

Abstract—we introduce a very fast and robust localization

and 2D environment representation algorithm in this paper.

This innovative method matches lines extracted from the

LASER range finder distance data with the lines that construct

the map, in order to calculate the local translation and rotation.

This matching is done with a simple least square with no

iterations. The algorithm is suitable for any indoor

environment with mostly polygonal structure and has proven

high speed and robustness in the experimental tests on our

innovatively designed tracked mobile rescue robot “Silver”.

One experimental test is presented in the last section of this

paper where the outputs are presented. These outputs are: 1-

drift free raster map made of points and 2- A gallery of lines

providing a linear ground truth.

Keywords: Resquake, Rescue Robot, SLAM, Least square

Line Matching, Simultaneous localization and mapping,

Ground truth.

I. INTRODUCTION

Mong all the issues concerning mobile robotics, self

localization and mapping seem to be the basis for

almost all the other autonomous behaviors. Many

researchers have introduced different methods of self

localization and mapping during the past years. This

problem has the same objectives for all SLAM algorithms.

To be fast (real time), to have low computational cost (the

robot has a lot other things to do), to be robust against noise,

to give more information keeping less amount of data in

memory, to be able to recall, use and update old information

and to generate a map comparable to the ground truth.

Many localization and mapping algorithms are based on

point to point matching of LASER range finder (LRF) scans

[1] and [2]. Since these methods should analyze a lot of

points in iterations, the computation cost and slowness is in

the nature of them.

Yaqub, Tordon and Katupitiya presented a line matching

algorithm in [3] to solve the problem with computational

cost. They used encoder information to help data

association, and conjugate gradient to solve the formulated

geometrical constraints. They do not match scans with the

map, but they match two consequent scans. Since they tested

the algorithm in simulation, drifts are not noticeable. But

matching two scans in real environment ends to very

noticeable drifts after a couple of turns since errors in

matching will be cumulatively added. These errors are due

to the fact that lines extracted from real environment are

†
 Corresponding author, Graduate Student of K.N. Toosi University of

Technology
‡
 Associate professor of K.N. Toosi University of Technology

extracted from noisy sensor data, so they are not very certain

lines.

Gutmann, Weigel and Nebel solved the positioning

problem in RoboCup Soccer field [4]. The robot should try

to find its position by matching lines to the boundaries of the

soccer field. They fused LRF data with odometery in a

Kalman filter. Mapping is not an issue in the algorithm they

provided since the profile of the boundaries is known.

In this paper we provide a line matching algorithm that

matches each scan with the map in order to find the position

and orientation of the robot by performing a least square to a

set of linearized equations. Unlike the many other methods,

we do not seek the maximum overlap of the points in the

map but we are looking for the similarities between each

new scan and the map. After each matching, map is updated

with the help of the updated position and orientation. The

gallery of lines which helps constructing the map in

background is also updated in each scan. At the end, the

length of each line in the gallery is exactly known so these

lines can provide a very accurate linear ground truth besides

the raster map which is constructed from the points. All this

is done just by processing the distance data provided by a

LRF.

Section II of this paper introduces our experimental

platform which is a tracked mobile rescue robot named

Silver. The environment in which the robot is supposed to

move and the flow of data in the algorithm are also

introduced later in the same section. Section III describes the

details of the algorithm. An experiment in real environment

is discussed in section IV and the paper in concluded in

Section V.

II. PROJECT AT A GLANCE

In parts A and B of this section, platform, environment

and sensors are described. Then the logic and overall

procedure of line matching localization and mapping with

least square is presented in part C.

A. Experimental Platform

The experimental platform is a tracked mobile rescue

robot named “Silver”.

Silver is a tracked mobile robot which was designed in

2004 by Resquake Robotics team at K.N. Toosi University

of Technology. This robot was first introduced in

RoboCup2005 -Osaka, Japan- in rescue robot league and

was awarded for “2nd Place Best Design” of rescue robot

[5]. Both the hardware and software of the robot was

improved for RoboCup2006, 2007 and 2008 world

Line Matching Localization and Map Building with Least Square

E. Mihankhah
†
,

H.D. Taghirad

‡
, A. Kalantari, E. Aboosaeedan, H. Semsarilar, Department of

Mechanical Engineering, K.N. Toosi University of Technology, Tehran

A

2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Suntec Convention and Exhibition Center
Singapore, July 14-17, 2009

978-1-4244-2853-3/09/$25.00 ©2009 IEEE 1734

championship competitions. The robot won the innovation

award for “Best operator interface” in RoboCup2006 -

Bremen, Germany. Resquake won the “3rd Place” in

RoboCup2008 -Suzhou, China- in rescue robot league main

competitions and “2nd Place” in “Best in Class Mobility”

challenge. This robot has four independently actuated arms

that help it climb obstacles up to 40cm high. Tracks and

arms are driven by DC motors. Position of arms and speed

of tracks are measured. An illustrative description of its

main characteristics has been presented in [6] and [7].

Adding autonomous behavior to Silver and reducing the

effect of human operator is our current research approach.

Fast autonomous map generation and localization is one of

the most important features that can enable Silver to get

necessary information from the environment for making

further intelligent decisions. Silver is shown in Fig.1.

B. Sensors and Environment

A Hokuyo URG LX04 is our LRF. We only process the

distance data of this sensor in our calculations. The sensor

can measure distances up to 4 meters with 1mm resolution

and 5mm tolerance. It provides 770 distance data from 270

degrees sweep angle with the sampling rate of 10Hz.

The environment can be any area which contains more

linear objects and straight walls than rounded and non-

straight objects. Most common indoor environments have

such polygonal structure. A good model of such

environment is the yellow arena of Rescue Robot League of

international RoboCup competitions. Many pictures and

information about such environment could be found at

http://www.isd.mel.nist.gov/projects/USAR/2009/index.htm.

This environment is not completely flat and some roll-

pitch ramps cover some parts of the ground. Silver in such

environment is shown in Fig. 1.

A stabilizing mechanism keeps the LRF horizontal at all

times. To sense the amount of roll and pitch elements of

orientation, a 3DOF gyro (Microstrain 3DM-GX1

orientation sensor) is used. This mechanism is shown in Fig.

2.

C. Introducing the Algorithm

The general idea is to find linear objects in each new scan

and find the best local transformation vector [dX dY dΘ]

that makes this scan more similar to the map by applying a

least square to a group of linearized equations. Each

equation in group represents our attempt to fit a point taken

from one of the “new lines extracted from LRF input

distance data” into the equation that describes a line taken

from the “gallery of lines that construct the map”. General

transformation vector [X Y Θ] which keeps the position and

orientation of the robot is updated with the resulting local

transformation vector. Finally the “new lines extracted from

the new scan” and the pair lines in line gallery are merged to

update (by making corrections and adding extensions) the

line gallery.

It could be learnt from Fig. 3 that the whole procedure is

dividable to 5 main sub procedures. These sub procedure are

described in Section III of this paper.

It should be noted that our high level programming

language is Microsoft C#.Net 2008 and the operating system

is Microsoft Windows XP running on a Sony VIO UX 380

laptop.

III. ALGORITHM DETAILS

A. Scanning and Preparing the Input Data

The output of LRF is converted to an array of integer

numbers that represent the distances sensed by the LRF in

millimeters. Errors and over range measurements should be

removed from this array (sensor marks these with values less

than 20). Also there are some noisy distance data smaller

than the boundaries of robot (less than 250mm) which are

needed to be filtered out. All removed points are marked

zero in the array. Zero values are ignored in calculations.

The final array is stored in NewPointCloud arraylist.

Fig. 2. LASER Range finder is mounted on a stabilizing mechanism.

This mechanism keeps the LASER range finder horizontal on roll-pitch

ramps. A 3DOF gyro is used to sense roll and pitch values.

Fig. 1. Silver navigating in a sample indoor environment. There are

more linear objects and straight walls than rounded and non-straight

object in the environment. The ground is not completely flat. Some

roll-pitch ramps cover some parts of the ground. (Thanks to

Mr.Raymond Sheh for taking this photo in International RoboCup2008,

Suzhou, China).

1735

B. Segmentation and Line Extraction

To determine the segments in each scan, two consequent

distance data are compared. When this difference is greater

than a threshold, a new segment is started. The segments that

contain small number of points are ignored. The rest are

stored in NewSegments arraylist.

Then segments are broken to sub-segments so that a line

can be fitted to the points in that sub-segment. This method

is described in [8].

Finally the line that best fits the points in the sub-segment

is found from (1) to (3).

∑
∑

−−−

−−−
=

i ii

i ii

xxyy

yyxx
tg

])()[(

))((2
)2(

22
φ , (1)

φφ sincos yxr += , (2)

Where

∑=
i i
x

n
x

1
and ∑=

i i
y

n
y

1
, (3)

 In these equations, r is the normal distance of the line

from the origin and ф is angle of the normal. These line

fitting formulas are taken from [9].

After finding the line, the start and end point of the

segment are projected on this line and these two projected

points are stored as the terminal points of this line segment

in NewLines arraylist

C. Preparing the List of Lines to be compared

All lines that construct the map during the scans are stored

in an arraylist named LineGallery. The general position

vector [X Y Θ] stores the position and orientation of the

robot. In an arbitrary position, it is possible to determine

which of the lines in LineGallery should be visible to the

robot. These lines are copied to ReferenceLines arraylist.

Then the new lines that are extracted from the new scan

should be translated and rotated to the general position

vector (when the new scan is taken, all values are in origin),

so that the set of lines taken from the gallery in the arbitrary

general position would be similar and comparable to the new

lines. The terminal points of new lines are transformed to

arbitrary [X Y Θ] general position in (4)

















•















 −

=








11100

cossin

sincos

1

1 e

o

b

o

e

o

b

o

e

t

e

t

b

t

b

t YY

XX

Y

X

YX

YX
θθ

θθ
, (4)

Where notation b stands for beginning point of the line

segment, e stands for the end point of the line segment, t

stands for values in translated coordinate and o stands for

values in origin. Please note that naming “beginning point”

and “ending point” to the terminal points of line segment is

just to separate them in calculations and one could call any

of them the “beginning point” or “ending point”.

As it was mentioned in part B, only terminal points of a

line segment are stored in the arraylists. This means after

preparing the list of lines to be compared, two arraylists

containing terminal points of line segments are generated.

One contains terminal points of some line segments from

Fig. 3. The algorithm that matches “lines extracted from the new

scan” with lines in the “line gallery that construct the map” by

applying least square to a group of linearized equations. This

algorithm then updates the position and orientation of the robot

while adding information to the map.

1736

LineGallery (ReferenceLines) and the other contains

terminal points of the line segments extracted from the new

scan and transformed to the general position of the robot

(NewTransformedLines). Two comparable sets of line

segments are ready to be compared in order to find the local

translation and rotation of robot during the last new scan.

Next step is to find the pair lines and then match the lines.

D. Pairing and Matching

In simulation, lines are exactly known objects and by

matching two scans, all linear objects are ideally

overlapping. But when working with real environment it is

very common that two consequent scans are NOT exactly

similar in features. For example it is very much possible that

some newer lines are found in newer scan and/or some lines

are not anymore found in the newer scan. Also in majority of

cases the lines extracted from two consequent scans do not

have exactly equal lengths. Also due to the measurement

noise, the lines extracted from the same object in two

different scans do not have exactly the same equations. Also

it is possible that one line is extracted from an object in one

scan, since more than one line could be extracted from the

same object in the next scan. The two sets of lines generated

in part C of section III have the above conditions. That

means some of the line segments in NewTransformedLines

are candidates to have been extracted from the same objects

that some lines in ReferenceLines do. So, the pairing is not

necessarily one by one pairing but we mean finding such

candidates by using the word “pairing”. Pair lines have the

following characters:

1- When the terminal points of a line segment from

NewTransformedLines are projected on a line segment in

ReferenceLines, at least one of the projected points would

lie between the two terminal points of the reference line.

2- The difference between the slopes of these lines is less

than a threshold.

3- The distances of terminal points of the line segment in

NewTransformedLines are less than a threshold from the

candidate line in ReferenceLines.

If all 3 pairing conditions are met for two line segments,

then a pair is chosen from NewTransformedLines and

ReferenceLines.

Each line in NewTransformedLines is compared to all

lines in ReferenceLines and pairs are found this way. This

should be noted that it is possible for two or more lines in

NewTransformedLines to be pair with one line in

ReferenceLines and it is also possible that one line in

NewTransformedLines would be pair with more than one

line in ReferenceLines. That is because breaking a segment

into lines (part B of section III) is based on a threshold and

due to the existing measurement noise, multiple sets of lines

can be extracted from the same object in two different scans

when the line extraction algorithm works near the threshold.

All pairs are accepted and used in calculations.

As it is said before, it is impossible to find a vector [dX

dY dΘ] in real environment capable of fitting all pairs

together after applying the transformation. All it could be

done is to find a vector of translation and rotation that after

applying to new lines, all pairs, in general, look best alike.

Assume that there are n pairs found. We focus on each pair

to see how a desired [dX dY dΘ] vector could be found. The

equation of the Reference line in ith pair could be written as

in (5).

0=++ iii cybxa , (5)

Terminal points of this line segment are known, so

)(,, ir

e

ir

bi
YYa −= , (6)

)(
,, ir

b

ir

ei XXb −= , (7)

))()(,,,,,, ir

b

ir

e

ir

b

ir

e

ir

b

ir

bi YYXXXYc −+−= , (8)

Where notation r shows the parameter is taken from

ReferenceLines, notation b denotes begin point and e

denotes the end point.

A good [dX dY dΘ] vector, guarantees the begin and end

points of the new line segment in this pair to satisfy

equations (9) to (11):

0,, =+′+′
i

in

bi

in

bi
cYbXa , (9)

0,, =+′+′
i

in

ei

in

ei cYbXa , (10)

















•















 −

=








′′

′′

11100

1

1

1

1 ,,

,,

,,

,,

in

e

in

b

in

e

in

b

in

e

in

e

in

b

in

b YY

XX

dYd

dXd

YX

YX
θ

θ
, (11)

Where notation n shows the parameter is taken from

TransformedNewLines. Please note that because this

calculation finds the translation and rotation during the very

short amount of time (100 milliseconds), cos(dΘ) is

linearized to 1 and sin(dΘ) to dΘ. The values with prime

sign are the transformed new terminal points that are also

transformed by the local transformation matrix.

The equations (5) to (11) are supposed to persist for all

pairs. That means for n pairs, 2n linear equations similar to

(9) and (10) are generated where dX, dY and dΘ are the

unknown values in all equations. The problem to find [dX

dY dΘ] is reduced to a least square problem.

B

d

dY

dX

A =

















θ

, (12)

BA

d

dY

dX
+=

















θ

, (13)

Where A+ is the pseudo inverse of matrix A and

1737

































−

−

−

−

=

...

...

...

...

,,

,,

1,

1

1,

111

1,

1

1,

111

in

ei

in

eiii

in

bi

in

biii

n

e

n

e

n

b

n

b

YaXbba

YaXbba

YaXbba

YaXbba

A , (14)

And

































−−−

−−−

−−−

−−−

=

.

.

.

.

,,

,,

1,

1

1,

11

1,

1

1,

11

in

ei

in

eii

in

bi

in

bii

n

e

n

e

n

b

n

b

YbXac

YbXac

YbXac

YbXac

B , (15)

The resulting [dX dY dΘ] is the best vector which can

describe the amount of translation and rotation of the robot

during the last scan time (100 milliseconds) so that the

profile of the new scan would be very much similar to the

map. Now that the best transformation matrix is known, the

mean square value in (16) can give a measure of how much

this transformation is not satisfying the pair lines to overlap.

Overlap Mismatch ∑












+′+′

++′+′
=

i

i

in

ei

in

ei

i

in

bi

in

bi

cYbXa

cYbXa

n 2,,

2,,

)(

)(1 , (16)

Where X′ and Y′ values are calculated from (11) with

known [dX dY dΘ].

E. Updating

First thing to be updated is the position of robot. So, [dX

dY dΘ] is added to [X Y Θ]. Please note that dX and dY

values should go to a coordinate system which is rotated Θ

radians prior to be added to X and Y. Then dΘ is directly

added to Θ. After the update, [X Y Θ] is the current general

position of the robot.

Having the updated general position vector, the new lines

can be transformed and merged to the lines in the line

gallery. In order to do this, line pairs are again used. When

updating the gallery, three important steps are followed:

1 – The best line that fits the terminal points of both lines

(4 points) in a pair is found.

2 – Terminal points of both lines in the pair are projected

on the line created in step 1 and the two furthest points are

considered as the terminal points of the new line.

3 – The created line replaces the old line in the gallery and

an integer value is incremented for this line that keep the

number of times this line has been reviewed in the gallery.

This integer number is used in step one to give more weight

to the terminal points of line taken from the gallery when

updating the direction of this line. New lines that no matches

of them could have been found in the line gallery are added

to the gallery and weighted one.

After updating the gallery, some internal merging is also

needed. As it was mentioned in part D of section III, more

than one line may be the pair for another line either in

NewTransformedLines or ReferenceLines. This means that

after performing the update to the gallery there will be some

lines in the gallery that are so similar that can be merged to

one longer line. In order to do that, an internal pairing and

merging similar to what it was done in part D of section 3 is

performed to the gallery.

Finally, to make sure that the newly added lines to the

gallery are not mistakenly generated (for example because of

the measurement noise or because of the delay in stabilizing

mechanism to make the LRF horizontal after falling from a

roll-pitch ramp), the gallery is cleaned up after each scan and

the lines that are not reviewed at all during the certain

number of scans are assumed to be noise and though

removed from the gallery.

 The last step is to draw the NewPointClaud on the map

by applying the updated transformation matrix (17):















 −

100

cossin

sincos

Y

X

θθ

θθ

, (17)

IV. EXPERIMENTAL RESULTS

To test if the algorithm is robust enough, an arena with the

similar structure to what it was explained in part B of section

II was prepared. Some Roll-Pitch ramps were also added to

the arena. An autonomous fuzzy obstacle avoidance

algorithm was running the robot in the small arena.

The reason why the small area is chosen is to visually

check the errors and drifts which cannot be seen in the tests

in large areas or long hallways, also it is needed that the

algorithm checks if the robot can remember the lines it has

seen before and use them hundreds of scans later again to

Fig. 4. Final map of a closed-loop arena. The black path is the

movement path of the robot. The arena is not flat and some roll-pitch

ramps are inside the arena. Walls are made of wood and the robot
navigates in a 4-by-5 meters arena.

1738

complete, close and correct the map.

In Fig.4 the final map of a closed-loop arena is shown.

The black path is the path in which the robot has moved. The

top linear speed of robot was 15cm/s and the max rotational

speed was 0.75rad/s. The algorithm runs at real time and no

more than 20% of CPU is busy with the whole navigation

and mapping algorithm. If the logged data is processed later

(without the 100ms delay of sensor, no navigation process

and no drawings), it is possible to process more than 120

scans per second which is a huge number in comparison

with the other matching techniques. Another important result

of this mapping algorithm is the gallery of lines that are used

to process the map. This gallery itself is a precious output,

because the lengths of gallery lines are exactly known. That

means this algorithm can provide the ground truth made of

lines, besides a raster map made of points (See Fig.5).

The video of this map being constructed could be found at

http://saba.kntu.ac.ir/resquake/Closed-Loop_Arena.wmv

The result of some other tests in a U-shaped arena and in a

large RoboCup yellow arena can be seen in Fig.6. The video

of these maps being constructed could be found at:

http://saba.kntu.ac.ir/resquake/U-Shaped_Arena.wmv

http://saba.kntu.ac.ir/resquake/RoboCupArena.wmv

V. CONCLUSION

In this paper we introduced a very fast and robust line

matching localization and mapping algorithm based on least

square. One of the advantages of using lines instead of

points is reducing the amount of calculations. When for

instance, 500 points in a scan are compared with the other

500 points in another scan, a 500*500 point scope is to be

searched in order to find matching points and this search

should be done iteratively to find the acceptable translation

and rotation between the two consequent scans. But by

extracting lines from these points and comparing the lines,

the calculation is done over something around 10 pairs of

lines (a couple of line more or less based on the

environment) and problem is finally reduced to applying a

least square over a group of 20 linear equations only once

(no iterations) . It is also important to mention that extracting

lines from points is a noise reducing step itself. So, the

sensor noise is also filtered with the least possible amount of

computational effort. In point to point matching algorithms

searching for most number of overlapping points is the goal,

so the measurement noise is very offensive in these methods,

but we find the similarity between the lines extracted from a

new scan and the lines that has made the map until now. So,

this approach reduces the effect of noise in the calculations.

Drifts are very common in consequent scan matching

algorithms. Keeping lines in the memory and searching

among them is very easy because of the very little amount of

memory needed to be allocated for keeping 4 values to

memorize the terminal points of each line segment. That

means it is possible to match new scan with the map and not

with the previous scan. This helps the final map to be drift-

free. Also this method gives another output which is the

gallery of lines with exactly known lengths. This can

provide an exact ground truth based on lines, besides the

raster map made of points.

REFERENCES

[1] J. Nieto, T. Bailey, and E. Nebot, “Recursive scan-matching slam,” in

Proc. Robotics and Autonomous Systems, Jan 2007, vol. 55, no. 1, pp.

39–49.

[2] Y. Chen and G. Medioni, “Object modeling by registration of multiple

range images,” in Proc. IEEE International Conference on Robotics

and Automation, Sacramento, CA, USA, 1991, pp. 2724–2729 vol.3.

[3] T. Yaqub, M.J. Tordon, and J. Katupitiya, “Line Segment Based Scan

Matching for Concurrent Mapping and Localization of a Mobile

Robot,” in Proc. 9th International Conference on Control,

Automation, Robotics and Vision, Singapore, Dec 2006, pp.1 – 6.

[4] J. S. Gutmann, T. Weigel, and B. Nebel, “accurate and robust self

localization in polygonal environments,” in Proc. IEEE/RSJ

International Conference on Intelligent Robots and Systems, Oct.

1999, Kyongju, Korea.

[5] E. Mihankhah, A. Kalantari, E. Aboosaeedan, H.D. Taghirad, and

S.Ali.A. Moosavian , “Autonomous Staircase Detection and Stair

Climbing for a Tracked Mobile Robot using Fuzzy Controller,” in

Proc. 2008 IEEE International Conference on Robotics and

Biometrics, Feb 2009, Bangkok, Thailand, pp. 1980-1985.

[6] S. Ali A. Moosavian, H. Semsarilar, and A. Kalantari, “Design and

Manufacturing of a Mobile Rescue Robot,” in Proc. IEEE/RSJ

International Conference on Intelligent Robots and Systems(IROS),

Beijing, China, Oct. 2006, pp. 3982-3987.

[7] S. Ali.A. Moosavian, and A. Kalantari, ”Experimental Slip Estimation

for Exact Kinematics Modeling and Control of a Tracked Mobile

Robot,” in Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Sep. 2008, Nice, France.

[8] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A

Comparison of Line Extraction Algorithms using 2D Laser

Rangefinder for Indoor Mobile Robotics”, in Proc. Conference on

Intelligent Robots and Systems, Aug 2005, Edmonton, Canada, pp.

1929- 1934

[9] W. Burgard and M. Hebert, “World modeling”, Springer Handbook of

robotics, Part E.36, p-p 853-869.

Fig. 6. a) The map of a 4 by 5 meters U-shaped arena with a rounded

dustbin in the middle. b) Line gallery of U-shaped arena (10 lines).

c) The map of RoboCup yellow arena test (Iran Open 2009

Competitions). This arena is 11 by 13 meters wide and covered with

roll-pitch ramps. d) Line gallery of RoboCup yellow arena test (32

lines).

Fig. 5. Lines in Line gallery. 17 lines (the numbers are marked at the

ending point of each line) have constructed the map. The sizes of these

lines are exactly known. This can provide a precise linear ground truth.

a b c d

1739

