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Adaptive Cascade Control of the KNTU CDRPM:
A Cable Driven Redundant Parallel Manipulator

Pooneh Gholami, Mohammad M. Aref and Hamid D. Taghirad

Abstract— The challenging control problem of the cable
driven redundant manipulators is due to the complexity of
its dynamic and the required stringent performance for the
its promising applications. This paper presents an approach to
the control of the KNTU CDRPM using an adaptive cascade
control scheme. The goal in this approach is achieving accurate
trajectory tracking while assuring positive tension in the cables.
The cascade control topology uses two loops, namely the
internal and external loops. The inherent nonlinear behavior of
the cable manipulator is controlled by the internal loop, while
the external loop can effectively reduce the target tracking
errors of the end-effector in the presence of disturbance
force/torques. The cascade strategy reduces the tracking error
by 80% compared to that of a single loop controller in
the KNTU CDRPM. Moreover, adaptation of the cascade
controller gains can significantly improve the overall tracking
performance. The closed-loop performance of various control
topologies are analyzed by a simulation study that is performed
on the KNTU CDRPM. Since, the dynamic equations of this
parallel manipulator is implicit in its general form, special
integration routines are used for integration. The simulation
study verifies that the proposed controller is not only promising
to be implemented on the KNTU CDRPM, but also being
suitable for other cable driven manipulators.

I. INTRODUCTION

Increasing performance requirements necessitates design
of new types of manipulators working in a larger dexterous
workspace with higher accelerations. Parallel manipulators
can generally perform better than serial manipulators in
terms of stringent stiffness and acceleration requirements [1].
However, limited workspace and existence of many singular
regions inside the workspace of a typical parallel manip-
ulator, limits the use of parallel manipulators in various
applications. In the case of cable driven redundant parallel
manipulators (CDRPM), the conventional linear actuators of
parallel manipulators are replaced with electrical powered
cable drivers. This novel engineering design idea leads
immediately to a wider workspace, and higher accelerations
of the moving platform due to the fact of using lighter
moving parts [2]. However, forward kinematics of parallel
manipulators such as CDRPM’s are very complicated and
difficult to solve [3]. Cables are sagged under compres-
sion forces [4], and therefore, to achieve tension forces in
the cables throughout the whole dexterous workspace, the
moving platform must be designed over-constrained [5]. In
this case m = n + 2 cables are proposed to be used in
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Fig. 1. The KNTU CDRPM, a perspective view

order to dextrously move the redundant actuated end—effector
in an n-dimensional space [6]. Redundancy resolution is
needed to assure tension force along each cable, however,
this is usually computationally expensive [7]. The KNTU
CDRPM uses a novel design to achieve high stiffness,
accurate positioning for high-speed maneuvers. This paper
presents an approach to the control of the CDRPM’s using
an adaptive cascade control scheme to achieve a stringent
tracking performance while all the cables are in tension for
such maneuvers.

Over the last decades, several control methods have
been proposed for parallel manipulators. Among them the
control of redundantly actuated parallel manipulators has
attracted the attention of fewer researchers. However, only
a few of the proposed topologies can be implemented in
cable driven redundant parallel manipulators. Most of the
proposed control schemes are based on dynamic model of
the robot. Representatives of such inverse dynamic control
schemescan be viewed in [8],[9] and [10]. Moreover, Fang
et al. have proposed a motion control scheme on cable
length coordinates [4], De Luca et al. have presented a
proportional and derivative (PD) controller with on-line
gravity compensation for robots with elastic joints [11],
Ryeok and Agrawal developed a method for control based
on feedback linearization [12], Ryeok et al. have designed
a two level controller for a helicopter carrying a payload
using a cable suspended robot [13] and Duchaine et al. have
proposed an approach to the control of manipulators using
a computationally efficient-model-based predictive control
scheme [14].
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This paper presents a different control topology examined
for possible implementation on KNTU CDRPM using an
adaptive cascade control scheme. The proposed controller
structure guarantees fully tension forces on the cables, in a
more trusted fashion, and is capable to fulfill the stringent
positioning requirements for these type of manipulators. This
paper is organized as follows. In section II-A the inverse
kinematics is derived first. Section II-B recalls dynamic
modeling of the KNTU CDRPM. The cascade control with
on-line gravity compensation is introduced in section III-A
accompanying with the simulation analysis. In section III-B
the adaptation control law for the cascade controller gains
is elaborated, and the simulation results are presented. The
proposed redundancy resolution scheme is examined section
III-C, and finally, the concluding remarks and contributions
of this work are enlightened in the last section.

II. KINEMATICS AND DYNAMICS

A. Kinematics

The KNTU Cable Driven Redundant Parallel Manipula-
tor is illustrated in figure 1. This figure shows a spatial
six degrees of freedom manipulator with two degrees of
redundancy. This robot has eight identical cable limbs.
The cable driven limbs are modeled as spherical-prismatic-
spherical(SPS) joints, for cables can only bear tension force
and not radial or bending force. Two cartesian coordinate
systems A(z,y, z) and B(u,v,w) are attached to the fixed
base and the moving platform. Points Ay, As, ..., Ag lie on
the fixed cubic frame and By, Bo, ..., Bg lie on the moving
platform. The origin O of the fixed coordinate system is
located at the centroid of the cubic frame. Similarly, the
origin G of the moving coordinate system is located at
centroid of the cubic moving platform. The transformation
from the moving platform to_t}he fixed base can be described
by a position vector ¢ = OG and a 3 x 3 rotation matrix
ARp. Consider that a; and £b; denote the position vectors
of points A; and B; in the coordinate system A and B, re-
spectively. Although in the analysis of the KNTU CDRPM,
all the attachment points, are considered to be arbitrary, the
geometric and inertial parameters given in table I are used
in the simulations. Similar to other parallel manipulator,
CDRPM has a complicated forward kinematic solution [3].
However, the inverse kinematic analysis is sufficient for
dynamic modeling. As illustrated in figure 1, the B; points
lie at the vertexes of the cube. For inverse kinematic analysis
of the cable driven parallel manipulator, it is assumed that
the position and orientation of the moving platform x =
[Ig,yg,ZG]T ,ARp are given and the problem is to find
the joint variable of the CDRPM, L = [Ly, Lo, ..., Ls] .
From the geometry of the manipulator as illustrated in figure
2 the following vector loops can be derived:

AAB +'a; =" g +E; (1

in which, the vectors g, E;, and a; are illustrated in figure
2. The length of the ¢’th limb is obtained through taking the
dot product of the vector A;B; with itself. Therefore, for

Fig. 2. ith Attachment point on the moving platform and related vectors

i=1,2,...,8

N

Li={lg+E;—a]"[g+E; —aj} 2)

B. Dynamics

Newton-Euler method is used for dynamic modeling of
CDRPM. According to acceleration of rotating velocity
vector [15], the Newton-Euler equations for varying mass
cable results into:

1 : . . A R
Fg; = 7§pL22[LZwZ X 8S;+w; X 8; +w; X (wz X Sl)}

_g<Li2 +LiL)S;i + Fai (3
Where Fgi, Faj, Li, S’i, w; and w; are resultant acting force
on the each moving attachment point, acting forces on the
A; fixed joint, cable linear velocity along its straight, the
unit vector on 4th cable straight as shown in figure 2, the ith
cable angular velocity about the fixed attachment point and
the ith cable angular acceleration about the fixed attachment
point, respectively. By using light weight cables such as the
ones used in this manipulator, the gravity force effects on
the cables can be ignored compared to the dynamic induced
forces [16]. The cable tension force applied by cable driver
unit, FASi, can be represented by:

FS — 1 @)

TABLE I
GEOMETRIC AND INERTIAL PARAMETERS OF THE KNTU CDRPM

Description Quantity
fa: Fixed cube half length 1m

fo: Fixed cube half width 2m

fn: Fixed cube half height 0.5m

C' : The moving platform cube half dimension 0.1m

M: The moving platform mass 5 Kg

I: The moving platform moment of inertia 0.033 Kg - m?
p: The limb density per length 0.007 Kg/m
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The cascade control scheme

Relations between actuator forces and the end-effector af-
fected forces had been studied in cable-affected forces.
Writing the Newton-Euler equations for the moving platform
describes the relation between forces, torques and accelera-
tion of the moving platform as following:

Mi=Fp+G+» Fg ()
i=1
IO =7p-> E;xFg (6)
i=1

In which, M and I are moving platform mass and moment
of inertia and m is number of the cables. G is effect of
gravity force on the end-effector, F'p and 7p are distur-
bance forces and torques effects on the moving platform with
respect to the fixed frame coordinate. Also, F'g; is calculated
by the equation 3. Angular and linear acceleration of each
cable w; and L; in equation 3, depend on the end-effector
acceleration. The dependency makes the motion equations
implicit. Therefore, equations 5 and 6 can be viewed in a
implicit 6 x 1 vector differential equations of the form:

ff(m7$aiagDaT) =0 (7)

Where, §p is the vector of disturbance forces and moments.
The governing motion equations of the manipulator can be
implemented for dynamic simulation of the system. For
dynamic simulation, it is assumed that the actuator forces
7(t), are given and the manipulator motion trajectory x(t),
is needed to be determined. Owing to implicit nature of
the dynamic equation of the parallel manipulators, usual
numerical integration routines such as Runge-Kutta methods
[17], cannot be used to solve the problem, and a special
implicit numerical solution is used to derive dynamical
behavior of the CDRPM [18]. Therefore, all the dynamic
components including the controller, inverse and forward
dynamics and redundancy resolution routines, have to be
solved simultaneously by an implicit solver as ODE15i in
Matlab software [19].

III. CONTROL

In a thorough study of the dynamic behavior of the system
it has been shown that due to high stiffness of the robot, there
are inherent oscillations observed around the equilibrium
points [15]. Therefore a controller is needed to damp the
oscillations and improve trajectory tracking while robot
nonlinear behavior is controlled. The details and advantages

of several joint space and task space controller topologies
are addressed in [8]. However, a task space controller tries to
reduce the end-effector positioning error while ignores the
corresponding cables length errors. On the other hand, joint
space controller cannot achieve a good tracking performance
because the end-effector position is not measured. Therefore,
to achieve a better tracking performance, both the joint space
and workspace controllers are needed simultaneously. Thus,
a cascade control scheme is proposed in this paper. In the
following subsections first the topology proposed for the
cascade controller is elaborated, and then, the adaptation law
for the cascade controller is presented.

A. The Cascade Control

The block diagram of the cascade control is shown in
figure 3. In this control scheme, two control loops are used,
namely, the internal loop, which is based on decentralized
PD controller in the joint space and the external loop, which
is based on a decentralized PD controller in the workspace.
Inherent nonlinear behavior of the cable manipulator is
controlled by the internal loop, while external loop can
effectively reduce the target tracking errors of the end-
effector in the presence of disturbance force/torques. The
gains of each controller are tuned such that the required
tracking performance is achieved. Note that in this topology
the redundancy resolution block is elaborated in section III-
C.

Assume that the desired path of the manipulator in 3D is
cylindrical as shown in figure 4. As illustrated in figure 3
the vector force, F, in the external loop is determined by:

F =Fuw+ Fipc (®)

Where F,, is the created vector force by PD controller
Fuw = Kppe(t) + Kyppé(t). Where e(t) = zq(t) — z(¢) is
the trajectory tracking error and K, K, are appropriate
position and velocity gain matrices, whose values in the
simulations are 10* x Iy and 10% x Igxem respectively.
Frpc 1s the generated vector force by the IDC [20].
Inverse dynamics generated force, preserves the end-effector
current state of acceleration and obtains required force in the
external loop in the form of a feedback linearization:

Frpc = Mig+ G 9)

Where, M, G are inertia and gravity computed forces of
the end-effector represented in the task coordinate.

0,(deg)

0 \ 40
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Fig. 4. Desired path in the workspace
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In the internal loop, the cables length L are measured
and its time derivative L are either measured or estimated.
Let Ly, Ld denote the desired cable length and its velocity
which can be easily obtained through computing the inverse
kinematics. In this part, the control efforts are directly
applied through the cable driver units. In this loop, the
control law is as follows:

T=T,+T, (10)

In which, 7 is an 8 x 1 tension force vector along each cable,
7, is redundancy resolution distributed forces vector and 7
is part of the tension force in the joint space coordinate that
is provided by PD controller by 7; = K, ;e + K,;é. The
values of K; and K,; which is used in the simulations are
2 x 10° x Igyg and 2 x 10* x Igysg, respectively. These
gains are tuned such that the required tracking performance
is achieved. Let e(t) = Ly — L and é(t) = Ly — L denote
the error of actual cable length to that of the desired one
and its derivative.

The tracking performance of the CDRPM using the pro-
posed cascade controller is illustrated in figure 5. As seen
in this figure, the proposed control topology is capable of
reducing the tracking errors less than 4um in position and
less than 4 x 10~°° in orientation. In order to compare the
tracking performance of this control topology to that of a
single loop controller, consider the two and infinity norms
of the tracking performance as shown in figure 10, and
notice the logarithmic scale that is used to represent the
errors. As it is seen from this chart this proposed topology
can significantly improve the tracking error norms in all
the translational and rotational degrees of freedom. This
significant improvement is due to the fact that the internal
loop has a linearizing effect on the system, while the external
loop ensures better tracking of the robot manipulator.

B. The Adaptive Cascade Control

In this section, the adaptive cascade control topology is
presented. An important characteristic of this topology is
the ability to adapt rapidly to any changes in system. Due
to weighted role of some cable in a specific motion which
is depending on the end—effector position, fixed coefficients
of internal controller gain may not satisfy the necessary
tracking performance. Therefore, an adaptive PD controller
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Fig. 6. Adaptive cascade control scheme

is used in the internal loop of the cascade controller. This
control strategy not only preserves the advantages of pre-
vious topology, but also decreases the tracking error and
increases the robot bandwidth, while guarantees fully tension
forces on the cables, in a more trusted fashion. The topology
of an adaptive cascade control is shown in figure 6. The
difference between this strategy and previous one is that the
internal gains changing according to an adaptive law [21],
as following:

Ko (1) = K3 (0) + By (m1e(t) +726() ) e(t) +

oy /0 t [ (e +2é®))e]at

Ko (t) = Koy (0) + B (melt) +2¢(t) ) ét) +

o, /O t (e +2é)e@] a2

Where o, o, are positive scalar integral adaptation gains,
Bp, B, are proportional adaptation gains, and +;,7y, are
scalar weighting factors which reflect the significance of the
position and velocity errors e(t) and é(¢) in the adaptation
law. These parameters are tuned such that the required
tracking performance is achieved. The parameter values are
presented in table II and the adaptation of the gains are
shown in figure 8.

The positioning tracking errors are given in figure 7 in
a similar scale as in the normal cascade control in figure
5. Comparing these figures clearly shows the effectiveness
of the adaptive cascade controller in terms of achieving

— ez —
0 5 10 5 10
time(sec) time(sec)
Fig. 5. The tracking error in the cascade controller

x 10°° x 107°
4 4
2 2
— 5
£ P — s
E/ — =
S Ol o= - = ~=_] 2 O"“__‘-"'_- -\-—’\_
3 g ST -
o k]
5 - S 3
2 5 oy
| S -——-e
-4 o 4 oy
eez
0 5 0 o 5 10
time(sec) time(sec)
Fig. 7. The tracking error in the adaptive cascade controller
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Fig. 8. The adaptive proportional and derivative gains

better performance. The tracking errors are decreased to
less then 0.6um in position and less than 2 x 107°° in
orientation. In order to compare the tracking performance of
this control topology to that of a cascade controller, and a
single loop controller, consider the two and infinity norms of
the tracking performance as shown in figure 10, and notice
the logarithmic scale that is used to represent the errors.
As it is seen from this chart this proposed adaptive cascade
controller can significantly improve the tracking error norms
in all the translational and rotational degrees of freedom
except that in 6,. Although the positioning error in this
direction is still acceptable, it seems that the arrangement
of the attachment point considered in the structure of the
simulated CDRPM desensitizes the effectiveness of the
internal control gains to reduce the error. This important
observation leads us to re—examine a better arrangement
of the attachment points for the KNTU CDRPM in the
forthcoming research.

C. Redundancy Resolution

Actuator redundancy of CDRPMs is an inherent require-
ment in order to move the end-effector by tension forces
of the cables. Redundancy resolution is an essential tool to
optimally project a desired wrench in the cartesian space on
the cable forces into the joint space. The KNTU CDRPM
uses 8 actuators in a 6 dimensional motion. Therefore, there
are infinitely many solutions for the eight actuators forces to
solve the six dynamic equations. Let us denote the resulting
cartesian force/torque applied to the manipulator moving
platforms F. In this definition F is calculated from the
summation of all inertial, and external forces excluding the
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Fig. 9. The actuator forces in the cascade controller
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Fig. 10. Comparison of norms between three control topologies

actuator torques T in the dynamic equations 7. Due to the
projection property of the Jacobian matrix [22], F = J Tr
is the projection of the actuator forces onto the moving
platform, and can be uniquely determined from the dynamic
equations by excluding the actuator forces from them. If the
manipulator has no redundancy in actuation, the Jacobian
matrix, J, would be squared and the actuator forces could
be uniquely determined by 7 = J -TF, provided that J
is nonsingular. For redundant manipulators, however, there
are infinity many solution for 7 to be projected into F. The
simplest solution is a minimum norm solution, which can
be determined by the pseudo—inverse of J7 | through:

JT = gT(g.JT) (13)
By this means, 7 = J TT}" determines the minimum
required force of each cable to generate the corresponding
force, F. However, this solution can result into positive
or negative tensions of the cables. Since the cable forces
must be kept in tension in all maneuvers, a constrained
optimization technique is proposed in here to resolve the
redundancy. Note that all the solutions of the projection can
be determined using the null space of the Jacobian matrix
by:

Fr(y) =70 + (Imxm _grt JT) y (14)

in which, I is the identity matrix and =~ is an m di-
mensional vector in the joint space. fr(7) determines an
affine hyperplane as an intersection of m subspaces of
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TABLE I
ADAPTIVE CONTROLLER PARAMETERS

Parameters Quantity Parameters Quantity
ap 2 x 1013 ay 1016

Bp 1014 Bo 2 x 1012
7 4% 103 Y2 103
Kp;(0) 10° Ky;(0) 10
pr 104 X Iﬁx6 Koyw 103 X 16><6

linear equality constraint defined by Jacobian transpose. To
achieve a solution for the actuator forces of the CDRPM,
the constrained optimization is numerically solved in order
to find an optimum value for f,(«) by finding an appropriate
value for ~ vector in the equation 14. In this optimization
the norm of actuator efforts are minimized subject to:

T = fT("}’) = (VZ,Z € {1,2, .. .,m} = T > Tmin) (15)

where, 7,5, is the lower bound of the actuator forces. Other
optimization techniques can be used to find the actuator
forces projected from, F which can minimize another user
defined cost function [7].

The simulation result for the cascade controller using the
proposed redundancy resolution scheme is shown in figure
9. As it is seen the proposed redundancy resolution scheme
is capable to keep the actuator forces of the CDRPM always
positive. Furthermore, comparing the required forces in these
figures, no significant increase in the amount of required
forces is seen in the adaptive scheme.

IV. CONCLUSION

A cascade control strategy is proposed to improve the
overall tracking performance of a cable driven redundant
parallel manipulator while system nonlinear behavior is
remedied and sensitivity of the external loop to nonlinearity
of the cables dynamics is decreased. The main idea in
this controller algorithm is to use of two control loops
simultaneously, namely the internal loop, which is based on
decentralized PD controller in the joint space and the exter-
nal loop, which is based on a decentralized PD controller
in the workspace. Inherent nonlinear behavior of the cable
manipulator is significantly reduced by internal loop, while
the external loop can effectively reduce the tracking errors of
the end-effector in the presence of disturbance force/torques.
The work presented here represents an effective attempt
to use two control loop for performance improvement in
trajectory-following tasks of this type of robot manipula-
tors. On the other hand, studying Jacobian matrix shows
significant variation in the role of each cable in motion
along the same axis depending on the end—effector position
which can affect the loop—gain of the controller especially
in the internal loop. Hence, fixed coefficients of internal
controller cannot satisfy necessary tracking performance.
Consequently, an adaptation method is used to achieve
the required tracking performance. The simulation analysis
presented on the KNTU CDRPM verifies the expected theo-
retical claims and demonstrated that the proposed algorithm
can significantly improve the overall tracking performance

while keeping the cables under positive tension. As shown
in chart 10 the cascade strategy can overally decrease
the tracking error by 80% with respect to the previously
advised inverse dynamic control. Moreover, adaptation of
the cascade controller improves the overall tracking perfor-
mance seven times than that in the cascade controller. The
investigated control topologies can be carefully implemented
for the other cable parallel redundant manipulators in real—
time applications.
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