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ABSTRACT 
Smith predictor is one of the first structures used to 
compensate the time delay in closed loop systems. One of 
the simplest controllers which are used to control the 
industrial systems is PID controller. Although, we know 
that the derivative term is rarely used for controlling the 
time delay systems. Subtle identification of time delay is 
usually impossible in reality; on the other hand, PI 
controller design with smith structure is practiced upon 
the open loop delay free system. Therefore the structural 
uncertainty will be existed in open loop systems which 
make the designing of the PI controller very difficult. In 
this paper, at first, we analyze the effect of difference 
between modeled time delay and real time delay on the PI 
parameters, then the performance of the closed loop 
system compared with a second order delay free system is 
investigated; and finally, we compare the tracking of 
variable time delay system with fixed time delay system 
which both of them have the same parameters. In this 
analysis we assume that the fixed time delay is max of 
variable time delay. 
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1. Introduction 
 
It's evident that all industrial systems, owing to their 
distributed nature, have some time delay features. In 
many practical cases delay is negligible small. Smallness 
of delay is related to the signals processed and hence to 
specification of closed loop and open loop system. In 
these cases we guess the system is delay free and we can 
design controller for delay free system, therefore a 
satisfactory performance will be occurred in real closed 
loop system. But in other time delay systems which delay 
is large in comparison with the largest time constant of 
the closed loop and open loop system, we can not design 
controller in such manner. If time delay isn't 
compensated, the closed loop system may be unstable and 
we have to put strong limits on open loop gain.  Smith 
predictor is one of the first structures that used to control 
of industrial processes [1, 7]. Identification of system’s 
dynamics, including open loop gain, time constant and 

pure time delay in open loop system are required. Block 
diagram of closed loop system has shown in fig (1), 
 

 
 

Figure 1. Closed loop System with variable time delay 
(T') 

 
 In the structure of smith predictor the feed forward 
pass is used to compensate the time delay, such that the 
delay in characteristic equation of closed loop system is 
omitted. This is occurred when the modeled time delay in 
smith predictor is equal to real time delay in open loop 
system [2, 3, 4]. Time delay usually varies in the 
processes with variation of process inlets and their 
parameters. Also the accurate method for online 
identification of delay does not exist. Therefore, it is 
required to analysis the effect of difference between 
modeled delay and real delay on controller parameters to 
receive the suitable response [5, 6]. In this paper we 
develop the separation principle for analyzing of stability 
and performance of closed loop system with variable time 
delay in open loop dynamics. We try to design PI 
controller until the closed loop system be stable , then we 
try to calculate the PI parameters for achieving suitable 
performance in transient and steady state response. 
 
 
2. Analysis of Problem 
 
In fig.1 G(s) and C(s) are respectively open loop free 
delay system and PI controller as follow, 
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 We can write closed loop transfer function as 
equation (3), 
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 Which τ and τ' are respectively a modeled pure time 
delay and real pure time delay of system. 
 G and T'=e-τ′s don’t exist separately, these are shown 
separately just for analysis of the problem by the 
separation principle. So, there is not any difference 
between T'G and GT'. 
 We assume that G doesn’t have any uncertainty and 
the system's model is completely specified, also 
parameters of G are completely determined. 
 Our purpose is obtaining the poles of F(s) in the left 
half of the complex plane. With assuming  

CG
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denominator of F(s) can be written as follow, 
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 Which, we assume τ<τ′. Therefore obtaining of 
stability condition of closed loop system is investigated in 
two cases: the first case is when the zero of PI will be 
omitted with the stable pole of the open loop system, the 
second case is when the pole zero elimination won’t be 
happened. At last, two cases will be compared. 
 
2.1 Pole Zero Cancellation 
 
If one of the stable poles is eliminated with one stable 
zero, CG will be simplified as follow, 
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 In the other side we have s=σ+jω and k=Kp Kc so 
eq.4 can be written as follow, 
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 By separation of real and imaginary part of eq.6 we 
can write,  
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 In some of the real systems τ′ is variable and we 
don’t have exact information about it; therefore, to 
analyze the stability we assumed ω=0. It means that the 
system response doesn't have any oscillation. Therefore 
we can write eq.7 as follow, 
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 Now we find k in eq.8 by converging ω to zero. So 
we have,  
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 Now we show that eq.8 has not any local maximum 
or minimum through variation of k, 
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 Eq.12 shows that eq.8 doesn’t have any max or min. 
thus if we have  
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of H will be occurred in ω=0.  
 Therefore the range of k will be found as follow, 
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 We show that the closed loop system will be stable 
for the k’s in the above interval. If ω=0 then eq.6 will be 
as follow, 
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 By substituting 
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1 in eq.14, it follows 

that, 
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 So σ in eq.15 should be less than zero. If σ>0 then e-

τσ<1 and 0' ≥+−

k
e σστ  therefore e-τσ from eq.14 should be 

greater than 1 and it’s impossible, because if σ>0 then 
. 1<−τσe

 
2.2 Pole Zero Not Cancellation 
 
Now we assume that pole zero cancellation in CG isn’t 
occurred. Using eqs.1, 2 and 4 CG and A(s) will be as 
follow,  
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with s=σ+jω A(s) will be as follow, 
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 Also we can write eq.4 as follow, 
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 If ω=0 then, 
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`In eq.22 if σ>0 then e-τσ<1 so, 
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 For stable open loop system eq.24 isn’t satisfied. By 
separation of real and imaginary part of eq.22 we can 
write, 
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 As description of eq.12 we can write about eq.26, 
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 This equation is like eq.12, so it doesn’t have any 
max or min. we use the following equation to find the 
closed loop pole for the largest amount of k, 
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 The eqs.22, 28 have three variables q, k and σ which 
they will be solved assuming 0<σ . Now, let us look at the 
conditions that closed loop system will have the fast 

response. If pole zero cancellation doesn’t occurred, 
solving the above problem with variables q and k has more 
degree of freedom. What should be answered about that 
problem is that for which q and k we have the fast 
response. Using eqs.22, 24 we have: 
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 Now it’s necessary to define the relationship between 
p and q. The left side of eq.28 should be positive, 
therefore and q<p. 022 >++ pqqσσ
 It means that the zero of PI controller can not be any 
where and it should be closer to origin than the pole of the 
open loop system. If p=q then  except 
for σ=-p. In other side the rise time of step response in 
closed loop system will be decreased by selecting σ=-p. 
this subject is shown in simulation results. 
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 In above analysis we assume ω=0. It means that the 
system doesn't have oscillation in the response and this 
assumption will be conservative.  
 
2.3 Analysis of Closed Loop Performance With 

Cancellation of Stable Pole and Zero 
 
Previously, we showed a case that ξ=1. Now, we discus 
the case which ξ=0. This case defines the beginning of 
instability. In eqs.7, 8 if σ=0 we can write, 
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 From the above equations we have, 
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 We can choose k from eq.11 and eq.32 to obtain a 
suitable performance ( 10 ≤≤ ξ ), 
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 It's noticeable that k should be positive and because 
of eq.30 ω can not be zero. Therefore, in comparison with 
second order systems, we can find the poles of system as 
follow, 
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 Then we can write the relationship between σ, ω and 
ωn as follow, 
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 In the above relationship we can find σ, ωn to have 
suitable performance and the amount of k will be defined 
in 33. Therefore we have suitable response close to 
second order systems. In this analysis we tried to use 
analytical tools which are using in linear systems. Finally 
we can find the relationship between response of first 
order system with variable time delay and response of 
common second order systems. Continually we show the 
simulation result to approve our analysis. 
 Example: In this  example we want to design the PI 
controller for an open loop system 
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time delay t′=10sec. Smith predictor with modeled time 
delay t=7sec has designed. The zero of PI controller is in 
q=-1 and this zero will be eliminated with the pole of 
open loop system in p=-1. We can find σ by solving eq.15 
and put it in to eq.11 to find k. 
 The critical damping response will be occurred at 
k=0.06. 
Also we can find variables σ and k from eqs.22 and 28 
related to the case that pole zero cancellation isn't 
occurred. 
 Fig.2 shows comparison of step response when zero 
of PI controller is in q=-0.8 and when q=-1. Fig.2 shows 
that step response in the case of pole zero cancellation is 
fast.  
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Figure 2. Step Response for 0=ω  

 
 In eq.32, If 0→ω  we have 33.01

=
−′

=
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simulate closed loop system and its results are shown in 
fig.3 for PI zero in -1 and PI zero in -0.8. 
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Figure 3. Step Response for 0→ω  

 
 If we choose k greater than 0.33 the step response of 
closed loop system will be oscillatory response. In fig.4 
we show the response of closed loop system with k=0.5, 
q=-1 and q=-0.8. It's obvious that by increasing k the step 
response will be more oscillatory. 
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Figure 4. Step Response for k=0.5 

 
 Now we show the effect of difference between 
modeled time delay and real time delay on transient time 
response. 
 In fig.5 we have k=0.06 and we repeat previous 
simulation for q=-1, modeled time delays t=7sec and 
t=9sec. we can see step response for modeled time delay 
t=9sec is fast. 
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Figure 5. Step Response for k=0.06, effect of difference 

between tand t' 
 
 If the modeled time delay is t=9sec by calculation of 
k in eq.32 we have k=1 and the step response will be 
similar to that in fig.3. 
 In fig.6 we compare step response of closed loop 
system that has modeled time delay t=9sec and the open 
loop gain k=1 with step response of closed loop system 
which has modeled time delay t=7sec and the open loop 
gain k=0.33. 
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Figure 6. Comparison of step response for t=9sec and 

t=7sec 
 
 Obviously we can see whatever the modeled delay is 
closer to real delay; the open loop gain can be increased. 
Also for the closer modeled time delay to real time delay, 
step response of closed loop system is fast. 
 Fig.7 shows the comparison between step response of 
two cases t=9sec and t=7sec. In the case of t=9sec the 
gain can be greater than another one. In the both of cases 
the gain for starting of un damped oscillation is about two 
times of the gain that gives from eq.32.  

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(sec)

t=9sec
k=2 t=7sec

k=0.6

 
Figure 7. Comparison of oscillation response for t=9sec 

and t=7sec 
 
 In fig.8 we compare two cases t=7sec and t=13sec 
(the modeled time delay is greater than real time delay). 
In this simulation we select q=-1 and k=0.33 (from 
eq.32). 
 Fig.8 shows that if t>t' overshoot of step response 
will be large; however we select the open loop gain 
without any change. 
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Figure 8. Comparison of step response for t=7 sec and 

t=13sec 
 

 Fig.9 shows the comparison between step response of 
two cases, t=9sec and t=11sec. In these cases we can 
select the gain greater than previous case. When t is closer 
to t' the step response of system is fast and the amount of 
gain can be increased.   
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Figure 9. Comparison of step response for t=9 sec and 

t=11sec 
 
 In these simulations we tried to show effect of 
closeness of modeled time delay to real time delay on 
tuning of PI parameters. We showed whatever the 
modeled time delay get closer to real time delay, the gain 
of closed loop system can be increased and the settling 
time will be decreased. Also the zero of PI controller 
should be closer to origin than the pole of open loop 
system. And if pole zero cancellation occurs the closed 
loop system will have the fast response. 
 In the next simulations we show that when time delay 
is variable, the closed loop system has more satisfactory 
step response than the case of max fixed time delay 
system.  
 In fig.10 we compare responses of systems with 
variable time delay through function )40/sin(7 tdelay π+=  
and fixed time delay t'=10sec. Obviously we can see that 
variable time delay system has a fast step response. In this 
simulation q=-1, k=0.33 and modeled time delay is 
t=7sec. 
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Figure 10. Comparison of step response for variable time 
delay and fixed time delay systems t'=10sec in the case 

t=7sec 
 
 In fig.11 we select the modeled time delay t=9sec and 

open loop gain is k=1. In this fig. the oscillation and 
settling time of response is less than results of fig.10.   
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Figure 11. Comparison of step response for variable time 
delay and fixed time delay systems t'=10sec in the case 

t=9sec 
 
 In fig.12 we show the tracking of set points for 
variable time delay and fixed delay systems. In this case 
we select the zero of PI controller in -1 and the modeled 
time delay is chosen t=9sec and open loop gain is k=1.  
 Obviously, we see that the variable time delay system 
has less overshoot and fast step response. Consequently 
the variable time delay system has more satisfactory 
tracking than max fixed time delay system.  
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Figure 12. Comparison of step response tracking for 

variable time delay and fixed time delay systems t'=10sec 
in the case t=9sec 

 
 

3. Conclusion 
 
Since analyzing of time delay systems with variable time 
delay is complicated, in this paper, effective tools using 
smith predictor and PI controller are introduced for 
analyzing the closed loop systems and designing the 
controller. 



 In this analysis, the maximum difference between 
modeled time delay and real time delay has used as a 
principal parameter and the results of simulation shows 
the power of this method on system’s analysis and 
controller’s design. Thus we have developed separation 
principle and closed loop characteristic equation to define 
the transient step response in comparison with step 
response of second order systems. We could get a 
criterion for designing PI controller with structure of 
smith predictor. The simulation results show that 
whatever the modeled time delay is closer to max real 
time delay, the open loop gain can be increased and step 
response will be fast. Also the step response of variable 
time delay system have a more satisfactory response than 
max fixed time delay with the same amount of open loop 
gain and PI parameters.  
 Moreover, the simulation results show that when the 
open loop pole omitted by zero of PI controller, the closed 
loop system will present fast step response.   
 
 
Acknowledgement 
 
We would like to thank Mr. Sorooshi (OGPS Manager in 
NIOC) for supporting us to do this research. 
 
 
References 
 
[1] E.F Camacho, M. Berenguel, F.R. Rubio, “Advanced 
Control of Solar Plant” Springer-verlag, 1997 
[2] Guillermo J.Silva, Anniruddha Datta, 
S.P.Bhattacharyya, “PID Controllers for Time Delay 
Systems” ,Birkhauser, 2005 
[3] J.E.Marshall “Control of time – delay systems” 
Institution of Electrical Engineers, 1979. 
[4] Karl.J. Astrom, Tore Hagglund, “PID Controllers”  
ISA, 1995. 
[5] Keqin Gu, Vladimir L.Kharitanov, Jie Chen,  
“Stability  of Time Delay Systems”, Birkhauser, 2003. 
[6] Daniel R.Saffer, Jorge J.Castro, Francis J.Doyle, “A 
Variable Time Delay Compensator for Multivariable 
Linear Processes”, Journal of Process Control, Vol.15 
(2005), PP 215- 222. 
[7] Donna M.Schneider, “Control of Processes with 
Time Delays”, IEEE Trans.on Industry Appl. Vol.24, 
No.2, March /April 1988. 




