
  

  

Abstract—The standard state-dependent Riccati equation 
(SDRE) filter, which is set up by direct SDC parameterization, 
demands complete knowledge of the system model, and the 
disturbance inputs characteristics. However, this inherent 
dependency can severely degrade its performance in practical 
applications. In this paper, based on the H∞ norm minimization 
criterion, a robust SDRE filter is proposed to effectively 
estimate the states of nonlinear uncertain systems exposed to 
unknown disturbance inputs. Considering a Lipschitz condition 
on the chosen SDC form, we guarantee fulfillment of a 
modified H∞ performance index by the proposed filter. The 
effectiveness of the robust SDRE filter is demonstrated through 
numerical simulations where it brilliantly outperforms the 
usual SDRE filters in presence of model uncertainties as well as 
process and measurement noises. 

I. INTRODUCTION 
VER the past decade, state-dependent Riccati equation 
(SDRE) filtering techniques have been extensively 

used for nonlinear state/parameter estimation within 
aerospace and power electronics applications [1]-[4]. Unlike 
the broadly acceptable extended Kalman filter (EKF) [5], the 
SDRE filter does not involve the Jacobian evaluations, but it 
entails direct parameterization [2], [6]. Briefly, it fully 
captures the nonlinearities of the system and brings the 
nonlinear system into a nonunique linear structure having 
state-dependent coefficients (SDCs). This nonuniqueness of 
the SDC form provides design flexibility which can be 
exploited to overcome serious difficulties such as 
singularities and loss of observability in traditional filtering 
methods [6]. 

Generally, there are two commonly used approaches for 
the SDRE filtering technique. The first approach, proposed 
originally by Mracek et al. in [6], is essentially constructed 
by considering the dual problem of the well-known SDRE 
nonlinear control law. The resulting filter has the same 
structure as the steady-state linear Kalman filter and the 
Kalman gain is obtained by solving a state dependent 
algebraic Riccati equation (SDARE) [7]. However, as 
reported in [8], this solution may be computationally 
expensive for large scale systems and depends significantly 
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on the observability property of the system.  
The other approach is recently suggested in the literature 

[7]-[9], and has the same structure as the linear Kalman 
filter. Indeed, it removes the infinite time horizon 
assumption and requires the integration of a state-dependent 
differential Riccati equation (SDDRE) [7]. This alternative 
approach addresses the issues of high computational load 
and the restrictive observability requirement in the algebraic 
form of the estimator.  

Although the practical usefulness of the SDRE filter has 
been demonstrated through impressive simulation results, 
rigorous mathematical investigations of the filter have been 
presented very recently [2], [8]-[11]. Assuming certain 
observability and Lipschitz conditions on the SDC 
factorization and considering an incremental splitting of the 
state-dependent matrices, the local convergence of the 
continuous-time algebraic SDRE observer is proven in [10]. 
It is also shown in [2] how this observer converges 
asymptotically to the first-order minimum variance estimate 
given by the EKF. The analysis is based on stable manifold 
theory and Hamilton-Jacobi-Bellman (HJB) equations. 
Moreover, the analogous discrete-time difference observer is 
treated in [8] and [9], where two distinct sufficient 
conditions sets for its asymptotic stability are provided. The 
authors have also modified the differential SDRE observer 
in order to obtain an exponential observer with a noticeable 
superior performance and an increased region of attraction 
[11]. 

All the theoretical results cited above are confined to the 
nonlinear deterministic processes and assume that the 
system model is perfectly known. Applying the standard 
SDRE filters to general stochastic systems, that is inevitable 
in practical purposes, requires accurate specification of the 
noise statistics as well. However, model uncertainty and 
incomplete statistical information are often encountered in 
real applications which may potentially give rise to 
excessive estimation errors. To tackle such difficulties, we 
propose a robust SDRE filter with guaranteed H∞ 
performance criterion. The motivation of this paper stems 
from the fact that in contrast to successful derivation of an 
H∞ formulation concerning the SDRE control, accomplished 
by Cloutier et al. in [12], there is no documented similar 
attempt concerning its filtering counterpart. 
  Since the pioneer works of linear H∞ filtering designs 
(see, e.g., the celebrated papers [13], [14]), the nonlinear H∞ 
filtering problem has been studied by a number of authors 
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(see [15], [16] for a basic study, [17] for a general stochastic 
investigation, [18] for a fuzzy investigation, and [19]-[21] 
for approximate solutions). In this paper, we consider a 
general continuous-time nonlinear uncertain model as 
represented by Nguang and Fu, [15], to develop a robust H∞ 
SDRE-based filter for nonlinear uncertain systems exposed 
to additive disturbance inputs. The proposed filter involves 
neither solving the Hamilton-Jacobi inequalities (HJIs) in 
[15]-[17], nor constructing exact Takagi-Sugeno fuzzy 
models in [18], which are both time-consuming hard tasks 
except for some special cases. In addition, it obviates the 
need for linearization procedure of the extended H∞ 
techniques [19], [20] and the Riccati-based filtering design 
[21], and exhibits robustness against not only unknown 
disturbances but also model uncertainties.   

Precisely speaking, we intend to robustify the standard 
differential SDRE filter such that the estimation error 
dynamics is norm-bounded and achieves a prescribed level 
of disturbance attenuation for all admissible uncertainties. 
The key assumption made is that the SDC parameterization 
is chosen so that the state-dependent matrices are Lipschitz, 
at least locally. Note that our result is substantially different 
from the well-established methods associated with the 
Lipschitz nonlinear systems, which decompose the entire 
model into a linear unforced part and a Lipschitz nonlinear 
uncertain part (cf. [22] and the references quoted therein). In 
comparison with the algorithms in [15]-[18], another 
advantage of the proposed method is its simplicity, as no 
complicated computation procedures are required to 
implement the estimator. It can be implemented 
systematically and inherits the elaborated capabilities of the 
SDRE-based filters [23], as well. 

The rest of the paper is organized as follows. Section II 
gives the necessary backgrounds and formulates the 
uncertain SDC description along with the robust SDRE 
filter. In Section III, by employing an appropriate Lyapunov 
function we derive the performance index for the proposed 
filter, which can be regarded as a modification of the 
conventional H∞ performance criterion (cf. [15], [16]). 
Section IV provides a simulation example to illustrate some 
definite superiority of the proposed filter over the 
corresponding usual SDRE-based filters. Finally, some 
conclusions are drawn in Section V.  

I. ROBUST SDRE FILTER AND PRELIMINARIES 
Consider a smooth nonlinear uncertain system described 

by continuous-time equations of the following form 
(parameter t  is omitted in trivial cases for notational 
convenience) 

 0( ) ( ) ( ) ( ) ( )x t f x f x G t w t= + ∆ +  (2.1) 

 0( ) ( ) ( ) ( ) ( )y t h x h x D t v t= + ∆ +  (2.2) 

where ( ) nx t ∈  is the state, ( ) my t ∈  is the measured 
output, and 0 ( ) pw t ∈  and 0 ( ) qv t ∈ , which stand for 
exogenous disturbance inputs, are process and measurement 

noises with unknown statistical properties. For the sake of 
simplicity, we are restricted to unforced noise-driven 
systems, a slightly more general representation than that of 
[15]. Some remarks on the forced case affine in the control 
are given in Section III. The nonlinear system dynamic 

( )f x  and the observation model ( )h x  are assumed to be 
known 1C -functions. ( )G t  and ( )D t  are time varying 
known matrices of size n p×  and m q× , respectively. Also, 

( )f x∆  and ( )h x∆  represent the system model uncertainties. 
 

Assumption 2.1: Let the model uncertainties satisfy 

 1 1

2 2

( ) ( )( )
( )

( ) ( ) ( )
E t tf x

N x
h x E t t

∆∆ ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥∆ ∆⎣ ⎦ ⎣ ⎦

 (2.3) 

in which 1( )N x C∈ , 1( )E t  and 2 ( )E t  are known matrix 
functions with appropriate dimensions that characterize the 
structure of the uncertainties. Also, 1( )t∆  and 2 ( )t∆  are 
norm-bounded unknown matrices. 

 
By performing direct parameterization, the nonlinear 

dynamics (2.1) and (2.2) accompanied by Assumption 2.1 
can be put into the following uncertain state-dependent 
coefficient (SDC) form  

 1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( )x t A x x E t t N x G t w t= + ∆ +  (2.4) 

 2 2 0( ) ( ) ( ) ( ) ( ) ( ) ( )y t C x x E t t N x D t v t= + ∆ +  (2.5) 

where ( ) ( )f x A x x=  and ( ) ( )h x C x x= . Note that the SDC 
parameterization is unique only if x  is scalar [12] (also see 
the remark given below). Besides, the smoothness of the 
vector functions ( )f x  and ( )h x  with (0) (0) 0f h= =  
makes it feasible [6], [12] (see also [23] for effective 
handling of situations which prevent a straightforward 
parameterization).  

 
Remark 2.1: If 1( )A x  and 2 ( )A x  are two distinct 

factorization of ( )f x , then 

 ( )3 1 2( ) ( ) ( ) ( ) ( )A x M x A x I M x A x= + −  

is also a parameterization of ( )f x  for each matrix-valued 

function ( ) n nM x ×∈ . This is an exclusive characteristic of 
all SDRE-based design techniques, which has been 
successfully used not only to avoid singularity or loss of 
observability, but also to enhance performance (cf. [2], [6], 
[9]). Moreover, it may be used to satisfy the Lipschitz 
condition in our filtering design (see Remark 3.2). 

Let us define the signal to be estimated as follows 

 ( ( )) ( ) ( )z x t L t x t  (2.6) 

where ( ) sz x ∈  can be viewed as the filter output, and 
( )L t  is a known s n×  matrix bounded via 

ThB07.5

4439



  

 ( ) ( )Tl I L t L t lI≤ ≤  (2.7) 

for every 0t ≥  with some positive real numbers l , l .  
We seek to propose a dynamic filter for the uncertain 

SDC model, given by (2.4) and (2.5), which robustly 
estimates the quantity ( )z x  from the observed data ( )y t  
with a guaranteed H∞ performance criterion. In other words, 
it is desired to ensure a bounded energy gain from the input 
noises ( 0 ( )w t , 0 ( )v t ) to the estimation error in terms of the 
H∞ norm. The proposed filter has an SDRE-like structure 
and is prescribed to be 

 
2

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )T
x

x A x x K t y t C x x

P t N x N xµ −

= + −⎡ ⎤⎣ ⎦
+ ∇

 (2.8) 

In the above, 0µ >  is a free design parameter and x∇  
denotes the gradient with respect to x . ˆ( )x t  represents the 
estimated state vector and the filter gain matrix, 

( ) n mK t R ×∈ , is defined as 

 1ˆ( ) ( ) ( )TK t P t C x R−=  (2.9) 

i.e., in the same way as for the usual SDRE filter. The 
positive definite matrix ( )P t  is updated through the 
following state-dependent differential Riccati equation 
(SDDRE)  

 1 2

2

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

T T

T T
x x

T
x x

P t A x P t P t A x t Q t

P t C x R C x N x N x

z x z x P t

µ

λ

− −

−

= + + Γ Γ

⎡− − ∇ ∇⎣
⎤− ∇ ∇ ⎦

(2.10) 

with  
 [ ]1( ) ( ) ( ) ,t E t G tµΓ =  (2.11) 

positive definite matrix n nQ ×∈ , symmetric positive 
definite matrix m mR ×∈ , and a given positive real value 

0λ >  that indirectly indicates the level of disturbance 
attenuation in our robust filter design. This verity as well as 
the exact role of the free parameter µ  will be clarified in the 
next section.  
 

Remark 2.2: It can be easily seen that with ,λ µ → ∞ , the 
proposed filter reverts to the standard differential SDRE 
filter [7], [11]. Meanwhile, setting µ = ∞  together with 
replacing ˆ( )A x  and ˆ( )C x  by the Jacobian of ( )f x  and 

( )h x , respectively, in (2.9) and (2.10) render the structure of 
the extended H∞ filter [19], [20].  

Before analyzing the performance of the robust SDRE 
filter, we recall two preparatory definitions within the H∞ 
filtering theory. 

Definition 2.1: (Extended L2-space) The set 2[0, ]L T  
consists of all Lebesque measurable functions 

( ) rg t +∈ →  such that  

 2

0

( )
T

g t dt < ∞∫  (2.12) 

for every 0T ≥  with ( )g t  as the Euclidian norm of the 
vector ( )g t  (see, e.g., [16], [22]). 

Definition 2.2: (Robust H∞ SDRE Filtering) Given any 
real scalar 0γ > , the dynamic SDRE filter (2.8)-(2.10) 
associated with the dynamics (2.4)-(2.6) is said to satisfy the 
H∞ performance criterion if  

 ( )2 2 22
0 0

0 0

ˆ( ) ( ) ( ) ( )
T T

W V
z t z t dt w t v t dtγ− ≤ +∫ ∫  (2.13) 

holds for all 0T ≥ , all [ ]0 0 2( ), ( ) 0,v t w t L T∈ , and all 

admissible uncertainties. Where, 0 ( )
W

w t  and 0 ( )
V

v t are 
taken to be Euclidian norms scaled by some positive 
matrices W  and V , respectively. 
 

Remark 2.3: Inequality (2.13) implies that the L2-gain 
from the exogenous inputs ( 0 ( )w t , 0 ( )v t ) to ˆ( ) ( )z t z t− , 
called the generalized estimation error, is less than or equal 
to some minimum value 2γ . It only necessitates that the 
disturbances have finite energy which is a familiar mild 
assumption.  

Remark 2.4: Definition 2.2 is derived from what was 
declared by Nguang and Fu, [15]. The difference is that we 
consider two distinct noise sources with scaled Euclidian 
norms. These scalings, which are similar to those introduced 
in [20], may be interpreted as simple weights because H∞ 
filtering does not rely on the availability of statistical 
information. 

II. H∞ PERFORMANCE ANALYSIS 
In this section, we analyze the estimation error dynamics 

to derive an interesting feature of the proposed robust filter, 
which will be properly called modified H∞ performance 
index. This criterion reveals the ability of the filter to 
minimize the effects of disturbances and uncertainties on the 
estimation error. 

In order to facilitate our analysis, we adopt the following 
notation 

 
[ ]

1
1 0

2 2 0

( ) [ ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( ) ( )]

T

T

w t t N x w t

v t I I E t t N x D t v t

µ −= ∆

= ∆
 (3.1) 

in which the uncertainties are treated as some fictitious 
noises. The estimation error is defined by 

 ˆ( ) ( ) ( )e t x t x t= −  (3.2) 

Subtracting (2.8) from (2.4) and considering (3.1) and 
(2.11), the error dynamics is expressed as 

 2

ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )T

x

e t A x x t w t A x x
K t y t C x x P t N x N xµ −

= + Γ −

− − − ∇⎡ ⎤⎣ ⎦
 (3.3) 
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Adding and subtracting ˆ( )A x x  to the whole equation, and 
adding and subtracting ˆ( )C x x  into the bracket lead to 

 

( )
( )

2

ˆ ˆ ˆ( ) ( )( ) ( ) ( )

ˆ ˆ ˆ( ) ( )( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( )T
x

e t A x x x A x A x x

K t C x x x C x C x x v t

t w t P t N x N xµ −

= − + −

⎡ ⎤− − + − +⎣ ⎦
+ Γ − ∇

 (3.4) 

rearranging the terms together with (3.2), we have 

 
2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )T
x

e t A x K t C x e t x x K t x x

K t v t t w t P t N x N x

α β

µ −

= − + −⎡ ⎤⎣ ⎦
− + Γ − ∇

(3.5) 

where the nonlinear functions ˆ( , )x xα  and ˆ( , )x xβ  are 
given by 
 ˆ ˆ( , ) ( ) ( )x x A x A x xα = −⎡ ⎤⎣ ⎦  (3.6) 

 ˆ ˆ( , ) ( ) ( )x x C x C x xβ = −⎡ ⎤⎣ ⎦  (3.7) 

The requirements for Theorem 3.1 given below, which 
embodies the main result of this paper, are summarized by 
the following assumptions. 

Assumption 3.1: The state-dependent matrix ( )C x  and the 
state vector ( )x t  are bounded via 
 ( )C x c≤  (3.8) 

 ( )x t σ≤  (3.9) 
for all 0t ≥  and some positive real numbers , 0c σ > . 

Remark 3.1: Note that the assumption above is not severe. 
In particular, for many applications boundedness of the state 
variables, which often represent physical quantities, is 
natural. Besides, if ( )C x  fulfill (3.8) for every physical 
reasonable value of the state vector ( )x t , we may suppose 
without loss of generality that (3.8) holds. 

 
Assumption 3.2: The SDC parameterization is chosen 

such that ( )A x  and ( )C x  are at least locally Lipschitz, i.e., 
there exist constants , 0A Ck k >  such that 

 ˆ ˆ( ) ( ) AA x A x k x x− ≤ −  (3.10) 

 ˆ ˆ( ) ( ) CC x C x k x x− ≤ −  (3.11) 

hold for all ˆ, nx x ∈  with ˆ Ax x ε− ≤  and ˆ Cx x ε− ≤ , 
respectively. 

It should be mentioned that if the SDC form fulfills the 
Lipschitz condition globally in n , then all the results in 
this section will be valid globally. 

Remark 3.2: Inequalities (3.10)-(3.11) are the key 
conditions in our performance analysis. They are similar to 
Lipschitz conditions imposed in [10] and [11], and may be 
difficult to satisfy for some nonlinear dynamics. 
Nevertheless, additional degrees of freedom provided by 
nonuniqueness of the SDC parameterization can be 
exploited to realize Assumption 3.2. 

  

With these prerequisites we are able to state the following 
theorem, which demonstrates how a modified H∞ 
performance index is met by applying the proposed SDRE 
filter. 

Theorem 3.1: Consider the nonlinear uncertain system of 
(2.4)-(2.6) along with the robust SDRE filter described by 
(2.8)-(2.10) with some , 0λ µ >  and positive definite 
matrices Q  and R . Under assumptions 3.1-3.2, the 
generalized estimation error ˆ( ) ( )z t z t−  fulfills a modified 
type of the H∞ performance criterion introduced in 
Definition 2.2, provided that the SDDRE (2.10) has a 
positive definite solution for all 0t ≥  and λ  is chosen such 
that    
 2 2lλ κ− >  (3.12) 

where 

 CA ckk
p r

κ σ
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

 (3.13) 

and , 0r p >  denote the smallest eigenvalue of the positive 

definite matrices R  and ( )P t , respectively. Furthermore, 
the disturbance attenuation level, γ  in (2.13), is given by 

 2
2 2

l
l

γ
λ κ−=

−
 (3.14) 

with ,l l  in (2.7). 
 

Remarks: 
3.3) For the usual differential SDRE filter, the solution of 

the standard SDDRE is positive definite and also 
bounded above if the SDC form satisfies a certain 
uniform detectability condition as stated in [11] (cf. 
[8], [9] for similar relation to observability condition 
in the corresponding discrete-time filter). 
Unfortunately, this condition cannot be applied to 
get similar results for the H∞-filtering-like SDDRE 
(2.10). However, it is a well-known problem arising 
in H∞ control as well as H∞ filtering that the 
solutions of the related Riccati equations may lack 
being positive definite (cf. [21]). 

3.4) The existence of a positive definite solution ( )P ⋅  for 
the SDDRE (2.10) depends mainly on an appropriate 
choice of λ  and µ . To find suitable values for λ  
and µ  one can employ a binary search algorithm, 
which is widely used to solve H∞ control and H∞ 
filtering problems (see, e.g., [21], [22]) 

3.5) Clearly, the filter attenuation constant γ  is indirectly 
specified by the design parameter λ  while it is 
independent of µ . The extra design parameter µ  
has turned out to be very useful for ensuring 
solvability of (2.10) with the desired positive 
definiteness property. Further, it scales the 
uncertainty norm in our performance index (see the 
proof of Theorem 3.1 given below). 
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3.6) Inequality (3.12) roughly means that λ  is chosen 
sufficiently small. Surprisingly, this is in accordance 
with the purpose of performance improvement 
which calls for a small value of γ  in (3.14). Also 
see the following remark. 

3.7) It can be shown that, (3.12) is obviated while the 
estimation error still assures the same performance 
index with different attenuation constant 

( )2 2 2l lγ λ= , if inequalities (3.10)-(3.11) are 

replaced by more restricted Lipschitz conditions 
with two exponent, e.g., 2ˆ ˆ( ) ( ) AA x A x k x x− ≤ − . 
The proof of theorem can be modified easily for this 
case. 

To prove Theorem 3.1 we need the following preparation. 
Lemma 3.1: Let inequalities (3.8)-(3.11) are valid. Then 

for an estimation error e ε≤ , 1( ) ( )t P t −Π =  satisfies the 
inequality 

 2ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( , )Tx x t x x K t x x x xα β κ− Π − ≤ −⎡ ⎤⎣ ⎦  (3.15) 

where min( , )A Cε ε ε= . The positive real scalar κ , the 
matrix ( )K t , and the nonlinearities ,α β  are given by 
(3.13), (2.9), (3.6), and (3.7) respectively. 

Proof: Applying the triangle inequality, 1ˆ( )TK PC x R−=  
and P IΠ =  leads to 

 
1

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , )

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( ) ( , )

T T

T T T

x x x x x x K x x

x x x x x x C x R x x

α β

α β−

− Π − − Π ≤

− Π + −
 (3.16) 

In view of the Lipschitz conditions on the SDC form and 
inequality (3.9), the nonlinear functions ,α β  are bounded 
via 
 ˆ ˆ ˆ( , ) ( ) ( ) Ax x A x A x x k x xα σ= − ≤ −⎡ ⎤⎣ ⎦  (3.17) 

 ˆ ˆ ˆ( , ) ( ) ( ) Cx x C x C x x k x xβ σ= − ≤ −⎡ ⎤⎣ ⎦  (3.18) 

with ˆ Ax x ε− ≤  and ˆ Cx x ε− ≤ , respectively. Choosing 
min( , )A Cε ε ε=  and employing (3.17), (3.18), (3.8), 

1/ pΠ ≤ , and 1 1/R r− ≤  in (3.16), we obtain 

 

ˆ ˆ ˆ ˆ( ) ( , , ) ( ) ( , )

ˆ ˆ ˆ ˆ

T T

CA

x x x x u x x K x x

ckk
x x x x x x x x

p r

α β

σσ

− Π − − Π ≤

− − + − −
 (3.19) 

therefore (3.15) follows immediately with κ  given in 
(3.13).                                                                                    ■ 
 

Proof of Theorem 3.1: Choose a Lyapunov function as 
follows 
 ( ( )) ( ) ( ) ( )TV e t e t t e t= Π  (3.20) 

with 1( ) ( )t P t −Π = , which exists since ( )P t  in (2.10) is 
supposed to be positive definite. Taking time derivative of 

( )V e  we get 

 
( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T T

T

V e t e t t e t e t t e t
e t t e t

= Π + Π

+ Π
 (3.21) 

Inserting (3.5) and (2.10) in (3.21) along with considering 
( ) ( ) ( ) ( )t t P t tΠ = −Π Π , yield with a few rearrangement 

 

[ ]

( ){
( ) }

2

1

1 1

2

( ( )) 2

ˆ( )
ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T T

T T T T

T T T T

T T

T T
x x

TT T T
x x

V e t e L L e e K

w e e w v R C x e
e C x R v e C x R C x e
e Q e

e N x N x e

e N x N x N x N x e

λ α β

λ

µ

−

−

− −

−

⎡ ⎤= − + Π −⎣ ⎦
+ Γ Π + ΠΓ −

− −

− ΠΓ Γ Π

+ − ∇ ∇

− ∇ − ∇

(3.22) 

Let us set (1/ 2) (1/ 2)( )Ts Q w Q e−= − Γ Π  and ˆ( )v C x eη = + , 
then (3.22) can be rewritten as 

 

[ ]

( ){
( ) }

2

1 1 1

2

( ( )) 2

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T T

T T T T

T T
x x

TT T T
x x

V e t e L L e e K

w Q w s s v R v R

e N x N x e

e N x N x N x N x e

λ α β

η η

µ

−

− − −

−

⎡ ⎤= − + Π −⎣ ⎦
+ − + − +

− ∇ ∇

− ∇ − ∇

 (3.23) 

where (1/2) (1/2)TQ Q Q= , (1/2) (1/2)TR R R= . Completing the 
square in the accolade of (3.23) and utilizing the triangle 
inequality, we obtain by virtue of Lemma 3.1 

 
22

1 1 2

( ( )) 2

ˆ ˆ( ) ( )

T T

T T T

V e t e L L e e

w Q w v R v N x N x

λ κ

µ

−

− − −

⎡ ⎤≤ − +⎣ ⎦
+ + +

 (3.24) 

provided that the estimation errors satisfy e ε≤ , where 

min( , )A Cε ε ε= . The use of TlI L L l I− ≤ − ≤  leads to 

 

2

1 1 2

2( ( ))

ˆ ˆ( ) ( )

T T

T T T

lV e t e L L e
l

w Q w v R v N x N x

λ κ

µ

−

− − −

− ⎡ ⎤≤ − ⎣ ⎦

+ + +
 (3.25) 

By integrating both sides of (3.25) over the time interval 
[0, ]T , the H∞ performance index of the proposed filter is 
derived as 

 
(

)
1 1

2

2 2 22

0 0

2

( ) ( ) ( ) ( )

ˆ( ) (0) (0) (0)

T T

Q R

T

L t e t dt w t v t

N x e e dt
µ

γ − −

−

≤ +

+ + Π

∫ ∫
 (3.26) 

where 2 2( 2 )l lγ λ κ−= −  is a positive real number if 
2 2lλ κ− > , and indicates the filter attenuation constant. 
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Clearly, (3.26) can be viewed as a modification of (2.13) in 
the sense that it incorporates the effects of model 
uncertainties and initial estimation errors, whereas (2.13) 
does not. This concludes the proof of Theorem 3.1.             ■ 

 
It is noted that, γ  is not only an index of disturbance 

attenuation level, but also an important parameter describing 
filter’s estimation ability in the worst case. Decreasing γ  
will enhance the robustness of the filter. The SDRE-based 
H∞ control offered in [12], is based on a game theoretic 
approach and exhibits robustness only against disturbances. 
However, the beauty of (3.26) is that it derives from a 
familiar Lyapunov-based approach and guarantees 
robustness against the system model uncertainty as well as 
the process and measurement noises.  
 

We now endeavor to extend our results to a class of 
forced uncertain systems. Suppose the state equation (2.4) is 
controlled by the input ( ) lu t ∈  as follows 

1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t A x x B x u E t t N x G t w t= + + ∆ +  (3.27) 

where ( ) n lB x ×∈  is a known matrix function. Equation 
(3.27) together with (2.5) represents an uncertain form of the 
nonlinear control-affine system used in the SDRE control 
technique. We claim that, under certain conditions, the 
proposed filter will successfully work for the given forced 
system, as well. The following corollary evolves this fact.      

Corollary 3.1: Let the control input ( )u t  is norm-
bounded, i.e., ( )u t ρ≤  for some 0ρ > , and the control 
matrix ( )B x  is also locally Lipschitz, i.e., 

ˆ ˆ( ) ( ) BB x B x k x x− ≤ −  for 0Bk >  and ˆ Bx x ε− ≤ . Then 
under the conditions of Theorem 3.1, applying (2.8)-(2.10), 
with an additive term of ˆ( )B x u  in (2.8), to the given system 
(3.27) and (2.5) achieves the same performance index as 
(3.26). The only discrepancy is that in this case, 

( ) / /A B Ck k p ck rκ σ ρ σ= + +  and min( , , )A B Cε ε ε ε= . 
Proof: The proof is in analogy to that of Theorem 3.1, 

thus omitted.                                                                          ■ 

III. ILLUSTRATIVE EXAMPLE 
To exemplify the performance improvement of the 

proposed SDRE filter over the usual algebraic and 
differential SDRE filters, we consider a second-order 
nonlinear uncertain system expressed as 

 
2
1 1 2 1 2

0
1 2 2 2 2 1

12 ( 1 ( ))
( ) ( )

1sin (1 ( ))
x x x t x

x t w t
x x x x t x

δ
δ

⎡ ⎤− + − + ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥+ + + ⎣ ⎦⎣ ⎦

 (4.1) 

 1 0( ) ( )y t x v t= +  (4.2) 

where [ ]1 2
Tx x x=  and 1( )tδ , 2 ( )tδ  are unknown time 

varying functions satisfying the condition 

 1

2

( )
1

( )
t
t

δ
δ

⎡ ⎤
≤⎢ ⎥

⎣ ⎦
 (4.3) 

The disturbing noise signals 0 ( )w t  and 0 ( )v t  are drawn 
from two different distributions with unknown statistics. 
Precisely, 0 ( )w t  is a white Gaussian process noise while 

0 ( )v t  is a uniformly distributed measurement noise. 
Obviously, (4.1)-(4.2) takes the form of (2.1)-(2.2) and 

can be brought to the uncertain SDC form (2.4)-(2.5) by any 
suitable parameterization. Among several possible choices, 
let us set 

 1 2

1 2

2 1
( )

1 sin
x x

A x
x x

− −⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 (4.4) 

 [ ]( ) 1 0C x =  (4.5) 

In addition, in this example there is no measurement 
uncertainty ( 2 0∆ ≡ ) while the state equation uncertainty is 
described by 

 1
1

2

0 ( )
( ) , ( )

( ) 0
t

t N x x
t

δ
δ

⎡ ⎤
∆ = =⎢ ⎥

⎣ ⎦
 (4.6) 

with 1 2( )E t I= .  
Note that (4.5) is a trivial choice, and one can choose 

other forms such as 2 1( ) [1 ]C x x x= + . The reason of our 
choices, (4.4) and (4.5), is mainly related to the compliance 
of inequalities (3.8), (3.10), and (3.11). First, it follows from 
(4.4) that for all 2ˆ,x x ∈ , 

1 1 2 2

1 1 2 2

ˆ ˆ( ) 2( ) 0
ˆ( ) ( )

ˆ ˆ0 ( ) (sin sin )
x x x x

A x A x
x x x x

− − −⎡ ⎤
− =⎢ ⎥− + −⎣ ⎦

. (4.7) 

 
Since  

1 1 2 2ˆ ˆ ˆ( ) 2( ) 5x x x x x x− − − ≤ −  
and 

 1 1 2 2ˆ ˆ ˆ( ) (sin sin ) 2x x x x x x− + − ≤ − , 

 it can be deduced that (3.10) is globally valid with 
5Ak = . Second, the selected output matrix of (4.5) fulfils 

(3.8) with 1c =  and (3.11) with any positive real Lipschitz 
constant such as 0.001Ck = . Considering these facts 
together with the Lyapunov stability of (4.1), we conclude 
that assumptions 3.1 and 3.2 hold.  

 
We implemented the robust SDRE filter according to 

(2.8)-(2.10) to obtain the desired performance for the system 
(4.1)-(4.2). The differential equations are solved numerically 
by the Runge-Kutta method, choosing the initial conditions 

[ ](0) 0.5 0.5 Tx = −  for the system to be observed, 

[ ]ˆ(0) 0.5 0.5 Tx = −  for the filter and 2(0) 10P I=  for the 
SDDRE (2.10). The design details are summarized below. 
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The filter output, ( )z x  in (2.6), is assumed to be ( )x t  
itself. Therefore, in this case, ( )L t  is the identity matrix and 

,l l  can be unity. We also choose the weighting matrices as 

2Q I=  and 0.1R = . The appropriate values for λ  and µ  
are obtained using a binary search algorithm similar to that 
of [21]. By this means, it was turned out that 0.5λ =  and 

0.004µ =  are sufficient for ( )P t  in (2.10) to be always 
positive definite. Besides, this value of λ  will satisfy (3.12). 
This fact can be easily verified by inserting the values of 

Ak , Ck , and c , analytically determined above, along with 
0.1r = , 0.707σ = , and 10p =  into (3.13) which yields 
0.165κ = . 

So far, all the sufficient conditions in Theorem 3.1 have 
been ensured and hence, it is expected to reach the modified 
H∞ performance index obtained in (3.26). This is verified 
through the simulation results depicted in Fig. 1. The figure 
shows the true state of the system together with the 
estimated value obtained from the robust SDRE filter. It is 
clear that the filter performs as expected, and the estimated 
signals converge quickly to the corresponding actual ones in 
spite of the considered disturbances and modeling 
uncertainties.   

 

 
Fig. 1. The actual and the estimated states by the robust SDRE filter  

 

 
Fig. 2. The actual and the estimated states by the algebraic and differential 

SDRE filters  

Note that according to (3.14), the given 0.5λ =  
guarantees an attenuation level of 2 0.27γ = . This means the 
energy gain from the disturbances to the estimation errors is 
bounded by 0.27. 

For the sake of comparison, the standard algebraic and 
differential SDRE filters, namely SDARE filter and SDDRE 
filter, was also simulated with the same weighting matrices 
Q , R  and the same initial conditions ˆ(0)x . The results of 
this simulation are plotted in Fig. 2. It can be observed that 
in these two cases, the estimated signals do not track the true 
ones and exhibit divergence behaviors. 

IV. CONCLUSION 
To overcome the destructive effects of uncertain 

dynamics and unknown disturbance inputs on the 
performance of the usual SDRE filters, we developed a new 
robust H∞ filter design which can be seen as a robustified 
differential SDRE filter. The proposed filter can be 
systematically applied to nonlinear continuous-time systems 
with an uncertain SDC form. We proved that under specific 
conditions the proposed filter guarantees the modified H∞ 
performance criterion by choosing an appropriate Lyapunov 
function. This criterion is modified in the sense that it 
incorporates both the effects of disturbances and model 
uncertainties in the H∞ norm minimization. Numerical 
simulations show the promising performance of the robust 
SDRE filter in comparison with the standard SDRE filters, 
which makes it a viable H∞ filtering method. 
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