platform must be derived, which inevitably leads to
a more extensive calculations.

It is shown that on the contrary to serial manipulators,
dynamic equations of motion of parallel manipulators can
usually be represented implicitly. Therefore, special integra-
tion routines are needed for the numerical integration of such
equations. In order to verify the accuracy and integrity of
the derived dynamics, open– and closed–loop simulations
for the system is performed and analyzed. Moreover, the
dynamical behavior of the manipulator is studied to validate
the simulation results and to describe open–loop responses
of the robot. Finally, in order to obtain an insightful tool to
identify the significance of the construction and assembly
procedure in the robot, a thorough sensitivity analysis is
performed. In this analysis the contribution of the inaccuracy
of the assembly of different components of the manipulator
into the closed-loop performance is identified.

II. K INEMATICS

A. Mechanism Description

The KNTU Cable Driven Redundant Parallel Manipula-
tor is illustrated in figure 1. This figure shows a spatial
six degrees of freedom manipulator with two degrees of
redundancy. This robot has eight identical cable limbs.
The cable driven limbs are modeled as spherical-prismatic-
spherical(SPS) joints, for cables can only bear tension force
and not radial or bending force. Two cartesian coordinate
systemsA(x, y, z) and B(u, v, w) are attached to the fixed
base and moving platform. PointsA1, A2, . . . , A8 lie on the
fixed cubic frame andB1, B2, . . . , B8 lie on the moving
platform. The originO of the fixed coordinate system is
located at the centroid of the cubic frame. Similarly, the
origin G of the moving coordinate system is located at
centroid of the cubic moving platform. The transformation
from the moving platform to the fixed base can be described
by a position vector−→g =

−−→
OG and a3 × 3 rotation matrix

ARB . Consider ai and Bbi denote the position vectors
of points Ai and Bi in the coordinate systemA and B,
respectively. Although in the analysis of the KNTU CDRPM,
all the attachment points, are considered to be arbitrary, the
geometric and inertial parameters given in table I are used
in the simulations.

B. Inverse Kinematics

Similar to other parallel manipulator, CDRPM has a
complicated forward kinematic solution [11]. However, the
inverse kinematic analysis is sufficient for dynamic model-
ing. As illustrated in figure 1, theBi points lie at the vertexes
of the cube. For inverse kinematic analysis of the cable driven
parallel manipulator, it is assumed that the position and
orientation of the moving platformx = [xG, yG, zG]T , ARB

are given and the problem is to find the joint variable of the
CDRPM,L = [L1, L2, . . . , L8]

T . From the geometry of the
manipulator as illustrated in figure 2 the following vector
loops can be derived:

A−−−→AiBi +A −→ai =A −→g + Ei (1)

in which, the vectorsg,Ei, andai are illustrated in figure
2. The length of thei’th limb is obtained through taking the
dot product of the vector

−−−→
AiBi with itself. Therefore, for

i = 1, 2, . . . , 8:

Li =
{
[g + Ei − ai]T [g + Ei − ai]

} 1
2 . (2)

C. Jacobian

Jacobian analysis plays a vital role in the study of robotic
manipulators.Let the actuated joint variable be denoted by
a vector L and the location of the moving platform be
described by a vectorx. Then the kinematic constrains
imposed by the limbs can be written in the general form
f(x,L) = 0 by differentiating with respect to time, we
obtain a relationship between the input joint rates and the
end-effector output velocity as follows :

Jxẋ = JLL̇ (3)

whereJx = ∂f
∂x andJL = − ∂f

∂L . The derivation above leads
to two separate Jacobian matrices Hence the overall Jacobian
matrix J can be written as:

L̇ = J · ẋ (4)

where J = J−1
L Jx. Jacobian matrix not only reveals the

relation between the joint velocitieṡL and the moving
platform velocitiesẋ, but also constructs the transformation
needed to find the actuator forcesτ from the forces acting
on the moving platformF . When JL is singular and the
null space ofJL is not empty, there exist some nonzeroL̇
vectors that result zerȯx vectors which called serial type

TABLE I

GEOMETRIC AND INERTIAL PARAMETERS OF THEKNTU CDRPM

Description Quantity
fa: Fixed cube half length 1 m
fb: Fixed cube half width 2 m
fh: Fixed cube half height 1 m
C : Cubic moving platform half dimension 0.1 m
M : The moving platform’s mass 5 Kg
I: The moving platform’s moment of inertia 0.033 Kg · m2

ρ: The limb density per length 0.007 Kg/m
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singularity and whenJx becomes singular, there will be a
non-zero twist ratėx for which the active joint velocities are
zero. This singularity is called parallel type singularity [2].
In this section we investigate the Jacobian of the CDRPM
platform shown in figure 1. For this manipulator, the input
vector is given byL = [L1, L2, . . . , L8]

T , and the output
vector can be described by the velocity of the centroidG
and the angular velocity of the moving platform as follows:

ẋ =
[

V G

ωG

]
(5)

Jacobian matrix of a parallel manipulator is defined as the
transformation matrix that converts the moving platform
velocities to the joint variable velocities, as given in equation
4. Therefore, the CDRPM Jacobian matrixJ is a non-square
8 × 6 matrix, since the manipulator is a redundant manip-
ulator. The Jacobian matrix can be derived by formulating
a velocity loop-closure equation for each limb. Thus, the
CDRPM Jacobian matrixJ is derived as following [12].

J =


Ŝ

T

1 (E1 × Ŝ1)T

Ŝ
T

2 (E2 × Ŝ2)T

...
...

Ŝ
T

8 (E8 × Ŝ8)T

 (6)

in which, Ŝi is the unit vector alongi’th cable.

III. D YNAMIC ANALYSIS

A. Kinetics

The main approach of dynamic analysis of CDRPM is
Newton-Euler method. In this approach the free-body di-
agrams of each component is considered separately. The
Newton-Euler equations are applied to all limbs and moving
platform containing external, contact and inertia forces or
torques. It is assumed that the moving platform center of
mass is located at the geometrical center pointG and it has
a mass ofM and moment of inertiaIG. Furthermore, since
the manipulator is cable-driven, the mass of the limbs depend
on cable length,m = ρLi in which the cables have circular
cross section, and a constant density per unit length ofρ.
Thus, the cables’ moments of inertia are varying, and can be
calculated assuming that they are slender bars with circular
cross section and with varying length as illustrated in figure
3. Non–zero elements of the moment of inertia of the cables
about the fixed pointAi is given by:

Iyy = Izz =
1
3
ρLi (7)

The velocity vector of the center of mass of each limb
consists of rotational and linear elements:

vci =
1
2
(L̇iŜi + Liωi × Ŝi) (8)

The Newton-Euler equations for varying mass cable can be
written as:∑

F ext =
∂

∂t
(mivci),

∑
MAi =

∂

∂t
(IAiωi) (9)

Hence,

F Bi = F Ai −
ρ

2

(
L̇i

2
+ L̈iLi

)
−ρ

2
L2

i

[
.

Liωi × Ŝi +
.
ωi × Si + ωi × (ωi × Ŝi)

]
(10)

in which, L̈i and
.
ωi are linear and angular accelerations of

i’th limb. Unfortunately, they depend on the acceleration of
the end–effector. This dependency causes implicit differential
equations of motion. By using light weight cables such as
the ones used in this manipulator, the gravity force effects on
the cables can be ignored compared to the dynamic induced
forces [13]. As shown in figure 3,FS

Ai the cable’s tension
force applied by cable driver unit can be represented by
F S

Ai = −τ Ai . Relations between actuator forces and the end-
effector affected forces had been studied in cable-affected
forces. Writing the Newton-Euler equations for moving
platform, describes the relation between forces, torques and
acceleration of moving platform as following:

Mẍ = F D + G +
n∑

i=1

F Bi (11)

IGθ̈ = τD −
n∑

i=1

Ei × F Bi (12)

In which, M and IG are moving platform’s mass and
moment of inertia andn is the number of the cables.G
is the effect of the gravity force on the end-effector,F D

andτD are the disturbance forces and torques acting on the
moving platform with respect to the fixed frame coordinate.
Equations 11 and 12 can be viewed as an implicit6 × 1
set of differential equations as a relation between position
x, velocity ẋ, accelerationẍ, disturbance wrenchFD and
actuators torqueτ of the form:

ff (x, ẋ, ẍ,FD, τ ) = 0 (13)

The use of these equation is twofold. The first use of it
is to evaluate the actuator forcesτ needed to produce a
prescribed trajectoryx(t) in presence of the disturbance
wrenchFD. However, the governing equations of motion of
the manipulator can be implemented for dynamic simulation
of the system. For dynamic simulation, it is assumed that the
actuator forcesτ (t), are given and the manipulator motion
trajectoryx(t), is needed to be determined. Due to implicit
nature of the dynamic equation special integration routine

Fig. 3. ith Cable’s moving coordinate and force elements
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Fig. 4. Response of the dynamic model while actuator forces have same
magnitude.

capable of integrating implicit differential equations, are used
for simulations.

B. Model Verification

As explained before, the most important application of
the dynamic equations of the CDRPM is the direct dynamic
simulation of the system. In this case, it is assumed that the
actuator forces are given and the manipulator motion is to be
determined. Due to implicit nature of the dynamic equation,
usual numerical integration routines such as Runge–Kutta
methods [14], cannot be used to solve the problem. However,
special integration routine[15], which is capable to integrate
implicit functions, can be used for dynamic simulations.
Simulations are performed to first verify the derived dynamic
equations and then to study the behavior of the system.
Thus, the model is simulated in some scenarios in which
the behavior of the system can be predicted by intuition.

In order to study the cable constrained motion of the
moving platform, all tension forces of the cablesτAi are
set to100N . In order to describe the simulated behavior of
the system, it is simpler to consider only the front view of
CDRPM as shown in figure 5. In this scenario, the initial
geometry of the moving platform is symmetric with respect
to the x, y, and z axes, and all actuator forces acting on
the moving platform have the same size. Therefore, the
forces and torques are balanced statically and the resultant
force acting on moving platform is zero. The simulation
results confirms the static balance of the manipulator in this
case. Nevertheless, when any other force or displacement
disturbance is applied, statical equilibrium is disturbed, and
as illustrated in figure 5, in which

−→
W is the gravity force

effect on the moving platform, changes the force balance. In
this case, the resultant forceCF z, is in thez direction and
the resulting motion is shown in figure 4.

CF z =
8∑

i=1

F z
Bi (14)

The magnitude of the resulting force can be derived as:

CFz = 2
4∑

i=1

BFS
Bi(sin(σ)− sin(α)) (15)

Where the anglesσ and α are shown in figure 5, andσ is
measured counter clockwise andα is measured clockwise.

Fig. 5. The same actuator forces are applied: the sum is nonzero.

Using the manipulator geometry, it can be shown that si-
nusoid of the anglesσ and α are a function of only thez
variable as following:

sin(σ) =
ffix − z

Li
; sin(α) =

ffix + z

Li
, (16)

since,FS
Bi forces have the same magnitudes while acceler-

ations are small. Substituting equations 16, in equation 15,
the Newton-Euler equations in z direction can be simplified
into the following differential equation:

Mz̈ = CF z −W (17)

collecting all fixed coefficients, and replacing them with
two constant parameterKo, andK1 simplifies the dynamic
equation into:

Mz̈ = ko − k1z (18)

Thus, the system behaves similar to a free vibrating system
in z direction without damping. As shown in figure 4, the
simulation results of the dynamical model verifies a free
vibration in z direction. Similar scenarios are simulated in
order to verify the dynamic behavior of the system, and in
all cases similar correspondences are observed.

C. Verification of Cable Modeling

In the dynamical simulation equations, the cable driven
limbs are modeled as slender bars. However, in practice the
cables can only bear tension force and neither radius nor
bending forces can be transmitted through cables. In order
to exactly model the cables, a finite element approach can
be performed [16]. This examination makes the modeling
too complicated, and unsuitable for further inverse dynamics
control development. The over-constrained design of the ma-
nipulator, and using two degrees of redundancy in actuation,
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Fig. 6. In comparison to tension forces, inertia terms of the cables are
much smaller.
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makes the overall stiffness of the system higher than fully-
constrained mechanism. Thus, if the force distribution is well
conditioned, the tension forces in the cables must be much
higher than the bending forces. Dynamic simulations can be
used to verify this issue in more detail. If this is true the
assumption of considering cables as slender bars will cause
negligible effect into the true dynamics of the system.

As shown in figure 6, the amounts of the radial forces on
the cables, are less than%0.1 of the tension forces applied
through the cables, while the end-effector has about0.5m/s2

acceleration. Also it is valuable for the designer to know each
attachment point has to carry about340N along each cable
for aforementioned acceleration of end-effector in all 3 axes.

IV. SENSITIVITY ANALYSIS

As shown in figure 7, a joint space controller is proposed
to examine the closed–loop performance of the dynamic
model. Since there is no measurement available from the
actual position of the end-effector, in this proposed controller
the control law depends only on the cable length measure-
ments and the desired trajectory. A full description of this
paper is given in [17].

High precision requirements make the process of con-
struction and assembly of the robots more stringent and
expensive [18]. On the other hand, most of the production
methods have their own inherent limitations in terms of
production tolerances. On the other hand, the exact location
of the attachment points at both fixed and moving frames
can significantly affect the KNTU CDRPM’s kinetic and
dynamic behavior and the overall closed–loop performance.
It is essential to notice that, the position and direction of
the cable in the attachment point cause the direction of
actuated force on the end-effector. Sensors range is too
small to cover the large workspace of a CDRPM [2], [19].
Therefore, usually the desired position is used as the basis for
evaluation of the Jacobian instead of the actual measurements
in the practical implementation of the proposed control law.
Therefore, it is essential to analyze the dynamic behavior
of the robot in presence of such construction and assembly
tolerances. Therefore, in order to obtain a pre–defined and
repeatable precision for the end-effectors movements, in this
section we will obtain an acceptable tolerance region around
the attachment points that can fulfill the required closed–loop
performance. This tolerance region is denoted asallowed
tolerance sphere(ATS) which has a radius ofrATS for the
fixed frame’s attachment points,Ais, andsATS the moving

FIDC

dx&

dx

e

e&

dx&& IDCτ τ
L

L&

dL

dL&

CDRPMOptimal 
Distribution

Inverse 
Kinematics Kp

Kv

IDC

J +

++
+Trajectory 

Planning

+

Fig. 7. Block diagram of the Closed–Loop system
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frame’s attachment points,Eis. Note that, all the induced
errors are caused because of calculation errors. Other sources
of errors such as the actuator and the other mechanical and
measurement errors may be added to the induced errors.

A typical trajectory is considered for this analysis as
introduced in [17]. A point inside of the fixed frame’s ATS
is assumed asA′

i and a point inside of the moving frame’s
ATS is assumed asB′

i as shown in figure 8.
For, the position vectors of the new points become:

−→
a′i = −→ai + ~r ,

−→
E′

i =
−→
Ei + ~s (19)

−→r and −→s are homogenous distributed random generated
vectors, inside of the ATS region of the fixed and the moving
attachment points:

‖~r‖ < rATS , ‖~s‖ < sATS

Thus, the inverse kinematics formulation is changed from
equation 2 into:

L′
i =

{
[g + E′

i − a′
i]

T [g + E′
i − a′

i]
} 1

2 (20)

And alternative Jacobian becomes:

J ′ =


Ŝ′T

1 (E′
1 × Ŝ′

1)
T

Ŝ′T
2 (E′

2 × Ŝ′
2)

T

...
...

Ŝ′T
8 (E′

8 × Ŝ′
8)

T

 (21)

Where Ŝ′
i is the alternative unit vector calculated using

A′
i and B′

i position instead ofAi and Bi. Therefore, after
replacing all phrases in the equations 1 to 12, the alternative
points, vectors and all changed equations that affect the
dynamic simulation blocks is included in the simulations.
The resulting simulation errors are shown in figure 9 where,
the attachment points are modified by−→r and−→s . Through
this simulation, the computed radius of ATS is 3mm for
the moving attachment points and 12mm for the fixed
attachment points, in order to retain the desired precision
of 0.015 mm error norm for position and0.005◦ error norm
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for orientation. Let’s break down the two norm of the error
vector with respect to the components of the tolerances in
position and orientation of the attachment points. The error is
generated from the difference of the closed–loop simulation
output and the corresponding desired position. By increasing
r or s the norm of the error will be increasing as shown
in figure 9. The norm of the error is decomposed by the
position and orientation tolerances in the attachment points.
As it is seen in this figure, the resulting tracking error is more
sensitive to the tolerances experienced in the moving attach-
ment point compared to that of the fixed attachment points.
Fortunately, the end-effector’s attachment pointsBi’s, are
usually much closer to each other than the fixed attachment
points. Thus, a CMM (Coordinate-measuring machine) [20]
or any ordinary calibration tool should be used to ensure the
required tolerances in theEi. Furthermore, it is seen that the
resulting tracing error is also more sensitive to the orientation
errors compared to that to the position errors. This is more
critical for the tolerances inz axis orientation. Thus, if there
exists any offset of end of arm tooling from the moving
platform, precision of positioning will be affected specially
in z direction.

V. CONCLUSIONS

In this paper, the dynamic analysis of the KNTU CDRPM
is studied in detail. This manipulator is a cable driven
redundant parallel manipulator, which is under investigation
for possible high speed applications. Dynamic analysis is an
essential step to design such manipulators in a way to accom-
plish the required performance within its entire workspace. In
this analysis the inverse kinematics and Jacobian matrices of
the manipulator is derived first. Then the motion equations of
the manipulator are derived using Newton–Euler formulation.
In this formulation all the reaction forces can be computed,
which is very insightful for the design of the CDRPM. In
order to verify the integrity and the accuracy of the dynamic
equations, cable model is verified. Then, a simulation study
is performed on the system for the open– and closed–loop
scenarios. The integrity of the models are verified through the
open–loop simulations, while it is shown that a decentralized
PD controllers are able to reduce the induced vibration
caused by the cable structures in these manipulators. It is
shown that the obtainable tracking performance is less than
0.1 mm in position and less than0.05o in orientation. The
dynamic simulations are finally used to examine the effect
of construction and assembly tolerances to the closed–loop
performance of the system. It is shown that if a 0.015mm

error for position and a0.005◦ error for orientation is
required, the radius of the allowed tolerance sphere for the
fixed attachment points (Ai) is rATS = 0.012m and that
for the moving attachment points issATS = 0.003m. Thus,
performance of close–loop is four times more sensitive to the
accuracy of theBi points than that of the fixedAi attachment
points. A rationale behind this observation is the exitance
of Ei terms in the Jacobian matrix and its effect on the
applied torque of the end-effector noting that the vector (Ŝi)
is normalized. Thus, a change in the size or direction ofEi

has direct effect on the direction of̂Si and on the Jacobian’s
elementsEi × Ŝi size and direction. While a change in the
ai will only influence the direction ofŜi. Furthermore, it is
shown that the most significance factor in the assembly of
the attachment points is thez axis orientation precision.
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