
1

Kinematics and Jacobian Analysis of the KNTU CDRPM:
A Cable Driven Redundant Parallel Manipulator

Mohammad M. Aref, Reza Oftadeh and Hamid D. Taghirad

Abstract— KNTU CDRPM is a cable driven redundant
parallel manipulator, which is under investigation for pos-
sible implementation in large workspace applications. This
type newly developed manipulator has numerous advantages
compared to that of the conventional parable mechanisms.
The rotational motion range is relatively large, the inherent
redundancy improves dexterity of the manipulator, and the
light weight structure makes the robot more energy efficient
and significantly fast. However, there exist some challenging
issues in the over-constrained mechanism like KNTU CDRPM.
Collision avoidance, force feasibility, and linear independency
of the cables are the main issues being under study in the design
of such manipulators. In this paper, singularity of the KNTU
CDRPM is studied in detail. To extract kinematic properties
of the robot, the inverse and forward kinematics are analyzed.
It is shown that singularity analysis can well describe the
characteristics of the design and provide the sufficient means
to the designer to improve these characteristics. Finally, a
suitable design strategy is proposed to significantly reduce the
singularity of the manipulator within its whole workspace. The
outcomes of this strategy implemented on KNTU CDRPM re-
sult in a significant improvement of the singular free workspace
of the proposed design compared to that of the latest parallel
manipulators.

Index Terms— Cable driven, Parallel manipulator, Kine-
matic analysis, Wire suspended robot, Singularity.

I. INTRODUCTION

Nowadays, parallel manipulator (PM)’s applications are
significantly increasing. A closed chain kinematics between
fixed and moving platforms, makes the end-effector’s mo-
tions more stiff and high-accelerated by fully-constraining
the end-effector[1]. In a parallel mechanism, each limb
contributes in the movement of the payload. Thus, it can
carry more payload to moving mass ratio which is suitable
for special applications such as the popular Stewart-Gough
platform in flight simulator [2]. On the other hand, a
large motion of the linear actuator of the rigid links of a
parallel manipulator leads to a small displacement of the
end-effector. Thus, high precision is achieved relative to
the serial manipulators. However, additional to hardship of
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Fig. 1. The KNTU CDRPM, a perspective view

production [3] and control [4], there are some challenges
to use PM structures in a wide range of applications. The
main limitations of the PMs are limited workspace [5]
and singularity regions within the workspace [6]. Using an
electric powered cable-driven actuator, as an alternative for
the massive and stroke-limited linear actuator, can extend
the workspace of the manipulator inevitably large even
within the size of a Football stadium [7], or a platform
of large adaptive reflector with 2km2 footprint [8]. By
locating the driver units on the fixed platform, only light-
weight cables’ mass is added to the mass of the end-effector.
Therefore, manipulators such as a RoboCrane can carry
large forces as the weight of a shipping cargo with the
use of a CDRPM structure [9]. Moreover, CDRPM saves
heredity of PMs about acceleration capabilities in addition
to enlarged workspace. It makes CDRPM a suitable platform
of virtual acceleration in virtual reality tasks [10]. However,
a cable can only carry tension forces, and to guarantee that
the cables are always under tension different solutions are
advised. In some cases the end-effector is suspended from
the cables and by use of the gravity force or any other
passive force against the moving platform, this is ensured
[8]. Another more applicable solution for high acceleration
applications, is to use redundant actuators, and to resolve the

319



2

redundancy to ensure positive tension in all the cables. This
can be performed in a fully–constrained or over–constrained
moving platform [11], but with more difficulties to analyze
the geometrical[12] or force feasible workspace [13].

The KNTU CDRPM is thus designed based on such struc-
ture with an 8 actuated 6 degrees of freedom cable driven
redundant parallel manipulator. This manipulator is under
investigation for possible high speed and wide workspace
applications such as virtual acceleration generator in the
K.N. Toosi University of Technology. This proposed design
has significant advantages compared to the conventional
parallel mechanisms. Its rotational motion range is relatively
large, its 2 degrees of redundancy improves safety for failure
in cables, and makes the design suitable for high accelera-
tion motions. A special design for the KNTU CDRPM is
suggested as shown in figure 1, which is called ”Neuron”
in this paper, that satisfies the possibility of tension forces in
all the cables. The design and implementation of the KNTU
CDRPM require deep investigation in various fields.

In this paper, inverse kinematics and forward kinemat-
ics are derived. Then, the 8 × 6 Jacobian matrix of the
manipulator is extracted by velocity formulation. Further-
more, singularity of the Jacobian is analyzed to determine
condition of the manipulator. Next, effects of design pa-
rameters on the manipulator condition are examined. The
examination explains that how design parameters variation
repairs singularity. Finally, a combination of the methods
proposed to determine kinematic properties of the robot
in a given position and its accessibility. The results show
that the improvement has significantly increase manipulator
dexterity.

II. KINEMATICS

A. Mechanism Description

The KNTU Cable Driven Redundant Parallel Manipula-
tor is illustrated in figure 1. This figure shows a spatial
six degrees of freedom manipulator with two degrees of
redundancy. This robot has eight identical cable limbs.
The cable driven limbs are modeled as spherical-prismatic-
spherical(SPS) joints, for cables can only bear tension force
and not radial or bending force. Two cartesian coordinate
systems A(x, y, z) and B(u, v, w) are attached to the fixed
base and moving platform. Points A1, A2, . . . , A8 lie on the
fixed cubic frame and B1, B2, . . . , B8 lie on the moving
platform. The origin O of the fixed coordinate system is
located at the centroid of the cubic frame. Similarly, the
origin G of the moving coordinate system is located at
centroid of the cubic moving platform. The transformation

TABLE I
GEOMETRIC AND INERTIAL PARAMETERS OF THE KNTU CDRPM

Description Quantity
fa: Fixed cube half length 1 m
fb: Fixed cube half width 2 m
fh: Fixed cube half height 1 m
C : Cubic moving platform half dimension 0.1 m

FBi

Ai

Bi

G

ai

g

Ei

Si

Fig. 2. ith Attachment point on the moving platform and related vectors

from the moving platform to the fixed base can be described
by a position vector −→g =

−−→
OG and a 3 × 3 rotation matrix

ARB . Consider ai and Bbi denote the position vectors of
points Ai and Bi in the coordinate system A and B, re-
spectively. Although in the analysis of the KNTU CDRPM,
all the attachment points, are considered to be arbitrary,
the geometric parameters given in table I are used in the
simulations.

B. Inverse Kinematics

The inverse kinematic analysis is first and simplest step in
the kinematics of PMs. Since the forward kinematic (FK)is
complicated, the inverse kinematic is very useful in the
dynamic analysis[14] and control [15]. For inverse kinematic
analysis of the CDRPM, it is assumed that the position and
orientation of the moving platform x = [xG, yG, zG]T , ARB

are given and the problem is to find the joint variable of the
CDRPM, L = [L1, L2, . . . , L8]

T . From the geometry of the
manipulator as illustrated in figure 2 the following vector
loops can be derived:

A−−−→AiBi +A −→ai =A −→g + Ei (1)

in which, the vectors g,Ei, and ai are illustrated in figure
2. The length of the i’th limb is obtained through taking the
dot product of the vector

−−−→
AiBi with itself. Therefore, for

i = 1, 2, . . . , 8:

Li =
{
[g + Ei − ai]T [g + Ei − ai]

} 1
2 . (2)

C. Forward Kinematics

In the CDRPMs, forward kinematics defines the problem
of finding the pose of the moving platform as a function
of the cable lengths of the manipulator. KNTU CDRPM
has eight actuator variables and forward kinematic solution
should calculate the position and orientation of the end-
effector in a six dimensional workspace as a function
of these eight variables. However, most of the studies
in the literature focused on the fully actuated six DOF
Stewart–Gough platform. Forward kinematic solution is
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known as a challenging problem in most of the parallel
manipulators[16]. It is shown that the forward kinematic
solution of the Stewart-Gough platform is not unique [17].
Moreover, many other solutions for this problem was pro-
posed such as positioning of additional sensors for the
passive joints [18] or solving the problem as an optimization
problem [19]. Another solution of the forward kinematic
equations is to simplify relations between coordinates of
the attachment points and inverse kinematic by means of
a closed form solution[20]. This solution can be fused
with a linear sensor data in order to precise the forward
kinematic solution[21]. In another research the nonlinear
equations of forward kinematics is converted to two groups
of linear matrix equations[22]. In the latest researches it
is proposed to solve algebraic polynomial relations for the
attachment points instead of solving complicated trigono-
metric equations[18]. However, most of above mentioned
solutions depend on the flat shape end-effectors, fixed frames
and the attachment points location. Therefore, they cannot be
used in the F.K. of the KNTU CDRPM, and it is necessary
to generate a F.K. solution for the KNTU CDRPM. In
this paper a numerical method is used here to satisfy
the required performance for the purpose of kinematics
and workspace analysis. For the numerical solution of the
forward kinematics problem, assume that the limb lengths
L = [l1, l2, l3, l4, l5, l6, l7, l8]T are given and the problem is
to find the position Ax = [x, y, z]T , and the orientation
of the moving platform represented by moving x, y, z,
euler angles. Therefore, the six unknown variables can be
encapsulated by the vector x as

x = [x, y, z, θx, θy, θz]T (3)

On the other hand, equation 2 provides eight nonlinear
equations, for i = 1, 2, . . . , 8, to be solved simultaneously.
The numerical solution consists of iteratively finding the
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Fig. 3. Flowchart of iterative routine used to solve the forward kinematics
of the KNTU CDRPM manipulator

solution to the following eight nonlinear equations:

Fi(x) = [P (x)+R(x)Ei−ai]T [P (x)+R(x)Ei−ai]−L2
i

(4)
Numerical methods using nonlinear least-square optimiza-
tion routines , can be used to find a solution to F (x) = 0.
In a least-square problem, the functionalf(x) = 1

2

∑
i

Fi(x)2

is minimized over x ∈ Rn. The Gauss–Newton and the
Levenberg–Marquardt methods [23], are the two main search
routines used to solve the nonlinear least-square problem
1. The flowchart given in figure 3 reveals the details of
the iterative method used to find the forward kinematics
solution. As it is seen in this flowchart, for a given x, the
values of P (x) and R(x). Then Fi(x) for i = 1, 2, . . . , 8
are calculated. Then the value of f(x) = 1

2

∑
i

Fi(x)2 is

calculated, and if it is not very close to zero, an optimal
search routine is used to recalculate a new value for x. This
iteration is followed to reach to a solution to f(x) = 0
with an accuracy of ε � 1 . Multiple solution may exist
for the equation F (x) = 0, and in order to avoid jumps in
the forward kinematics solutions, in the numerical routine
the solution at previous iteration is used for the search of
the next solution. Simulation results detailed in figure 4
illustrate the effectiveness, and accuracy of the numerical
routines used to solve forward kinematics in a trajectory like
5. Furthermore, comparing F.K method results with inverse
one can be used for detecting whether F.K is accessible in
the given point or not.

III. JACOBIAN ANALYSIS

Jacobian analysis plays a vital role in the study of robotic
manipulators [24]. Let the actuated joint variable be denoted
by a vector L and the location of the moving platform
be described by a vector x. Then the kinematic constrains
imposed by the limbs can be written in the general form
f(x,L) = 0 by differentiating with respect to time, we
obtain a relationship between the input joint rates and the
end-effector output velocity as follows :

Jxẋ = JLL̇ (5)

where Jx = ∂f
∂x and JL = − ∂f

∂L . The derivation above
leads to two separate Jacobian matrices Hence the overall

1 fsolve function of Matlabr
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Fig. 4. Orientation errors of the forward kinematics solution
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Fig. 5. Given 6D trajectory for the forward kinematics solution

Jacobian matrix J can be written as:

L̇ = J · ẋ (6)

where J = J−1
L Jx.

A. Jacobian Formulation

The Jacobian matrix not only reveals the relation between
the joint velocities L̇ and the moving platform velocities ẋ,
but also constructs the transformation needed to find the
actuator forces τ from the forces acting on the moving
platform F . When JL is singular and the null space of JL

is not empty, there exist some nonzero L̇ vectors that result
zero ẋ vectors which called serial type singularity and when
Jx becomes singular, there will be a non-zero twist ẋ for
which the active joint velocities are zero. This singularity
is called parallel type singularity [1]. In this section we
investigate the Jacobian of the CDRPM platform shown in
figure 1. For this manipulator, the input vector is given
by L = [L1, L2, . . . , L8]

T , and the output vector can be
described by the velocity of the centroid G and the angular
velocity of the moving platform as follows :

ẋ =
[

V G

ωG

]
(7)

The Jacobian matrix can be derived by formulating a veloc-
ity loop-closure equation for each limb.

VG + ωG ×Ei = L̇iŜi + Li (ωi × Ŝi) (8)

where, the vector definitions Ŝi and
−→
Ei are illustrated in

figure 2. Furthermore ωi denotes the angular velocity of
i’th limb with respect to the fixed frame A. To eliminate
ωi, dot-multiply both sides of equation 8 by Ŝi.

L̇i = ŜiV G + (Ei × Ŝi) ωG (9)

. Using a matrix form of equation 9 for i = 1, 2, . . . , 8, the
CDRPM Jacobian matrix J is derived as following.

J =


Ŝ

T

1 (E1 × Ŝ1)T

Ŝ
T

2 (E2 × Ŝ2)T

...
...

Ŝ
T

8 (E8 × Ŝ8)T

 (10)

Note that the CDRPM Jacobian matrix J is a non–square 8×
6 matrix, since the manipulator is a redundant manipulator.

Fig. 6. Changed design parameters

B. Singularity Analysis

In the robotic literature many dexterity and singularity
measures have been introduced which have helped the
designers of serial and parallel robots. Some well–defined
dexterity measures have been introduced for serial [25] and
parallel manipulators [26]. Moreover, Merlet reviewed most
of the manipulability and dexterity measures for parallel
manipulators. His latest comprehensive review leads to doubt
on dexterity indices as an open problem. Additionally, in his
opinion, the most appropriate global accuracy indices are
the determination of the maximal positioning errors, their
average values, and their variance. On the other hand, for
serial spatial manipulators, Gosselin [27] proposes to assume
three virtual points as vertexes of a triangle on the end-
effector and to build a Jacobian matrix for their translational
velocities. Then, the method is used for a conventional
parallel mechanism like Stewart-Gough platform by Kim
and Ryu [28]. Although the method is useful for the Stewart-
Gough platform, it is not a suitable method for spatial
shapes of the attachment points, since, the method cannot
cover replacement of the attachment points if they are
moved on any normal direction to the trianglular plane.
In other words, for a manipulator with spatial shaped end-
effector, at least four virtual points are required to modify
the Gosselin method and determine effects of the attachment
point replacement while it is hard to avoid rank deficiency
during the mapping. Therefore, it is proposed to measure
the dexterity of the KNTU CDRPM by Jacobian condition
number [29]:

Cn =
σmax

σmin
(11)

where, σmax and σmin are the maximum and minimum
singular values of the Jacobian matrix, respectively. There-
fore, it is suitable to have Cn = 1 which describes an
isotropic Jacobian matrix in the given position and an infinity
or a big value of the condition number explains singular
condition of the manipulator at the given position. Repeating
this test for each grid point of the workspace, determines
singular points within the workspace. As shown in figure
7, singularity exists within the workspace of the robot.
Analysis of the Jacobian condition in the singular positions
shows that a major problem exists in the Neuron design
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of the KNTU CDRPM; rotation about z axis of the end-
effectors which strongly depends on the translation along z
axis especially in the central locations of the workspace. In
other words, linear independency of 4th and 6th columns
of the Jacobian fails in the z = 0 plane and the Jacobian
rank deficiency disturbs motion control of the robot at the
position. Therefore, rearrangement of the attachment points
is necessary to decouple the role of the cables in translations
and rotations of the end-effector. Since the shape of the
end-effector is suitable to avoid cable to body collision
[12], arrangement of the fixed attachment points should
be studied. To achieve a better condition number on the
z = 0 plane, we had to disturb symmetric arrangement
of the fixed attachment points, Ais. The change contains
width to length ratio of the fixed frame and rotation of the
top and bottom plates about z axis as shown in figure 6.
Therefore, symmetric and role dependence of the cables can
be remedied by changing fa, fb,∆θ. Effects of changing
these parameters on the condition number are illustrated in
figure 11. Note that the global condition number used in the
latest analysis is:

GC =
max(σmaxi)
min(σmini

)
(12)

in which, max(σmaxi) and min(σmini) are the global
maximum and minimum singular values of the Jacobian
matrix through the entire workspace, respectively. Therefore,
if the Global Condition Number(GC) approaches to 1, the
workspace is more dexterous and homogeneous. Analysis of
the results shows that:

• Increment of ∆θ has significant role in the singularity
avoidance within the workspace.

• Same values of fa and fb, and near zero values of ∆θ
lead to singularity of the KNTU CDRPM.

• There exists a region in the results where the manipu-
lator workspace is singular free.

However, the values of design parameters ∆θ, fa and fb

cannot set to the ideal values because another problem may
significantly decrease the workspace of the robot. Cable to
cable and cable to end-effector collisions can bound the end-
effector motion. Implementation of the collision detection

−1 −0.5 0 0.5 1 −1

−0.5

0

0.5

1

0

0.5

1

1.5

2

2.5

3

3.5

4

x 1016

 

z

y

 10

20

30

40

50

60

70

80

90

Fig. 7. Condition number on x = 0 plane

Fig. 8. Flowchart of iterative routine used to determine workspace of a
cable driven manipulator

methods [12] leads to figure 10. This figure shows the ratio
of the accessible collision free workspace to the volume
of the fixed frame ratio while the design parameters are
changing. These results show that the best global condition
number region located in the worse collision free workspace
and vice versa. Consequently, to detect performance of a
point in the workspace, a program proposed as shown in
flowchart of figure 8. For a given x vector,inverse kinematics
calculates L and proposed FK returns it again in Cartesian
space to examine kinematics solutions. Moreover, collision
detection algorithms proposed in [12] is used to determine
collision avoidance. Then, proposed singularity analysis and
the force feasibility algorithm [13] is applied to the KNTU
CDRPM to verify its controllability. Finally, the result of
this examination shows that the manipulator workspace is
85% without rotation of the end-effector and 72% when the
end-effector rotates 20◦ about its x axis. This workspace
is much larger compared to that of a similar eight actuator
CDRPM [10].
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IV. CONCLUSION

In this paper, inverse kinematics and forward kinematics
are derived. Then, the 8× 6 Jacobian matrix of the manip-
ulator is extracted. Furthermore, singularity of the Jacobian
is analyzed to determine condition of the manipulator. Next,
effects of design parameters on the condition are examined.
The results show that a singular configuration exists right
at the middle of the workspace. A thorough analysis in
the Jacobian explains dependency of the actuator force and
torque on the two motion directions. Therefore, the role of
three design parameters of the manipulator is examined by
the analysis of the global condition number. Through the
resulting maps of dexterity, design of the KNTU CDRPM is
significantly improved. This revision leads to a singular free
workspace for the KNTU CDRPM. On the other hand, a
method is proposed to examine whole kinematic properties
of a manipulator through its entire workspace, which is nec-
essary for an optimal design problem. The method contains
the analysis of inverse and forward kinematics, collision
detection, dexterity index, and tension force feasibility. The
proposed method is useful in workspace analysis, trajectory
planning, and optimal design of CDRPMs.
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