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a b s t r a c t

In this paper, a practical method to counter actuator saturation based on a fuzzy error governor is devel-
oped and a complete case study is considered. In addition to good performance, the method has two
attracting properties: It does not change the structure of the main controller, and therefore, the theoret-
ically proven characteristics of the system are untouched, and it is simply implementable in practice. The
proposed controller structure is applied on a flexible joint robot (FJR). The robust stability of the closed
loop system for an n-DOF FJR is thoroughly analyzed and the proposed controller is implemented on a
laboratory setup to show the ease of implementation and the resulting closed-loop performance. The
main controller used for the n-DOF FJR consists of a composite structure, with a PD controller on the fast
dynamics and a PID controller on the slow dynamics. The bandwidth of the fast controller is decreased
during critical occasions with the fuzzy logic supervisor, which adjusts the loop gain to a proper level.
Using Lyapunov direct method, the robust stability of the overall system is analyzed in presence of mod-
eling uncertainties, and it is shown that if the PD and the PID gains are tuned to satisfy certain conditions,
the closed loop system becomes UUB stable.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Although the rigid manipulators are extensively used in indus-
tries, the desire for high performance in the structure and mechan-
ical specifications of robot manipulators has inspired engineers to
design flexible joint robots (FJR). Several new applications such as
space manipulators [1], and multi-fingered articulated hands, [2,3]
have naturally adopted this design. On the other hand, traditional
controllers implemented on FJRs have failed in performance [4,5],
and new control strategies have been developed for FJRs in various
linear, nonlinear, robust, adaptive and intelligent regimes [6,7].
Although many topologies have been proposed for the position
control of the FJRs, only few of them has been implemented
[8,9]. Practical limitations such as actuator saturation have been
rarely considered in this area, despite the fact that it is an impor-
tant practical drawback to achieve good performance [10]. As an
example among these few, in [11] a PD control law with on-line
gravity compensation has presented, in which global stabilization
properties is guaranteed using lower positional gains. Furthermore,
by applying the scheme in combination with a point-to-point
interpolating trajectory the actuator efforts are prevented from
saturation. Another example is [12], in which a practical robust
ll rights reserved.

, Taghirad@kntu.ac.ir, hamid
controller with a simple structure is applied to a 6 DOF flexible
joint robot. However, in this application the proposed robust con-
troller is applied on an industrial robot, which has strong actuators
and stiff enough joints, therefore the actuators does not encounter
any saturation limit in the presented experiments.

Actuator saturation has been considered by the control commu-
nity from early achievements of control engineering. A common
classical remedy for this problem is to reduce the bandwidth of
the control system such that saturation rarely occurs. This is a triv-
ial weak solution, since even for small reference commands and
disturbances the possible performance of the system is signifi-
cantly degraded. On the other hand, the idea of bandwidth reduc-
tion is very practical and easy, which motivates some researchers
to propose a kind of ‘‘adaptive” reduction in bandwidth consistent
with the actuation level [13]. The adaptation process is performed
by an error governor working under supervision of a supervisory
loop. As proposed in [13], this process can be accomplished
through complex computations, using a priori information about
the reference input, which is not appropriate for practical imple-
mentations. In order to remove this drawback, a fuzzy logic super-
visory control has been proposed by authors in [14]. In this
strategy, only a fuzzy system is added to the existing controller,
which can be translated to a time invariant mapping and therefore,
can be easily implemented. This idea has been first presented in
general form by authors in [14], and then has been modified to
incorporate the composite controller for FJRs [15]. It is observed
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in various simulations and experiments that this supervisory loop
will preserve the steady state performance of the system. More-
over, the supervisory loop can remove the instability caused by
saturation. The stability analysis of the overall system, however,
is essential for the closed loop structure in susceptible applications
such as space robots, in which the stability is the main concern.
This issue is analyzed thoroughly in this paper.

In fact the fuzzy supervisor provided here, is a method to coun-
ter actuator saturation in general and is not limited to FJRs. The
performance of this method is verified in this paper and some pre-
vious papers [14–16]. This method has two important benefits: It is
an outer loop method, and therefore it imposes little changes in the
principal properties of the closed loop system, and secondly, in
contrary to its similar methods [13,17] it is very easy to be imple-
mented. This paper is devoted to show these properties with the
focus on these two benefits. First the stability proof for the overall
system is given to show that the main property of the pre-designed
controller, namely the stability, is preserved by using the fuzzy
supervisor. Then the practical implementation results are given
to show the effectiveness and simplicity of implementation in
practice. Through these examinations a practical method is pre-
sented to counter actuator saturation with comparable perfor-
mance to its similar methods.

The idea of ‘‘reduction in bandwidth” for robot control or
‘‘reducing the speed of the robot motion” in order to prevent sat-
uration is well understood in the robotic community. A method
called ‘‘dynamic scaling of trajectory” based on a fundamental
property of time scaling of trajectories for rigid robots, has been
proposed in [18]. When the traveling time along a geometric path
is uniformly scaled by a factor of a, the torque needed for execut-
ing the new trajectory is scaled by a factor of a2 up to the gravi-
tational torque contribution. This fact is used recently to prevent
saturation in FJRs [19]. Although a similar idea is used in this pa-
per, a completely different and new controller structure is imple-
mented here. In this structure, a composite controller is proposed,
with a PD controller to stabilize the fast dynamics, a PID control-
ler to robustly stabilize the slow dynamics, and a supervisory loop
to decrease the bandwidth of the fast controller adaptively during
critical occasions. The robust stability of the overall system in
presence of the modeling uncertainties is then analyzed in detail,
and it is shown that uniformly ultimately bounded (UUB) stability
of the overall system is guaranteed, provided that the PD and PID
gains are tuned to satisfy certain conditions. Stability analysis for
some combinations of P, I and D controllers for FJRs has been pre-
sented in some previous papers without considering saturation.
Robust stability proof for a control law consisting of a PD action
on motor position error and an integral action on the link position
error is presented in [20]. Refs. [21,22] have discussed the stabil-
ity of a composite control law consisting of a PID action on link
position error and a PD action on the joint torque in addition to
a correcting term. Authors have later removed the correcting term
and have presented a new proof in [23]. No one of the mentioned
references have considered actuator limitation. In the current pa-
per a robust stability analysis for the same configuration but with
a supervisory term proposed to counter saturation is presented.
The introduction of such a fuzzy supervisor whose performance
is experimentally verified, and the stability analysis of the overall
closed loop system including this fuzzy error governor, are the
main contributions of this paper. The paper is organized in six
sections. In Section 2, the modeling of an FJR and the proposed
controller structure are presented. Section 3 is devoted to the de-
tailed description of the proposed supervisor, and Section 4 is
allocated for robust stability analysis. Finally, the experimental re-
sults are presented in Section 5, and the conclusions are made in
Section 6.
2. FJR modeling

In an FJR the actuator positions are not statically related to the
link positions, but they are related through the dynamics of the
flexile element. Therefore, the overall system state vector consists
of the link positions as well as the actuator positions. It is usual to
arrange these states in a vector as follows:
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where hi: i = 1, 2, ... , n represents the position of the ith link and the
position of the ith actuator is represented by hi+n: i = 1, 2, ... , n. With
some simplifying assumptions, Spong has proposed a model for FJRs
as follows [24]:
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where M is the matrix of the link inertias and J is that of the motors,
u
*

is the vector of input torques and N
*

is the vector of all gravita-
tional, centrifugal and Coriolis torques as follows:
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1Þ includes the static friction terms, and fi-
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d is the vector of disturbances and unmodeled but bounded
dynamics. The last term in the model encapsulates the modeling
uncertainties. As it is demonstrated in [25], in spite of uncertainty
in all parameters, the following quantities are bounded:
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where m; �m and bi’s are real positive constants. These uncertainty
bounds will be used in robust stability analysis later. It is assumed
that all flexible elements are modeled by linear springs and without
loss of generality [24], all springs are assumed to have the same
spring constant k so the matrix K is defined as K = kI.

The inertia matrices are non-singular; therefore, the model can
be reformulated into the following singular perturbation form
[26]:
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quently the slow and the fast terms of the control input. Besides, the
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Fig. 2. The closed loop system with error governor.
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It should be noted again that u
*

f is chosen to be a function of z
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f only,
so it is plausible to use u
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S instead of u
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Then using Tikhonov theorem [28], one can show that under some
stability conditions the overall behavior of the system can be deter-
mined from the following equations:
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In which, O(e) determines the terms with order of e. The stability
conditions can be satisfied by proper selection of u
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the dynamics of z
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f is a simple
PD controller [21]:
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For the slow subsystem different control strategies can be used.
However, using a well designed PID controller for the u

*

S, provides
the following benefits: (1) no need for rate measurements, (2) no
need for offline computations, particularly derivations of the refer-
ence input, and (3) guaranteed robust stability under the conditions
detailed in [21]. These attributes make this structure attractive for
practical implementation; hence, it is proposed to use such
structure:
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The overall control system is shown in Fig. 1 by which the desirable
performance can be achieved permitting large control effort, which
may result in actuator saturation. This drawback is remedied by a
supervisory loop added to the control structure which will be de-
tailed in the proceeding section.

3. The supervisory loop

In this section, the fuzzy anti-saturation scheme as it was first
proposed by the authors in [14] is described and then the modifi-
cations needed to use this idea for the FJR are provided. Without
loss of generality one can assume that each element ui(t) of the
control vector has a saturation limit of 1. The proposed method
is a two step design procedure: first the compensator is designed
without considering any saturation limit, then a time varying sca-
lar gain 0 < k(t) 6 1 is added which modifies the error (so called er-
ror governor) and is adjusted via a supervisory loop in order to cope
with saturation (see Fig. 2).

Intuitively one can state the logic of adjustment as follows:

� If the system is close to experiencing saturation make k smaller.
� Otherwise increase k up to one.
Fig. 1. The FJR control system.
This logic decreases the bandwidth when the system is close to
experiencing saturation but in normal conditions the error gover-
nor is turned off by making k = 1. This configuration reduces the
amplitude of the control effort as is done by saturation itself but
there are some important differences to that: (1) this is a dynamic
compensator and not a hard nonlinearity as is the case with satu-
ration. (2) This approach limits the control effort by affecting the
controller states while saturation will limit the control effort inde-
pendent of the controller states. In other words, it acts in a closed
loop fashion rather than an open loop structure which is the case
with a saturation block. Hence, the dynamic behavior of this ap-
proach can be used to preserve stability.

A rigorous mathematical model has been proposed in [13] to
calculate k(t) which is very difficult to implement. However, fuzzy
logic can be easily employed here because there is a good linguistic
description of what is required. In order to have a good measure to
quantify the closeness to saturation limit, the absolute value of the
amplitude of the control effort |u(t)| can be used. In addition, to add
a kind of prediction to the logic and so to make the decision fast
enough, _uðtÞ is also taken into account. Thus, the above logic can
be interpreted with fuzzy notation as follows (see Table 1):

� If |u(t)| is NEAR to one and _uðtÞ is POSITIVE make k LESS than one.
� When |u(t)| is OVER one, make k SMALL if _uðtÞ is negative and

make k VERY SMALL if _uðtÞ is not negative.
� Otherwise, make it ONE.

To implement this logic, fuzzy sets are defined as shown in
Fig. 3. Since the logic is based on a model free routine, the proposed
method can be implemented not only on FJRs but also on a variety
of systems which have limiting actuators. Effectiveness of this
structure has been verified in different applications [14–16] and
it is observed that it can preserve the stability which may be lost
due to saturation. In addition, the steady state behavior of the
closed loop system remains unchanged. Theoretical reasons for
this important characteristic of the proposed structure will be
elaborated in the next section.

In order to use this strategy for the FJR, some adjustments to the
general structure has been made, which is briefed as follows:

(1) The supervisor is applied to the fast subsystem, which
mainly causes the instability when limited by saturation.

(2) The saturation limit is not 1 in the FJR configuration, so the
control effort u(t) must be scaled by this factor before feed-
ing to the supervisor.
Table 1
Fuzzy rules.

_u juj

Small Near Over

Neg One One Small
Zero One One Very small
Pos One Less Very small



Fig. 3. Fuzzy sets.
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The modified supervisory loop for the FJR is shown in Fig. 4. A
filter is used to estimate _uðtÞ from u(t) so that the only required
measurement would be u(t). As mentioned in the previous section
the composite controller composed of a fast PD controller and a
slow PID controller has been shown to be robustly stable in ab-
sence of actuator limitation [21,23]. The robust stability of the sys-
tem after adding a fuzzy supervisor and under the effect of the
term k(t), will be studied in this paper at the following section.

4. Robust stability analysis

Recall the system equations:
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Fig. 4. The complete control system for the FJR with fuzzy supervisor.
Moreover, the fast dynamics is governed by
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In the next subsection the effect of k(t) on the stability of the fast
subsystem is provided.

4.1. Stability of the fast subsystem

In this section the stability of the fast subsystem is first studied.
This analysis is not directly used in the stability analysis of the
overall system. However, it is essential to prove that the fast sub-
system is stable, in order to apply the Tikhonov theorem in our
case. For this study consider the following Lyapunov function
candidate:
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*
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In which S is defined as
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Lemma 1. The matrix S is positive definite.

The proof is based on Shur complement [29] and is the same as
what can be found in [22] for the case k(t) = 1. Therefore, the func-
tion Vf is positive.

Theorem 1. The fast subsystem, (23), with the matrix Af introduced
in (26) is stable provided that the lower bounds on k; _k and conditions
on KPF and KDF stated in Appendix I are met.

This theorem reveals that there are some bounds on the param-
eters KPF, KDF, k(t) used in control term (17) that if satisfied, the
dynamics (15) becomes stable in a closed loop configuration.

Proof. To prove stability using Lyapunov direct method, consider
the time derivative of Vf along trajectory (23):
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AT
f Sþ SAf þ _S ¼ �W ð30Þ

It is shown in Appendix I for a 1DOF case that the matrix W is po-
sitive definite provided that some bounds are satisfied, and for
higher order systems similar analysis can be studied. Therefore,
from the above equations _Vf is negative. Thus Vf is a Lyapunov func-
tion and the stability is guaranteed. h

In the later subsection the stability of the complete system will
be studied. Before that, let us review some preliminary lemmas.

4.2. Preliminary lemmas for stability analysis

To prove the robust stability of the closed loop system in pres-
ence of modeling uncertainties, the Lyapunov direct method is
used. Let V be the Lyapunov function candidate:
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In which S is defined as before (Eq. (28)) and P is chosen to be
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In which, ai s are real positive constants. The above function has a
quadratic form and it would be positive definite provided that P
and S are positive definite. Positive definiteness of S has been already
shown in Lemma 1 and the following lemma guarantees that P is
also positive definite in presence of modeling uncertainties (Eq. (4)).

Lemma 2. The matrix P is positive definite if
a1 > 0; a2 > 0; a1 þ a2 < 1 ð33Þ
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in which,
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Proof is given in [30].
Now for the stability analysis, differentiate V along trajectories
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*
Þ ¼ x

*T P
_
x
*
þ _

x
*T P x

*
þx
*T _P x

*
þ _

y
*T S y

*
þy
*T S

_
y
*
þ y

*T _S y
*

¼ x
*T ½PAþ AT P� x

*
þx
*T BDAþ x

*T _P x
*
þ2x

*T PC I 0½ � y
*

þ y
*T ½AT

f Sþ SAf � y
*
þy
*T _S y

*

ð37Þ

The following lemmas will be used to prove that V is a Lyapunov
function.
Lemma 3. For the matrices P, A, B and DA defined previously, the
following inequality holds
x
*T ½PAþ AT P� x

*
þx
*T BDAþ x

*T _P x
*
6 k x

*
kðe0 � e1k x

*
k þ e2k x

*
k2Þ
ð38Þ

Here e0, e1 and e2 are some real positive constants that depend only
on a1, a2 and the uncertainty bounds (see Eqs. (4)–(6)) as follows:

e0 ¼ c1ðb0 þ �mc3Þ ð39Þ
e1 ¼ c4 � c1b3 � �mc2 � c1b1 ð40Þ
e2 ¼ c1b4 þ c1b2 ð41Þ

where

c1 ¼ �kðR1Þ; c2 ¼ �kðR2Þ
c3 ¼ k€qdðtÞk1; c4 ¼ kðQ Þ

ð42Þ

In which,

Q ¼
a2kII 0 0

0 ða1kP � a2kD � kIÞI 0

0 0 kDI

2
64

3
75 ð43Þ

R1 ¼
a2

2I a1a2I a2I

a1a2I a2
1I a1I

a2I a1I I

2
64

3
75 ð44Þ

R2 ¼
0 a2

2I a1a2I

a2I 2a1a2I ða2
1 þ a2ÞI

a1a2I ða2
1 þ a2ÞI a1I

2
64

3
75 ð45Þ
Proof. Consider the first two terms of the left hand side of (38),
one can write

x
*T ½PAþ AT P� x

*
þx
*T PBDA

¼ x
*T �Q þ R2

M 0 0
0 M 0
0 0 M

2
64

3
75

2
64

3
75 x
*
þx
*T

a2I
a1I

I

2
64

3
75DA

ð46Þ

In which, matrices R2 and Q have been defined in Eqs. (45) and (43).
Thus

x
*T ½PAþ AT P� x

*
þx
*T PBDA 6 ð�c4 þ c2 �mÞk x

*
k2 þ c1k x

*
kkDAk

ð47Þ

where c1, c2 and c4 have been defined in (42). Now consider the last
term in (38)

x
*T _P x

*
¼ 1

2
x
*T

a2I
a1I

I

2
64

3
75 _M a2I a1I I½ � x

*
ð48Þ

Taking into account the fact that for robot manipulators
v
*T _Mðq

*
Þv
*
¼ 2v

*T Vmðq
*
;

_
q
*
Þv
*

holds for any vector v
*

[31], Eq. (48) can
be changed to

x
*T _P x

*
¼ x

*T

a2I
a1I

I

2
64

3
75Vm a2I a1I I½ � x

*
ð49Þ

which yields to

x
*T _P x

*
6 c1k x

*
k2kVmk ð50Þ

Adding Eqs. (47) and (50) and considering the uncertainty bounds
(4) and (5) concludes the proof. h
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Lemma 4. For the matrix C defined previously the following inequal-
ity holds

2x
*T PC½I 0� y

*
6 2k x

*
k�kðPÞ�kðM�1Þk y

*
k ð51Þ

Proof. Proof is straightforward considering that

C I 0½ � ¼
0 0
0 0

M�1ðq
*
Þ 0

2
64

3
75 � ð52Þ

Lemma 5. Suppose that the Lyapunov function of a dynamic system
has the following properties
_VðXÞ 6 kXkð/0 � /1kXk þ /2kXk

2Þ ð53Þ

and

ckXk2
6 VðXÞ 6 �ckXk2 ð54Þ

where c; �c and /is are some constants. Given that

d1 ¼
2/0

/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1 � 4/0/2

q �
ffiffiffi
�c
c

s
ð55Þ

then the system is UUB stable with respect to B(0, d1), provided that

/1 > 2
ffiffiffiffiffiffiffiffiffiffiffi
/0/2

p
ð56Þ

/1½/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1 � 4/0/2

q
� > 2/0/2 1þ

ffiffiffi
�c
c

s !
ð57Þ

/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1 � 4/0/2

q
> 2/2kX0k

ffiffiffi
�c
c

s
ð58Þ

where ||X0|| denotes the two norm of the initial condition.

Proof can be found in [25] under lemma 3.5.

4.3. Stability of the complete system

In this subsection, the main result is presented. To be compact it
is referred to the equations simply by their numbers.

Theorem 2. Consider the flexible joint manipulator of Eqs. (14) and
(15) with the composite controller structure of Eqs. (16) and (17),
under supervisory loop. The overall closed loop system with governing
equations of motion (22) and (23) is UUB stable and the state
variables converge to the origin under conditions of Theorem 1,
conditions of Lemma 2, and some new certain limits imposed on the
fast (PD) and slow (PID) controller gains, which will be given by Eqs.
(69)–(71).

Proof. The Lyapunov function candidate V introduced in (31) has
been shown to be positive definite. This imposes conditions of
Lemma 2 to be satisfied. Now in order to study the negative defi-
niteness of _Vðx

*
; y
*
Þ, consider (37), (38), (51), and (30) which yields

to

_Vðx
*
; y
*
Þ 6 k x

*
kðe0 � e1k x

*
k þ e2k x

*
k2Þ

þ 2k x
*
k�kðPÞ�kðM�1Þk y

*
k � �kðWÞk y

*
k2

¼ k x
*
k k y

*
k

h i �e1
�kðPÞ�kðM�1Þ

�kðPÞ�kðM�1Þ ��kðWÞ

" #
k x
*
k

k y
*
k

" #

þ e0k x
*
k þ e2k y

*
k3

ð59Þ

or

_Vðx
*
; y
*
Þ 6 �z

*T
1Rz

*

1 þ e0k x
*
k þ e2k x

*
k3 ð60Þ
where

z
*

1 ¼
k x
*
k

k y
*
k

" #
; R ¼ � �e1

�kðPÞ�kðM�1Þ
�kðPÞ�kðM�1Þ ��kðWÞ

" #
ð61Þ

In here it is seen that the matrix W must be positive definite thus
conditions of Theorem 1 must be satisfied, as well. Now if it is
defined

z
*
¼ x

*

y
*

" #
ð62Þ

then k z
*
k ¼ kz

*

1k; k z
*
k � k x

*
k thus we have

_Vðz
*
Þ 6 k z

*
kðe0 � �kðRÞk z

*
k þ e2k z

*
k2Þ ð63Þ

Applying the Railey Ritz inequality for P and S which reads

kðPÞk x
*
k2
6 x

*T P x
*
6 �kðPÞk x

*
k2

kðSÞk y
*
k2
6 y

*T S y
*
6 �kðSÞk y

*
k2

ð64Þ

and adding these two equations yields to

z
*T

1

kðPÞ 00
0 kðSÞ

� �
z
*

1 6 Vðz
*
Þ 6 z

*T
1

�kðPÞ 0
0 �kðSÞ

" #
z
*

1 ð65Þ

In other words

ck z
*
k2
6 Vðz

*
Þ 6 �ck z

*
k2 ð66Þ

In which

�c ¼maxf�kðPÞ; �kðSÞg
c ¼minfkðPÞ; kðSÞg ð67Þ

Now from (63) and (66) and by Lemma 5 it can be stated: given that

d ¼ 2e0

�kðRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kðRÞ2 � 4e0e2

q �
ffiffiffi
�c
c

s
ð68Þ

the system is UUB stable with respect to B(0, d), provided the fol-
lowing stability conditions are satisfied

�kðRÞ > 2
ffiffiffiffiffiffiffiffiffi
e0e2
p

ð69Þ

�kðRÞ½�kðRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kðRÞ2 � 4e0e2

q
� > 2e0e2 1þ

ffiffiffi
�c
c

s !
ð70Þ

�kðRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kðRÞ2 � 4e0e2

q
> 2e2kz0k

ffiffiffi
�c
c

s
ð71Þ

where ||z0|| denotes the two norm of the initial condition. h

This proof reveals an important aspect of the supervisory loop
dynamics included in the proposed controller law. Since the super-
visory loop adjusts only the controller gain by an error multiplier
k(t) and does not change the main control structure, it will not
perturb the stability of the original system. This general idea
which was observed through various simulations of implemented
supervisory loop for different systems has been analytically proven
here for the FJR. Another aspect that can be concluded from this
analysis is the robustness of stability in presence of modeling
uncertainties. Since the unmodeled but bounded dynamics of the
system is systematically encapsulated in the system model (as sta-
ted in Eqs. (4)–(6)), the only influence this will impose on the sta-
bility is the respective bounds on the controller gains depicted in
conditions of Theorem 2. At the next section some experimental
results are given to verify the effectiveness of the supervisory loop
in practice.



Table 2
Motor specifications for the experimental setup.

Continuous torque (N m) 13
Maximum rated input (V DC) 12
Maximum continuous power (W) 62
Rated speed (rpm) 26

Fig. 7. Block diagram of the system.
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5. Experimental results

The laboratory set up which has been considered for experi-
mental study is shown in Fig. 5. It is a 2 DOF flexible joint manip-
ulator. In the first joint a harmonic drive is used for power
transmission. Its spring constant is empirically derived to be
6340 N m/rad [32].

The flexible element used in power transmission system of the
second joint is shown in Fig. 6. It has been made from Polyurethane
and is designed to possess high flexibility. Its equivalent spring
constant is as low as 8.5 N m/rad which makes the control problem
more challenging. In order to show the effectiveness of the pro-
posed algorithm in presence of actuator saturation, the experimen-
tal results on the second joint with lower stiffness are presented
here. Specifications of the second motor are given in Table 2 [10].

In order to control the system by means of a PC, a PCL-818 I/O
card and a PCL-833 encoder data acquisition card of the Advantech
Company are used for hardware interfacing. The ‘‘Real Time Work-
shop” facilities of the MATLAB SIMULINK are used for user inter-
face. A block diagram of the system is shown in Fig. 7.

Experimental results are shown in Figs. 8–12. In the first exper-
iment a sine wave with frequency 0.5 rad/sec is given as the refer-
ence signal to the system (Fig. 8). At time 30.2 s the supervisor is
turned on, i.e. the value of k(t) is set to be adapted by the fuzzy
supervisor. In this experiment, the reference frequency is inten-
tionally selected to be low and the composite PD and PID gains
Fig. 5. Experimental setup.

Fig. 6. The flexible element.

Fig. 8. Experimental results for sine input.
are tuned such that the tracking error is suitable and the closed
loop tracking of the system is smooth. In such case, since the re-
quired actuation power is low, it is less suffered from the satura-
tion limits and therefore there is no oscillation seen in the
output tracking. This experiment verifies that in cases where the
demanded actuator amplitude is well within the saturation limits,
the resulting performance is good without any oscillations despite
low stiffness joints used in the structure of the FJR. However, since
the supervisor is less triggered in this experiment, its crucial effect
can be less obviously seen in the result. In order to examine the ef-
fect of the supervisor in a more stringent case, another experiment
is designed, in which by increasing the internal PD and PID control-
ler gains, the control input will suffer from the saturation limits in
a wider range. Fig. 9 shows the result for tracking the same sine
wave with these controller gains, in which, during the interval
20.3–30.4 s the supervisor is turned off. In this experiment due
to higher controller gains, a much better tracking performance
can be achieved, if there is no actuator saturation. The actuator sat-
uration limits, though, introduce oscillations in the tracking perfor-
mance; however, as it is seen in the result the supervisory loop can
effectively reduce the level of oscillation in such cases. The same



Fig. 10. Experimental results for pulse input.

Fig. 11. Experimental results for a stiffer joint.

Fig. 12. Experimental results for switching k to amounts less than one.

Fig. 9. Experimental results for sine input with a new high gain controller.
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result is observed for a pulse reference input in Fig. 10 in which the
supervisor is turned off at time t = 13 s. Due to the same reason
high resonance after this moment are observed.

In order to verify that one of the main sources of oscillations in
the response is the effect of actuator saturation, a new experiment
is performed. One may think that the oscillations are solely due to
the low stiffness of the joint. However to verify that the root of
oscillations in previous figures stems out from the actuator limita-
tions, a new experiment is performed in which the polyurethane
flexible element in the joint is substituted with a stiffer one, result-
ing in an order of magnitude stiffer joint. Fig. 11 shows the result
for a sine wave reference applied to this set up. Comparing the
behavior of the system to that of Fig. 9, it is observed that similar
oscillation occurs when the PD–PID gains are adjusted to be high
enough. These set of experiments verify the main claim of this pa-
per that the supervisory controller is able to significantly reduce
the amount of oscillation caused by the saturation limit.

Furthermore, in order to show that the supervisory loop is supe-
rior to the idea of reducing the bandwidth, a special experiment is
designed for the system whose results are given in Fig. 12. In this
experiment k is switched on and off alternately between the k(t)
determined by the supervisory loop and a constant value less than
one. As it is expected and experimentally verified in this figure,
using a constant value for k results in relatively higher tracking er-
rors. These experimental observations confirm intuitively that the
supervisory loop is capable to reduce the high oscillations caused
by actuator saturation. Moreover, it confirms the availability of
some feasible mapping regions where the controller gains and
the supervisory parameters can be selected to meet the sufficient
conditions stated in the Theorems 1 and 2.
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6. Conclusions

In this paper, the problem of controller synthesis for flexible
joint robots in presence of actuator saturation is investigated in de-
tail. The singularly perturbed model of the system is first intro-
duced briefly, and a composite controller is proposed for the
system. The composite controller consists of a robust PID term
for slow (rigid) dynamics and a PD controller for fast (flexible)
dynamics. In order to reduce the limitations caused by actuator
bounds, a supervisory loop is added to this structure, and it is
shown that a model free fuzzy supervisory loop makes it plausible
to preserve stability, without great loss in performance. It is shown
through a Lyapunov based stability analysis that due to the struc-
ture of the supervisory loop the overall variation of the system en-
ergy is dissipative, provided some conditions on the controller
gains and supervisory loop parameters are met. These consider-
ations have enabled us to propose a controller, whose stability is
thoroughly analyzed and can be easily implemented. Such require-
ments are essential for susceptible applications such as space
robotics. Then some experimental results are presented to confirm
the effectiveness of the fuzzy supervisor in practice to reduce the
high oscillations caused by actuator saturation. Finally, it should
be noted that the focus in this paper is on FJR but the proposed
method is applicable on several other systems [14,16].

Appendix A. Positive definiteness of W

In this section, the conditions for positive definiteness of matrix
W, for a first order FJR is derived where the same progress could be
pursued for an n-DOF case. These conditions are used for the stabil-
ity analysis of the fast subsystem as stated in Theorem 1. Governing
equations of motion for a 1-DOF FJR is [24]:

I€q1 þmgL sinðq1Þ ¼ �kðq1 � q2Þ
J€q2 � kðq1 � q2Þ ¼ u

�
ðI:1Þ

In which I is the link moment of inertia, J is that of the motor, 2L is
the length of the link, k is the elasticity of the flexible element and u
is the input torque. Now from (21) we can write

K1 ¼
k
eJ

KDf ; K2 ¼
I þ J þ IkKPf

eIJ
ðI:2Þ

Therefore,

_S ¼ �1
2

0 eJ _k
k2KDf

eJ _k
k2KDf

eI2JKPf
_k

ðIþJþIkKPf Þ2

2
64

3
75 ðI:3Þ

and thus from (30)

W ¼

ðIþJþIkKPf Þ
IkKDf

eJ _k
2KDf k

2

eJ _k
2KDf k

2
IKDf k

ðIþJþIkKPf Þ
� eJ

KDf k
þ eI2JKPf

_k

2ðIþJþIkKPf Þ2

2
64

3
75 ðI:4Þ

Note that the sufficient condition for the matrix W to be positive
definite can be derived from the following conditions on its
elements

W11 þW22 > 0

W11W22 �W2
12 > 0

ðI:5Þ

First consider W11 + W22,

W11 þW22 ¼
ðIþ Jþ IkKPf Þ

IkKDf
� eJ

KDf k
þ IKDf k
ðIþ Jþ IkKPf Þ

þ
eI2JKPf

_k

2ðIþ Jþ IkKPf Þ2

¼ ðIþ Jþ IkKPf Þ � eIJ
IkKDf

þ
2IKDf kðIþ Jþ IkKPf Þ þ eI2JKPf

_k

2ðIþ Jþ IkKPf Þ2

ðI:6Þ
As all parameters except than _k are positive, a sufficient condition
for W11 + W22 to be positive is

ðI þ J þ IkKPf Þ � eIJ > 0

2KDf kðI þ J þ IkKPf Þ þ eIJKPf
_k > 0

ðI:7Þ

which imposes a lower bound on k and one on _k as follows:

k >
eIJ � I � J

IKPf
; _k > �2KDf ðI þ J þ IKPf Þ

eIJKPf
ðI:8Þ

Note that e is a very small parameter, thus for typical values of I and
J the lower bound of k would be negative which is not a limitation at
all. Also the lower bound of _k would be very large negative number
which is not really limiting. Now consider W11W22 �W2

12

W11W22 �W2
12 ¼ 1� eJðI þ J þ IkKPf Þ

IK2
Df k

2 þ
eIJKPf

_k

2kKDf ðI þ J þ IkKPf Þ

� eJ _k

2KDf k
2

 !2

¼ c1 þ b1
_kþ a1

_k2

4k4K2
Df IðI þ J þ IkKPf Þ

ðI:9Þ

where

c1 ¼ 4k2ðI þ J þ IkKPf Þ½k2K2
Df I � eJIkKPf � eJðI þ JÞ�

b1 ¼ 2eI2JKPf KDf k
3

a1 ¼ �e2J2IðI þ J þ IkKPf Þ

ðI:10Þ

The numerator of Eq. (I.9) is a polynomial of degree 2 in _k with
a1 < 0. Thus for W11W22 �W2

12 to be positive, _k should remain be-
tween the two roots:

�b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � 4a1c1

q
2a1

< _k <
�b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � 4a1c1

q
2a1

ðI:11Þ

And for the roots to lie in both sides of zero, c1 must be positive. c1

includes a polynomial of degree 2 in k, for which D and a are posi-
tive, thus the following bounds should be satisfied

eIJKPf �
ffiffiffiffi
D
p

2K2
Df I

< k <
eIJKPf þ

ffiffiffiffi
D
p

2K2
Df I

D ¼ ðeIJKPf Þ
2 þ 4K2

Df eIJðI þ JÞ
ðI:12Þ

Considering the fact that 0 < k < 1, the following bound is a suffi-
cient condition for (I.12)

IK2
Df < eJðI þ JÞ þ eIJKPf ðI:13Þ

In other word, for the matrix W to be positive definite, the bounds
(I.8), (I.11), and (I.13) must be met on k, _k, KPf and KDf.
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