
 
 

 

  

Abstract—The state-dependent Riccati equation filter 
(SDREF) is a recent nonlinear estimation technique which has 
yielded a number of impressive results. However, the 
theoretical investigations of the filter have been carried out 
only in a deterministic environment. In this paper a discrete 
time difference SDRE-based observer for general nonlinear 
systems in a stochastic framework is considered, and its error 
behavior has been also analyzed. It is proved that, the 
estimation error remains bounded in mean square if the system 
to be observed satisfies certain conditions, and both the initial 
estimation error and the disturbing noise terms are small 
enough. Moreover, the results are verified thorough a 
simulation study of an example system. 

I. INTRODUCTION 
HE SDRE filter is one of the promising and rapidly 
emerging methodologies for designing nonlinear state 

estimators [1], [2] and has demonstrated its effectiveness in 
different applications through extensive numerical 
simulations [3]-[4]. In essence, the SDRE-based observer 
originates from a well-known suboptimal nonlinear 
regulator technique, called the SDRE control scheme. It uses 
parameterization to bring the nonlinear system into a linear-
like structure with state-dependent coefficients (SDC) and 
obviates the need for Jacobian computations in the broadly 
acceptable extended Kalman filter (see, e.g., [5-6]). 
Moreover, due to the nonuniqueness of the SDC form in 
multivariable case [2], one can use this extra degree of 
freedom to address the loss of observability problem in 
traditional filtering techniques. 

Indeed, the SDREF has the structure of the steady state 
Kalman filter and the Kalman gain is obtained by solving an 
algebraic Riccati equation (ARE) which can be 
computationally expensive for large scale systems. 
Furthermore, if loss of observability occurs during certain 
time-intervals, then the algebraic Riccati equation may not 
have a solution and the algebraic Riccati equation based 
SDREF cannot be used during these time-intervals [7]. 

A recently proposed SDRE-based observer is derived by 
removing the infinite time horizon assumption and using 
difference rather than algebraic Riccati equation [8]. This 
alternative addresses the issues of high computational load 
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and the potentially restrictive observability requirement in 
the algebraic form of the estimator. 

Despite the superior practical usefulness of the SDREF, it 
has not been analyzed in a rigorous mathematical way for a 
long time. Banks et al. [1] have shown the local 
convergence of continuous-time algebraic based SDREF 
under certain Lipschitzian conditions and a particular 
splitting of the state dependent matrices. In [9], we have 
modified the differential SDRE based observer in order to 
obtain an exponential observer. Jaganath et al. [7] and 
Ewing [8] provide two distinct sufficient conditions sets for 
asymptotic stability of the discrete-time difference SDREF 
in a deterministic setting. However, in addition to these 
results a study of a more general nonlinear case in a 
stochastic framework would also be of some interest. 

In this paper, motivated by the stability results for the 
usual Kaman-Bucy filter (see, e.g., [6], ch. 7) and the 
stochastic stability analysis for more general nonlinear 
estimation problems [10], [11], we analyze the error 
behavior of the discrete-time difference SDRE filter. The 
main contribution consists of the proof that, under certain 
conditions, the estimation error of the SDREF remains 
bounded. Similar idea has been used to analyze the error 
behavior of the extended Kalman filter (EKF) in [12] and 
also the Unscented Kalman filter (UKF) in [13]. 

The paper is organized as follows. In Section II we 
introduce the discrete-time difference SDREF and recall 
some auxiliary results from stochastic stability theory. Then, 
in Section III the error boundedness is proved if certain 
conditions are satisfied. Section IV contains an illustrative 
simulation example. Finally, some conclusions are drawn in 
Section V. 

II. DIFFERENCE SDRE FILTER AND BACKGROUNDS   
Consider the stochastic nonlinear discrete-time system 

affine in the input 

 1 ( ) ( )k k k k k kx f x g x u G w+ = + +  (2.1) 
 ( )k k k ky h x D v= +  (2.2) 

where n
kx ∈  is the state, m

ku ∈  the input and l
ky ∈  

the output. Moreover, kv  and kw  are q  and p  valued 
uncorrelated zero-mean white noise processes, called 
process and measurement noise respectively, with identity 
covariance. kD  and kG  are time varying matrices of size 
l q×  and n p× . Assume that the nonlinear functions ( )kf x  
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and ( )kh x  belong to 1C  and the nonlinear dynamics (2.1) 
and (2.2) can be put into the following state-dependent 
coefficient (SDC) form 
 1 ( ) ( )k k k k k k kx A x x B x u G w+ = + +  (2.3) 
 ( )k k k k ky C x x D v= +  (2.4) 

in which ( )kA x , ( )kB x  and ( )kC x  are discrete n n× , n m×  
and l n×  matrix-valued functions, respectively. 

For the dynamical system given by (2.3) and (2.4), let us 
introduce a state estimator as follows 

 1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )k k k k k k k k kx A x x B x u L y C x x+ = + + −⎡ ⎤⎣ ⎦  (2.5) 

where the observer gain kL  is a matrix-valued stochastic 
process of size n l×  and ˆkx  denotes the estimated state 
vector. We can now formulate the difference SDRE 
observer by taking the dual of the discrete-time SDRE 
control technique and removing the infinite time horizon 
assumption. Hence, consider the cost function 

 
0

1( , ) ( )
2

N
T

k k k k k k k k
k

J x u x Q x u R u
=

= +∑  (2.6) 

associated with the state dynamics of the dual system 
expressed as 
 1 ( ) ( )T T

k k k k kx A x x C x u+ = +  (2.7) 

where N is the finite time horizon, n n
kQ ×∈  is a time 

varying symmetric positive definite matrix and l l
kR ×∈  is 

a time varying positive definite matrix. By mimicking the 
theory of observers for linear systems and in order to 
minimize the forgoing cost function, we choose the observer 
gain, kL , in equation (2.5) as follows 

 
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T
k k k k k k k kL A x P C x C x P C x R

−
⎡ ⎤= +⎣ ⎦  (2.8) 

and kP  is updated using the difference state-dependent 
Riccati equation 

 
1

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T
k k k k k k k

T T
k k k k k k k k

P A x P A x A x P C x

C x P C x R C x P A x Q

+

−

= −

⎡ ⎤+ +⎣ ⎦
(2.9) 

Remarks: 
2.1) If 1( )kA x  and 2 ( )kA x  are two distinct 

parameterizations of ( )kf x , they can be combined 
to yield a third parameterization by 

 1 2( , ) ( ) (1 ) ( )k k kA x A x A xα α α= + −  (2.10) 

These additional degrees of freedom allow an 
infinite number of parameterization possibilities, 
which can be used to enhance the filter performance 
and avoid loss of observability [2]. 

2.2) Similar to the extended Kalman filter, there are two 
common formulations of the discrete-time difference 
SDRE filter, namely, the two-step recursive update 

and the one-step recursive update, respectively. The 
one step recursive formulation is given by (2.5), 
(2.8) and (2.9). The two step recursive formulation 
in a deterministic setting is treated in [7] and also 
[8]. Note that, these two formulations may have 
different performances and transient behaviors, but 
the convergence properties are the same. 

2.3) A usual choice for the matrices kQ  and kR  are the 
covariances for the corrupting noise terms in (2.1) 
and (2.2), i.e, 

 T
k k kQ G G=  (2.11) 

 T
k k kR D D=  (2.12) 

However, this is not the only possibility. Any other 
positive definite matrices can be chosen as well. 

 
Let us define the estimation error by 

 ˆk k ke x x= −  (2.13) 

Subtracting (2.5) from (2.3) the error dynamics is obtained 

 1 ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

k k k k k k k k k

k k k k k k k k k

e A x x B x u G w A x x

B x u L C x x D v C x x
+ = + + −

− − + −⎡ ⎤⎣ ⎦
 (2.14) 

adding and subtracting ˆ( )k kA x x  to the whole equation and 
adding and subtracting ˆ( )k kC x x  into the bracket lead to 

 
1 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

k k k k k k k k k

k k k k k k k k

k k k k k k k k

e A x x A x x A x x A x x

B x B x u G w L C x x

C x x C x x C x x D v

+ = − + −

+ − + −⎡ ⎤ ⎡⎣ ⎦ ⎣
− + − + ⎤⎦

 (2.15) 

hence, the error dynamics can be rewritten as 

 1 ˆ ˆ( ) ( )k k k k k k ke A x L C x e ϕ χ+ = − + +⎡ ⎤⎣ ⎦  (2.16) 

where kϕ  and kχ  include the noise free and the noise 
compelled terms in (2.15), respectively   

 ˆ ˆ( , , ) ( , )k k k k k k kd x x u L s x xϕ = −  (2.17) 
 k k k k k kG w L D vχ = −  (2.18) 

and the nonlinear functions ˆ( , , )k k kd x x u , ˆ( , )k ks x x  are 
given by  

 
ˆ ˆ( , , ) ( ) ( )

ˆ( ) ( )
k k k k k k

k k k

d x x u A x A x x

B x B x u

= −⎡ ⎤⎣ ⎦
+ −⎡ ⎤⎣ ⎦

 (2.19) 

 ˆ ˆ( , ) ( ) ( )k k k k ks x x C x C x x= −⎡ ⎤⎣ ⎦  (2.20) 

For the analysis of the error dynamics (2.16) we make use 
of the following two concepts for the boundedness of 
stochastic processes [10], [11]. 

Definition 2.1: The discrete stochastic process ke  is said 
to be exponentially bounded in mean square, if there exist 
real numbers , 0ν η >  and 0 1ϑ≤ <  such that 
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 { }2 2
0

k
kE e eν η ϑ≤ +  (2.21) 

holds for every 0k ≥ . 
Definition 2.2: The stochastic process is said to be 

bounded with probability one, if 

 
0

sup k
k

e
≥

< ∞  (2.22) 

holds with probability one. 

III. BOUNDEDNESS OF THE ESTIMATION ERROR 
The stability analysis of the difference SDRE filter is 

based on the following lemma which is a standard result 
about the boundedness of stochastic processes. 

Lemma 3.1: Assume that ke  is a stochastic process and 
there is a stochastic function ( )k kV e  as well as real numbers 

0,, >µvv  and 10 ≤< λ  such that 

 2 2( )k k k kv e V e v e≤ ≤  (3.1) 
and 
 { }1 1( ) | ( ) ( )k k k k k k kE V e e V e V eµ λ+ + − ≤ −  (3.2) 

are fulfilled for every solution of (2.16). Then the stochastic 
ke  is exponentially bounded in mean square, that is 

 { } { }
1

2 2
0

1

(1 ) (1 )
k

k i
k

i

vE e E e
v v

µλ λ
−

=

≤ − + −∑  (3.3) 

for every 0k ≥ . Moreover, the stochastic process is 
bounded with probability one. 

Proof: This lemma follows from [10], Theorem 2 (See 
also [12], [13] and the references cited therein)                    □                                              

Note that this lemma contains Lyapunov-like conditions 
for stochastic stability. Intuitively, if condition (3.2) is 
fulfilled, the energy ke  will not increase arbitrarily. 

 
Remark 3.1: In the sequel, the state-dependent matrices 

appearing in the filter formulation are replaced by the 
following time varying matrices 

 ˆ ˆ ˆ( ) ( ) ( )k k k k k kA A x B B x C C x  (3.4) 

Note that, this is done just for notational convenience and 
we don’t ignore the fact that, these matrices are obtained 
using the state kx̂ . 

 
In order to set up the error analysis, we first make the 

following assumptions. 
Assumption 3.1: There are positive real numbers , 0c a >  

such that, for all 0k ≥ , the matrices kA  and kC  are 
bounded by 
 kA a≤  (3.5) 

 kC c≤  (3.6) 
and furthermore, kA  is nonsingular for every 0k ≥ . 

Assumption 3.2: For any solution kx̂  of the observer 
difference equation (2.5), the solution kP  of the difference 
state-dependent Riccati equation (2.9) is bounded for every 

0k ≥  via 
 kpI P pI≤ ≤  (3.7) 

for some positive real numbers , 0p p > . 
Assumption 3.3: There exist , 0σ ρ >  such that, for all 

0k ≥  
 ,k kx uσ ρ≤ ≤  (3.8) 

Assumption 3.4: The SDC parameterization is chosen 
such that, for all ˆ, n

k kx x ∈  and every 0k ≥  the following 
inequalities are satisfied 

 2ˆ ˆ( ) ( )k k A k kA x A x k x x− ≤ −  (3.9) 

 2ˆ ˆ( ) ( )k k B k kB x B x k x x− ≤ −  (3.10) 

 2ˆ ˆ( ) ( )k k C k kC x C x k x x− ≤ −  (3.11) 

with ˆk k Ax x ε− ≤ , ˆk k Bx x ε− ≤  and ˆk k Cx x ε− ≤ , 
respectively. 

Theorem 3.1: Consider a stochastic nonlinear system 
given by equations (2.3) and (2.4) and the difference SDRE 
filter defined by equations (2.5)-(2.9) with positive definite 
matrices kQ  and kR . Let Assumptions 3.1-3.4 hold. Then 
the estimation error ke  given by (2.16) is exponentially 
bounded in mean square and bounded with probability one, 
provided that the initial estimation error satisfies 

 0e ε≤  (3.12) 

and the covariance matrices of the noise terms are bounded 
via 
 T

k kG G Iδ≤  (3.13) 

 T
k kD D Iδ≤  (3.14) 

for some , 0ε δ > . 
Remarks: 
3.1) The inequalities (3.5)-(3.8) should be understood in 

the sense that they can be verified during the state 
estimation process. 

3.2) For many applications the state variables, which 
often represent physical quantities, are bounded. 
Boundedness of the control input seems also a trivial 
hypothesis. Thus, Assumption 3.3 is satisfied easily. 
Moreover, if kA  and kC  fulfill (3.5) and (3.6), 
respectively, for every physical reasonable value of 
the state vector kx̂ , we may suppose without loss of 
generality that, Assumption 3.1 is also satisfied. 

3.3) It can be shown that Assumption 3.2 holds if the 
nonlinear system (2.1)-(2.2) satisfies certain 
observability and detectability properties [7], [8]. 
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The related discussion for the continuous-time 
counterpart of the filter can be seen in [9]. 

3.4) The inequalities (3.9)-(3.11) resemble the 
Lipschitzian-like conditions imposed in [1] and may 
be difficult to fulfill them. Consequently, 
Assumption 3.4 is the key condition of Theorem 3.1. 
However, additional degrees of freedom provided by 
nonuniqueness of the SDC parameterization (see 
remark 2.1) can be exploited to satisfy these 
inequalities. 

3.5) Theorem 3.1 provides sufficient conditions to 
guarantee the exponential boundedness of the 
estimation error. Furthermore, since the bounds 
obtained the norm operators these conditions may be 
conservative as well. However, the proof of this 
theorem contains a constructive way to quantify the 
error bounds according to (3.3) with 0e ε≤ , 

1/v p= , 1/v p=  and χµ κ δ=  (See Appendix A.) 
 
To prove Theorem 3.1, we state the following preparatory 

lemmas. 
 Lemma 3.2: Under the conditions of Theorem 3.1, there 
are positive real numbers , 0ϕε κ′ >  such that 1

k kP−Π =  
satisfies the inequality 

 3
1 2( )T

k k k k k k k kA L C e eϕϕ ϕ κ+Π − + ≤⎡ ⎤⎣ ⎦  (3.15) 

for ke ε ′≤  with kL , kϕ  given by (2.8), (2.17).  
Proof: Denote the smallest eigenvalue of the positive-

definite time varying matrices kQ  and kR  by q  and r , 
respectively, then we have 
 kqI Q≤  (3.16) 

 krI R≤  (3.17) 

From (2.8), (3.5)-(3.7), (3.16), (3.17) and considering 
0T

k k kC P C >  we have 

 1
kL apc

r
≤  (3.18) 

Inserting into (2.17) yields 

 1ˆ ˆ( , , ) ( , )k k k k k kd x x u apc s x x
r

ϕ ≤ +  (3.19) 

Considering (2.19) and (2.20) then According to the 
inequalities (3.9)-(3.11) and using (3.8) we get 

 
2

ˆ ˆ( , , ) ( ) ( ) ( )

ˆ ˆ( ) ( )

k k k k k k k

k k A B k k

d x x u A x A x x B x

B x u k k x xσ ρ

≤ − +⎡ ⎤ ⎡⎣ ⎦ ⎣

− ≤ + −⎤⎦
 (3.20) 

 
2

ˆ ˆ( , ) ( ) ( )

ˆ

k k k k k

C k k

s x x C x C x x

k x xσ

= −⎡ ⎤⎣ ⎦

≤ −
 (3.21) 

Choosing min( , , )A B Cε ε ε ε′ =  and using (3.20), (3.21) we 
rewrite (3.19) as 

 2 21( )k A B k C kk k e apc k e
r

ϕ σ ρ σ≤ + +  (3.22) 

for ke ε ′≤ ,i.e.,  

 2
k keϕ κ ′≤  (3.23) 

with 

 1( )A B Ck k apc k
r

κ σ ρ σ′ = + +  (3.24) 

The definition of the estimation error given by (2.13) has 
been used in (3.22). From (3.23), (3.5)-(3.7) and (3.17) we 
get with 1

k kP−Π =  for ke ε ′≤  

 
1

2

2( )

1 12

T
k k k k k k k

k k k

A L C e

e a apc c e e
p r

ϕ ϕ

κ κ ε

+Π − +⎡ ⎤⎣ ⎦
⎡ ⎤⎛ ⎞

′ ′ ′≤ + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(3.25) 

i.e., (3.15) is fulfilled with 

 1 12 a apc c
p rϕκ κ κ ε

⎡ ⎤⎛ ⎞
′ ′ ′= + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (3.26) 

□ 
 Lemma 3.3: Let the assumptions of Theorem 3.1 hold. 
Then, it can be shown that the following two inequalities are 
satisfied  
 1( ) ( ) (1 )T

k k k k k k k kA L C A L C λ+− Π − ≤ − Π  (3.27) 

 { }1
T
k k kE χχ χ κ δ+Π ≤  (3.28) 

where kL , kϕ  and kχ  are given by (2.8), (2.17) and (2.18), 
respectively. Note that, 0 1λ< <  and 0χκ >  are positive 
real numbers which can be obtained in terms of various 
bounds in Theorem 3.1 and Assumptions 3.1-3.4, through 
some straight forward calculations (see [12], Lemmas 3.1 
and 3.3). 

Proof of Theorem 3.1: See Appendix A.                      □ 
Remarks 3.6: It can be shown that, inequalities (3.9)-

(3.11) in Assumption 3.4 can be reduced to common 
Lipschitzian conditions with unit exponent, while the 
estimation error still remains bounded, provided that 

 ( )2 21 1 ( / ) 1p q p a apc r+ + + <  (3.29) 

The proof of Theorem 3.1, (See Appendix A.), can be 
modified easily for this case. 

IV. NUMERICAL SIMULATIONS 
In this section, to illustrate the significance of the 

conditions in the preceding section, we apply the difference 
SDREF to an example system and verify the error behavior 
by numerical simulations. For this purpose consider an 
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unforced, 0ku ≡ , nonlinear stochastic example system 
given by (2.1), (2.2) with 

 1, 2,
2 3

2, 1, 2, 2, 1,
( )

(1 ) ( )
k k

k
k k k k k

x x
f x

x x x x x

τ

τ τ

+⎡ ⎤
= ⎢ ⎥

− + + −⎢ ⎥⎣ ⎦
 (4.1) 

 1, 2,

1, 2,
( ) k k

k
k k

x x
h x

x x
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (4.2) 

where 210τ −=  is the sampling time. Among different 
possible choices we parameterize ( )kf x  as follows 

 2 2
1, 2,

1
( ) ( )

1 ( 1)k k k k
k k

f x A x x x
x x

τ

τ τ

⎡ ⎤
= = ⎢ ⎥

− + + −⎢ ⎥⎣ ⎦
 (4.3) 

In EKF formulation (see, e.g., [5]) the nonlinear 
observation function ( )kh x  has to be linearized about ˆkx  
which leads to 

 
2, 1,

1 1ˆ( )ˆ( ) ˆ ˆˆk
k k

h xH x
x xx

⎡ ⎤∂
= = ⎢ ⎥∂ ⎣ ⎦

 (4.4) 

Note that ˆ( )H x  loses rank whenever 1, 2,ˆ ˆk kx x= . It can be 
verified that the system appears unobservable to the EKF 
algorithm in this situation and there is nothing that can be 
done about it (see [2], [8] for similar example). However for 
the SDREF, there exist two distinct SDC parameterizations: 

 1 2
1, 2,

1 1 1 1
( ) ( )

0 0k k
k k

C x C x
x x

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (4.5) 

which can be combined to form the parameterized state-
dependent coefficient measurement matrix as 

 
2, 1,

1 1
( , )

(1 )k
k k

C x
x x

α
α α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (4.6) 

In this form, the value of α  can be chosen such that loss of 
observability is avoided. Besides, it can be easily checked 
that Assumption 3.4 holds with (4.3) and (4.6). 

For the numerical simulations, one case with bounded 
estimation error and two cases with divergent estimation 
error are considered. For all cases, the difference SDREF is 
implemented using the design parameters in Table I and the 
state-dependent matrices given by (4.3) and (4.6). 
Furthermore, the actual initial state is 0 [0.8 0.4]Tx =  and 

the process noise covariance is set to 3
210kG I−= . The 

remaining matrix kD , as well as the initial value 0x̂ , are 
chosen particularly for each of the three cases. 

TABLE I 
 DIFFERENCE SDREF PARAMETERS 

 

Design Parameters kQ  kR  0P  α  
Value diag(0.05,0.1) 100I2 I2 0.8 

The simulation results are depicted in Figs. 1-4. 
Conditions (3.5)-(3.8) are verified by numerical simulations 
yielding 1.0001a = , 1.4469c = , 0.6806p = , 1.0051p = , 
and 0.9746σ = , respectively. As it can be seen in Figs. 1 
and 2, for small initial error and small noise (cf. eqns. 3.12-
3.14) the estimation error remains bounded. However, 
because of the high nonlinearities of the example system 
considered, if the initial estimation error or the disturbing 
noise is large, i.e., eqns. (3.12)-(3.14) are violated, then the 
estimation error is no longer bounded (see Figs. 3 and 4). 

 
Fig. 1. The actual and the estimated value of the first state component for 

small initial error and small noise, 0ˆ 0.3 0.3 Tx = ⎡ ⎤⎣ ⎦  and 2kD I= . 

 
Fig. 2. The norm of the estimation error for small initial error and small 

noise 

 
Fig. 3. The actual and the estimated value of the first state component for 

large initial error, 0ˆ 3 3 Tx = ⎡ ⎤⎣ ⎦ . 

 
Fig. 4. The actual and the estimated value of the first state component for 

large measurement noise, 2200kD I= . 
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V. CONCLUSION 
In this paper, a discrete-time difference SDRE observer 

for general nonlinear state estimation problems in a noisy 
environment is considered and its error behavior has been 
analyzed. It has been shown that under certain conditions, 
the estimation error is bounded in mean square and bounded 
with probability one. This fact is embodied in Theorem 3.1 
in Section III. These conditions include the requirements 
that the SDC parameterization satisfy a Lipschitzian 
condition, the solution of the state-dependent Riccati 
difference equation remains positive definite and bounded, 
and furthermore the initial estimation error as well as the 
corrupting noise terms are small enough. The numerical 
simulations in Section IV indicate that the estimation error 
may diverge if either the initial error or the noise terms are 
large. 

APPENDIX A. PROOF OF THEOREM 3.1 
Choose  
 ( ) T

k k k k kV e e e= Π  (A.1) 

with 1
k kP−Π = , which exists with probability, since kP  is 

positive definite according to equation (3.7). From (3.7) it 
follows that 

 1 1
kp p

≤ Π ≤  (A.2) 

and with (A.1) we have 

 2 21 1( )k k k ke V e e
p p

≤ ≤  (A.3) 

i.e., (3.1) with 1/v p=  and 1/v p= . To satisfy the 
requirements for an application of Lemma 3.1, we need an 
upper bound on { }1 1( ) |k k kE V e e+ +  as in (3.3). From (2.16) 
we have 
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which leads to 
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 (A.5) 

We have used the symmetry property of kP  in (A.5). By 
applying (3.27) to (A.5), we obtain with (A.1) 

[
] [ ]

1 1 1

1 1

( ) (1 ) ( ) 2( )

2 ( )

T
k k k k k k k k k k

T T
k k k k k k k k k k k

V e V e A L C e

A L C e

λ ϕ

ϕ χ ϕ χ χ
+ + +

+ +

≤ − + Π −

+ + Π − + + Π
       (A.6) 

Taking the conditional expectation { }1 1( ) |k k kE V e e+ +  and 
considering the white noise property it can be seen that the 
term [ ]{ }1 ( )T

k k k k k k k kE A L C e eχ ϕ+Π − +  vanishes since 

neither 1
1 1k kP−

+ +Π =  nor kA , kC , kL , kϕ , ke  depend on kv  
or kw . The remaining terms are estimated via Lemma 3.2 
and inequality (3.28) and we get 

 { } 3
1 1( ) | (1 ) ( )k k k k k kE V e e V e eϕ χλ κ κ δ+ + ≤ − + +  (A.7) 

for ke ε ′≤ . Defining  

 min( , )
2 p ϕ

λε ε
κ

′=  (A.8) 

we obtain with (A.1), (A.2) for ke ε≤  

 2 2 ( )
2 2k k k k ke e e V e

pϕ
λ λκ ≤ ≤  (A.9) 

Inserting into (A.7) yields 

 { }1 1( ) | ( ) ( )
2k k k k k k kE V e e V e V e χ
λ κ δ+ + − ≤ − +  (A.10) 

for ke ε≤ . Therefore, with (A.3) and (A.10) one can apply 

Lemma 3.1 with 0e ε≤ , 1/v p= , 1/v p= , χµ κ δ= , and 
establish mean square exponential boundedness of the 
estimation error under the conditions of equations (3.12)-
(3.14).                                                                                    □ 
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