
 
 

 

  

Abstract— This paper devises a multi-objective cost function 
which elaborates different constraints as well as an optimality 
criterion for design of serial robotic manipulators. In practice, 
inclusion of different constraints drastically limits the possible 
range of design parameters. The result of minimizing this 
multi-objective cost function is compared with another method 
which locates an optimal solution using a graphical 
representation. The effectiveness of the proposed cost function 
is demonstrated by a unified solution for both methods. In 
addition, possible tolerance of design parameters is 
compensated by considering a neighborhood around these 
parameters. Through an illustrative example, it is shown that 
the inclusiveness and flexibility of the proposed method makes 
it suitable for geometric design optimization of robotic 
manipulators. 

I. INTRODUCTION 
ESIGN of robotic manipulators has always been a 
challenging issue. The complexity of structure and 

multitude of parameters makes the analytical design 
approach significantly complicated. This complication can 
be seen in [1], in which the design of specific robotic 
structures is reported. Moreover, in [2] different criteria has 
been proposed to simplify the structure and eliminate 
internal singular points. Exploiting a graphical 
representation for design of robotic manipulators can be 
found in [3]. However, in practice considering multi-
objective criteria in the design makes these approaches very 
cumbersome. This may lead to design the dexterous 
workspace with numerical methods and visualization. 

Defining an optimality index is another approach 
presented in [4,5]. Although these indices work impeccably 
with one structure, it is useless to compare different robotic 
structures due to their scale dependence. This problem has 
been reported in [6] and different optimality measures have 
been compared in [6,7]. In addition to these scale 
independent indices, we have considered different types of 
constraints for a pre-specified task. 

In [8,9] the authors are focused in finding global 
optimization approach to design a well conditioned general 
purpose robot. However, we are more concerned about 
adding practical design limitations on a pre-defined 
trajectory. An analytical approach is also presented in [10], 
which is difficult or even impossible to solve for the 
practical robot design with more than 3-DOF. Different 
 
 

approaches are presented in [11-14], in which some 
kinematic and dynamic limitations are introduced.  

In this paper, different kinematic limitations are 
formulated into a multi-objective cost function. Also, a 
visual approach is applied for a typical design with few 
parameters to show the effectiveness of this cost function 
and as a new approach for design applicable on few 
parameters. For this purpose, the optimization problem with 
a general form of kinematic representation is formulated for 
robotic manipulators. Then, by introducing different 
constraints, visual optimality patterns are devised; by 
searching through these patterns an optimal solution is 
effectively achieved. Next, we have formulated these 
constraints and an optimality measure within a multi-
objective cost function. Finally, an optimization method 
have been planned to consider a margin for possible 
tolerance of design parameters as well as finding the 
minimum value for the cost function. The solution for this 
unified multi-objective cost function is examined, and 
analyzed in detail to show the effectiveness of the proposed 
method in practice. 

II. PROBLEM STATEMENT 
Denavit-Hartenberg convention [15] is a well accepted 

way to describe kinematic and geometric structure of a 
robotic manipulator. Therefore, the general problem of 
designing a serial manipulator can be recast into finding 
appropriate Denavit-Hartenberg parameters to optimize 
some measures. In fact, some of these parameters are 
geometrical design parameters and others are joint variables 
by which the posture of robot is changing. Our goal is to 
find these geometrical design parameters in order to 
minimize the cost index for different postures in a pre-
defined trajectory. Besides, there are some constraints that 
have to be considered for solving the optimization problem. 
In general, the optimization problem to be solved can be 
written as following. 
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in which, cj(x) and ck(x) are possible constraints and f is the 
multi-objective cost function to be minimized. It can be seen 
that all constraints (linear or nonlinear) can be converted to 
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the form shown in (1). Analytical solutions for this 
optimization problem can be found in [6]. But, these 
solutions are limited to 2R and 3R robots with only one 
point as a desired task. However, a real task is made up of 
continuous paths which contain infinite number of task 
points. Therefore, in this case we have to sample the path to 
a finite number of task points, and mention the arithmetic 
mean of cost function for these task points as the cumulative 
cost. For example, consider the problem depicted in Fig. 1. 
In this typical design example, 10 task points are assigned 
on the workspace of the robot which is quarter of a circle 
with radius of 2 meters. This example is a simplified version 
of a painting robot to spray color or defrosting liquid over an 
airplane's fuselage. This typical example is treated in the 
optimization problem developed in the different sections of 
this article.  

 
Fig. 1.  A typical design example of a painting robot which will be 
optimized for link lengths and workstation positioning. 

The objective is to design the robot link lengths as well as 
positioning the coordinate system of the workstation in order 
to satisfy a number of design constraints. Hence, the 
parameters to be optimized are: link lengths and position of 
coordinate system {S} relative to {B} which is attached to 
the airplane's body as depicted in Fig. 1. It should be noted 
that even in the design procedure of practical robots, many 
assumptions in the robot's structure have to be made in order 
to have analytical inverse kinematic solution; such as 
position and orientation decoupling, computational consi-
deration, or facilitating the specific task for the robot. 

III. OPTIMALITY PATTERNS 
In accordance to the painting robot example, there are 

four design parameters to be optimized: 
l1: length of first link from base, 
l2: length of second link from the end of first link, 
[xc, yc]: origin of coordinate system {S} relative to {B}. 
We will separate design parameters (l1 and l2) from 

workstation positioning parameters [xc, yc] so that we can 
visualize the effect of variation in l1 and l2 on a 2D grayscale 

map. According to the previous section, we have sampled 
the continuous path to a finite set of task points. These 
points can be represented with respect to {B} for a position 
of workstation [xc, yc]. Solving the inverse kinematics 
problem for each of these task points will result sets of 
solutions for joint variables of the robot [16]. According to 
our trajectory planning, we will choose a set as a suitable 
solution. Therefore, in our example we will have 10 sets of 
joint variables for 10 task points. Each of these sets can 
uniquely describe the position and posture of the robot at a 
task point. 

Accordingly, we will assign a cost corresponding to the 
specific position and posture of the robot at each task point. 
The total cost along the path will be average cost of these 
task points. Hence, each constant set of [xc, yc] and variable 
sets of [l1, l2] can be represented in a map similar to Fig. 2. 
In this figure, effects of varying link lengths (l1, l2) on the 
cost function can be seen when {S} is positioned in [3m,-
2m] relative to {B} (xc = 3, yc.= -2). Throughout this paper 
we call such maps an Optimality Pattern. By using this 
pattern, the cost of each design can be evaluated. In the 
figure the cost function is calculated solely in accordance 
with the condition number of Jacobian matrix. We have used 
the inverse of condition number with a transformation which 
will be discussed later.  

 
Fig. 2.  Optimality pattern using a cost related to the condition number for 
xc = 3, yc = -2, the best possible answer (minimum cost) can be seen in 
black color; the white color indicates designs that cannon reach for at least 
one task point in a trajectory. 

In Fig. 2 and other similar grayscale maps in this paper, 
the x-axis of the graph indicates first link length of the robot 
(l1) and the y-axis indicates the second link length (l2). A 
unit used for both axes is deci-meter (0.1 meter).The optimal 
design is where the minimum cost occurs. Thus, the optimal 
solution is within the dark black region in Optimality 
Patterns. For example, in Fig. 2 the point [l1 = 2.9m, l2 = 
2.1m] is the minimum point. 

The second step is to include constraints that a designer 
has to consider for the specific task. In practice, there are 
many constraints that limit our design options. Here we give 
the description of some general constraints; precise 
mathematical formulation of these constraints will be 
discussed later. 
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A. Joint Constraint 
Practically, joints are bound to articulate along specified 

limits. This is possibly due to mechanical design limitations 
or cost reducing issues. As depicted in Fig. 3(a) this const-
raint has a huge effect on limiting the design workspace. 
Here the limitations are |θ1| < 45° and |θ2| < 45° for the first 
and second joint variables respectively. In the figure the 
gray colored region (indicated by an arrow) is dissatisfied by 
the joint constraint; after excluding the non reachable region 
(white colored), there remains a limited region to choose 
design parameters. 

B. Collision with the Workstation 
In some circumstances the structure of robot collides with 

the body of workstation. In our example, robot's first link 
might collide with the fuselage. Therefore, the robot must be 
avoided from getting into the workstation. Limitation due to 
this constraint is indicated on Fig. 3(b) by an arrow (the gray 
colored region). 

 
Fig. 3.  Optimality patterns with different constraints included (limitations 
due to constraints are in gray color which is indicated by an arrow in each 
figure): (a) joint constraint (b) collision with the workstation (c) length 
constraint (d) all of these three constraints. 

C. Length Constraint 
In practice, there is limited workspace for a robotic 

manipulator. Accordingly, we have to limit the maximum 
length of the robot. Another setback for a long robotic 
manipulator is its larger range of resonance and flexibility 
which is unfavorable in this design. The effect of limiting 
total link length to maximum of 10m for our design example 
is shown in Fig. 3(c). 

Finally, the resulted Optimality Pattern after including all 
constraints and the optimality measure can be seen in Fig. 
3(d). In this figure the possible design region is drastically 
limited. Thus, we can see that the effects of different 
constraints is an important factor and a design which only 
considers an optimality measure will fail to work properly in 
a task with various limitations. 

IV. SEARCH THROUGH PATTERNS 
Now that we have defined the Optimality Pattern and 

separated design parameters from workstation positioning, 
we can analyze these patterns and search to find optimal 
design parameters. First, we will depict the Optimality 
Pattern for an arbitrary point of [xc = 3.5, yc = 0] and its 
neighborhood. After analyzing these patterns, we will 
extrapolate our analysis results to find an optimal solution. 
Optimality Patterns with respect to this point and its 
neighborhood are shown in Fig. 4. The number indicated on 
top of each figure shows the minimum cost value. As a 
reminder, each figure has its own specific set of [xc, yc] and 
the white colored region shows the excluded design region 
because of different constraints. 

 
Fig. 4.  Optimality patterns for four set of workstation positioning [xc, yc]: 
(a) [3.5,0] (b) [5,0] (c) [3.5,-1.5] (d) [5,-1.5]; optimal region is shown in 
black color and prohibited region is shown in white color; the minimum cost 
is indicated on top of each figure. 

It can be seen in Fig. 4(a) that if we put the workstation's 
coordinate system {S} in [3.5,0], we will be restricted to a 
small region. Moving the origin farther from body to point 
[5,0] (Fig. 4 (b)) we will gain much freedom to choose 
design parameters; but even in this point our optimal region 
(shown in black color in Fig. 4(b)) is in the vicinity of the 
prohibited region. Moreover, by lowering the workstation in 
y-axis to [5,-1.5] (Fig. 4(d)), the accessible area for choosing 
design parameters will expand; also the cost will be 
lessened. Therefore, decreasing the workstation's origin 
index in y-axis or increasing in x-axis direction will result 
better design parameters which will have better cost index 
and broader margin from forbidden and inaccessible regions. 

Thus, we will step forward in x-axis and step down in y-
axis to reach a lower cost region. As a result, the point [4.5,  
-2.5] will be reached to analyze its vicinity. Fig. 5 shows 
Optimality Patterns for these sets of points. By inspecting 
these patterns, it can be figured out that Fig. 5 (d) has lost 
nearly half of its optimal region (shown in black color) and 
is close to the forbidden region. Also, the optimal region in 
Fig. 5(a) is about to enter the prohibited region. Notice that 
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the optimal region will be lost if we move the workstation 
farther from the robot. As a result, two options will remain: 
Fig. 5(b) and Fig. 5(c). In this case, Fig. 5(c) is better 
because it has lower cost and broader margin from 
inaccessible regions. The optimal link length corresponding 
to the minimum cost value in Fig. 5(c) is l1 = 5.2m and l2 = 
3.7m and the optimal position of workstation is xc = 4.5m 
and yc = -3m. 

 
Fig. 5.  Optimality patterns for four sets of workstation positioning [xc, yc]: 
(a) [4.5,-2.5] (b) [5,-2.5] (c) [4.5,-3] (d) [5,-3]; optimal region is shown in 
black color and prohibited region is shown in white color; the minimum cost 
is indicated on top of each figure. 

V. COST FUNCTION 
As it can be seen in the trends of figures, in addition to 

the optimality measures there are various types of 
constraints that have to be formulated into a cost function. 
This aim can be accomplished by exploiting the cost 
function described in (2) and (3) [17,18]. It can be proved 
that every constraint can be converted into one of these two 
types: 
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in which cj is an equality constraint and l is the total number 
of such constraints; ck is inequality constraint with total 
quantity of m. The cost function (described as cost(x)) 
appropriate for these constraints can be written as: 
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An advantage of this cost function is its ability to easily 
add a new constraint by a simple addition. In what follows a 
dexterity measure and some typical constraints (which were 
briefly described in the previous section) will be formulated 
into a multi-objective cost function. 

A. Dexterity Measure 
In the robotic community literature many dexterity 

measures have been introduced which have helped to design 

robots and interoperate different behaviors. In our design 
example in order to be able to compare robots with different 
link lengths, we have to choose a measure which is scale 
independent. In [6] some well-defined scale independent 
dexterity measures have been introduced. However, in our 
paper we prefer to use a simple one like condition number 
[7]. Since we will not need an analytical solution throughout 
this paper, its inability to be solved analytically is not a 
setback [8]. We have, also, changed the range of condition 
number from [1…∞] to [0…∞] by a transformation as 
defined by: 
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in which maxσ  is the largest and minσ  is the smallest 
singular value of the appropriate Jacobian matrix. 

B. Joint Constraints 
We can classify joints into two primal forms of revolute 

and prismatic. In reality both types have some specific 
mechanical limits. Due to the unified definition of Denavit-
Hartenberg parameters for these two joints, without loosing 
generality we consider the case of revolute joints. 
Considering this limitation for a revolute joint as [θmin , 
θmax], formula (5) can added to the multi-objective cost 
function [18]. By adding this factor to the function, a cost is 
assigned to a configuration passing these limits. 

}0,max{}0,max{ maxminint θθθθ −+−=JoC  (5) 

C. Link Length Constraint 
Practically, the available space for a robot is bound to 

some restrictions. Therefore, we have to limit the robot's 
scale by limiting the length of its links. Besides, the added 
length will increase the unfavorable construction cost. 
Another setback for long robots is increased resonance and 
flexibility. Since our target is to build a robot with maximum 
stiffness, this flexibility is undesirable in this particular 
design scheme. 

In order to formulate the cost index, it is known that the 
flexibility of a typical cylindrical link is proportional to the 
cube of length. Accordingly, the cost index for added 
flexibility has to be increased proportional to the cube of 
length. To sum up, formula (6) has been proposed to include 
a cost index for this constraint. 
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In this formula lmax is maximum acceptable length of links 
and kres is constant which depends on elasticity of material 
and cost of construction material; in our example we have 
assigned 410−=resk . li is the length of i-th link; and n is the 
total number of links. 

D. Reachability Constraint 
One approach to formulate this constraint is to measure 

the distance between the task point and maximum reachable 
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point of the robot. Another interesting approach proposed in 
[18] is the use of Generalized Inverse Kinematics (GIK). To 
briefly explain GIK procedures, the inverse kinematics 
formulation will be transformed to a polynomial form. 
Therefore, in case a task point is out of reach, the solution to 
inverse kinematics will have an imaginary part. Thus, we 
can formulate this constraint as: 

2
Re )}({ uimagC ach =  (7) 

in which u is the solution of transformed inverse kinematics 
problem for each task point and the imag operator derives 
the imaginary part of the solution. 

E. Task Constraints 
This group of constraints will avoid the robot to collide 

with different obstacles. These obstacles might be the 
workstation or other objects that restrict the maneuvering 
ability of the robot. To formulate this constraint, it is to find 
an analytical expression to describe inside of these objects. 
Afterwards, a cost is assigned which is proportional to the 
distance between the surface of the object and a point on 
robot's body. This will act as a spring, repelling the robot 
from getting into the object. All this process is done for the 
circle-shaped workstation of our example and proposed in 
(8) as one way to put this constraint into our cost function. 
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in which r is the radius of a circle-shaped workstation and 
xc, yc are the position of the circle's center with respect to 
coordinate {0} which is attached to the robot's base. This 
formulation is for n-linked robot and kx0  is the position of 
the end of k-th link relative to coordinate {0} which can be 
calculated with respect to (9). 

k
k
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in which kT0 is 4-dimentional square transformation matrix 
which transforms the coordinate system attached to k-th link 
to the coordinate {0} attached to the base. 

VI. OPTIMIZATION 
Up to now, the optimality criterion and different 

constraints have been separately formulated. To construct 
the final multi-objective cost function, all these constraints 
and the optimality measure have to be added with some 
weights as in (10). In this formula C is the constraint which 
was described in previous section and w is its respective 
weight. 
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These weights are assigned to rank the importance of 
constraints and normalize them. The normalization process 
is conducted in accordance with different units of 
constraints. In the example, wDim and wReach are 10 because 
of their similar dimensions; these weights are higher 

compared to wDext which is 1 due to their importance. Also, 
wTask  =15 and wJoint =100. Having the smallest unit (radian), 
the joint constraint is assigned the highest weight. 

Before solving to find the minimum cost, we have to deal 
with another issue. In reality, the design parameters like link 
length or joint twist are capable of having some tolerances 
which might be due to varying temperature, deformity of 
structure or imperfect construction. To bear these tolerances 
the optimal design parameters should have a good margin 
from the inaccessible region. Therefore, we have to plan an 
algorithm to search for a low-cost area instead of a low-cost 
point. This is achieved in (11) by integrating the cost 
function in a boundary defined by the tolerance of each 
parameter. 
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where b is the maximum tolerance limit for the 
corresponding parameter; cost is the cost function for a 
single point and F(x) is the concluding cost function. 
Because numerical computation methods are being used in 
this paper, this integration will be transformed into discrete 
integration. By widening this tolerance margin (b), we can 
compensate imperfectness of parameters. 

Finally, to solve this optimization problem, we have 
chosen the Genetic Algorithm (GA) method. On the account 
of the fact that our multi-objective cost function has multiple 
parameters with plenty of local optimal points, using 
gradient-based methods will result a local optima. Also 
concerning our problem, these methods are highly 
dependent on initial value of optimization algorithm. 
Besides, due to high to medium epistasis (independence) of 
parameters in this optimization problem, the GA method is 
suitable [19]. In such cases, even the random search 
methods will work better than Gradient-based methods. The 
result of optimization based on 10 iterations of GA can be 
seen in Table I. Results in Table I show the effectiveness of 
the chosen optimization algorithm. 

TABLE I 
OPTIMIZATION RESULTS BY GENETIC ALGORITHMS 

Itr. 
No. L1 L2 Xc Yc 

Cost 
Value 

#1 5.0636 3.7044 4.7417 -2.6017 37.957 
#2 4.9952 3.6935 4.6971 -2.5913 37.928 
#3 4.9739 3.7179 4.6192 -2.6792 37.725 
#4 5.247 3.8606 4.5329 -3.1818 37.225 
#5 5.1023 3.7454 4.69 -2.743 37.65 
#6 5.1149 3.7681 4.648 -2.8316 37.49 
#7 5.0602 3.7542 4.6313 -2.7643 37.555 
#8 4.9332 3.6967 4.6095 -2.7342 37.833 
#9 4.8429 3.5979 4.7123 -2.5103 38.678 
#10 5.3842 3.9809 4.2646 -3.6556 37.382 

 

Even with different initial values for each iteration all the 
solutions are converging to a unified solution. Besides, the 
ratio of l2/l1 in all of these iterations is 0.74±0.01 which is 
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close to the ratio of forearm and upper arm of a human 
body. This fact verifies the results further. The average and 
Standard Deviation (StdDev) of these 10 iterations can be 
seen at Table II. Low rates of StdDev particularly when 
compared to long lengths of the robot, is another factor for 
validating the results. 

 

TABLE II 
OPTIMIZATION RESULTS BY GENETIC ALGORITHMS 

. L1 L2 Xc Yc 
Cost 

Value 

Average 5.07174 3.75196 4.61466 -2.8293 37.7423 
StdDev 0.1557 0.1044 0.1369 0.3433 0.4040 

 

Finally, the Optimality Pattern of the final result is 
illustrated in Fig. 6. As can be seen, a wide range is 
available to choose appropriate design variables. Moreover, 
the optimal region (in black color) is wide enough to be 
away from the forbidden (white colored) region. Besides, 
the optimum solution resulted in this map is analogous to the 
one derived in the section IV. 

 
Fig. 6.  Optimality pattern for the final optimal design solution: xc = 4.6, yc 
= -2.8, the best possible answer can be seen in black color with the 
minimum value; l1 = 5.2 , l2 = 3.7. The minimum cost of the optimal point is 
0.1417. 

VII. CONCLUSION 
This paper has proposed and formulated a multi-objective 

cost function for the design of serial robotic manipulators. 
Some important constraints such as link length and task 
constraints are proposed and integrated into the multi-
objective cost function. Besides, a method to consider 
tolerances of design parameters has been proposed. The 
method of Genetic Algorithm (GA) is used for optimizing 
this function which contains many local minimum points. A 
reasonable matching of solutions for 10 iteration of GA 
confirms the effectiveness of this algorithm and the 
proposed cost function. On the other hand, a visual design 
procedure has been presented. This visual method is 
particularly useful when analyzing the effect of varying 
parameters on optimality. Finally, the optimal design 
solution is verified by a unified solution using both the GA 
and optimality pattern approaches. The resemblance 
between ratio of forearm to upper arm in human body and 
the l2/l1 ratio of the solution is another reason to validate the 
solution. 
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