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ABSTRACT 

This paper investigates an important kinematic property, the 
constant-orientation workspace, of five-degree-of-freedom par- 
allel mechanisms generating the 3T2R motion and comprising 
five identical limbs of the W R  type. The general mechanism 
originates from the type synthesis performed for symmetrical 5- 
DOF parallel mechanism. In this study, the emphasis is placed 
on the determination of constant-orientation workspace using ge- 
ometrical interpretation of the so-called vertex space, i.e., motion 
generated by a limb for a given orientation, rather than relying on 
classical recipes, such as discretization methods. For the sake of 
better understanding a CAD model is also provided for the ver- 
tex space. The constructive geometric approach presented in this 
paper provides some insight into the architecture optimization. 
Moreover, this approach facilitates the computation of the evo- 
lution of the volume of the constant-orientation workspace for 
different orientations of the end-effector. 
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INTRODUCTION 

Parallel mechanisms, often erroneously said to be recent de- 
velopments, have a pedigree far more ancient than that of the 
serial robot-arms which are usually called anthropomorphic [I]. 
The tripod, used by photographers, can be regarded as a pre- 
cursor which comprises a small triangular platform with three 
supporting adjustable legs. A comprehensive survey about the 
true origins of parallel mechanisms is elaborated in [2]. Over the 
past two decades, parallel mechanisms evolved from the rather 
marginal mechanisms, such as the centuries-old tripod, to widely 
used mechanical architectures which become the state of the art 
of the commercial world, for instance Gough-Stewart platform 
and Delta robot [3]. For a long time, parallel mechanisms, due to 
some remarkable kinematic properties, have stimulated the inter- 
est of researchers and industries and they have been extensively 
synthesized using intuition and ingenuity. Recently, a system- 
atic approach has been developed, namely the Type synthesis [3], 
which opens some avenues to list all possible kinematic arrange- 
ments for a specific motion pattern. 

The development of type synthesis channels researchers to 
synthesize parallel mechanisms with fewer than six-degrees- 
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of–freedom (DOF), referred to as lower mobility mechanisms,
since it was believed that parallel mechanisms with identical limb
structures, topologically symmetrical, with 4 and 5-DOF cannot
be built. Thus, as far as 5-DOF mechanisms with identical limb
structures are concerned, researchers have mainly worked on the
type synthesis [3–8]. It is worth noticing that most existing 5-
DOF parallel manipulators are built using a 5-DOF passive leg
which constrains some actuated 6-DOF limbs [9, 10].

Five-DOF parallel mechanisms are a class of parallel mecha-
nisms with reduced DOFs which, according to their mobility, fall
into three classes: (1) three translational and two rotational free-
doms (3T2R), (2) three rotational and two planar translational
freedoms (3R2Tp) and (3) three rotational and two spherical
translational freedoms (3R2Ts) [3]. Since, in the industrial con-
text, the 3T2R motion can cover a wide range of applications in-
cluding, among others, 5-axis machine tools and welding, there-
fore, in this research, the kinematic properties of this class will
be investigated. Recently, the machine tool industry has discov-
ered the potential advantages of parallel mechanisms and many
parallel machine tools have been developed based on either the
6-DOF parallel mechanisms (Traditional “Gough-Stewart plat-
form”) or asymmetrical 5-DOF parallel mechanisms in which a
passive leg constrains the motion of the end-effector [11]. For
a comprehensive list of the so-called parallel machine tools in
industrial context see [2, 11].

To the best knowledge of the authors, up to now, very few
kinematic studies have been conducted on symmetrical 5-DOF
parallel mechanisms [12]. This is probably due to their short
history. Recently, in [13–15] some kinematic properties, such
as singular configurations, of certain 5–DOF symmetrical 3R2T
parallel mechanisms have been studied. However, the kinematic
properties of symmetrical 5-DOF performing 3T2R motion pat-
tern are still not well understood and there are many issues which
should inevitably be addressed including the constant-orientation
workspace.

Parallel mechanisms are well-known to have a restricted
workspace compared to their counterpart, serial manipulators.
Thus a thorough analysis of the workspace of parallel mech-
anisms is primordial before entering into their design stage.
Various approaches are proposed in the literature to obtain the
workspace of parallel mechanisms [16]. According to which
type of mobilities set, translational or rotational, is fixed, dif-
ferent types of workspace are possible. The focus of this paper
is on the one that is often used: constant-orientation workspace.
Generally, classical recipes, such as discretization algorithms and
node search approach, are used by most researchers which can
be applied to any kind of parallel mechanisms. The main draw-
back of such approaches is that they are computationally inten-
sive and consequently time consuming to run in a computer sys-
tem. To overcome such a problem, instead of treating numeri-
cally the constant-orientation workspace, the problem is investi-
gated geometrically which is called the geometrical constructive

approach. The central concept of the latter approach is based
on the identification of the curves, surfaces and volumes that
are obtained by successively releasing the joints from the base
to the platform and formulating mathematically. In this paper,
the geometrical constructive approach is used which is inspired
from the method proposed in [17, 18] for the computation of the
constant-orientation workspace of 6-DOF Gough-Stewart plat-
form. Moreover, the topology of the vertex space, constant-
orientation workspace of one limb, is obtained and modeled in
a CAD system which results in the CAD model of the constant-
orientation workspace.

The remainder of this paper is organized as follows. The
architecture and the general kinematic properties of the 5-PRUR
parallel mechanism which originated from the type synthesis per-
formed in [3, 7] are first outlined. The IKP is addressed and
two general classes for 5-PRUR arrangement are proposed. The
constant-orientation workspace is interpreted geometrically and
the results are implemented in a CAD system. Moreover, an al-
gorithm, inspired from the one presented in [17] for the general
6–DOF Stewart platform, is proposed for computing the bound-
ary of the constant-orientation workspace. Based on the latter
algorithm, the volume of the constant-orientation workspace is
obtained and plotted with respect to the two permitted rotational
DOFs.

1 ARCHITECTURE REVIEW AND KINEMATIC MOD-
ELING OF 5-PRUR
Figures 1 and 2 provide respectively representations of two

possible arrangements for a PRUR limb and a CAD model for a
5-DOF parallel mechanism, called Pentapteron which was first
revealed in [19]. Pentapteron is an orthogonal 5-DOF parallel
mechanism arising from the type synthesis presented in [3, 7]
and consists of 5 legs of the PRUR type linking the base to a
common platform. Such a mechanism can be used to produce all
three translational DOFs, plus two independent rotational DOFs
(3T2R) of the end-effector, namely (x, y, z,φ, θ). In the latter
notation, (x, y, z) represent the translational DOFs with respect
to the fixed frame O, illustrated in Fig. 2, and (φ, θ) stand re-
spectively for the orientation DOFs around axes x and y. From
the type synthesis presented in [7], the geometric characteristics
associated with the components of each leg of type PRRRR are
as follows: The five revolute joints attached to the platform (the
last R joint in each of the legs) have parallel axes, the five rev-
olute joints attached to the base have parallel axes, the first two
revolute joints of each leg have parallel axes and the last two rev-
olute joints of each leg have parallel axes. It should be noted that
the second and third revolute joints in each leg are built with in-
tersecting and perpendicular axes and are thus assimilated to U
(Universal) joints. In addition, the axes of the first R joints in
all the legs are arranged to be parallel to the direction of a group
of two of the linearly actuated joints. Therefore, two types of
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Figure 1. SCHEMATIC REPRESENTATION OF, (A) PRUR AND (B)
CUR.

kinematic arrangements are possible, as depicted in Fig. 1, for
the legs: a) the parallel type, Fig. 1(a), and the perpendicular
type, Fig. 1(b). In fact, Γ = 0 and Γ = 1 differ in some kine-
matic properties such as constant-orientation workspace and the
Inverse Kinematic Problem (IKP) formulation. It is noted that Γ

designates the cosine of the angle between the prismatic actuator
axis and the first R joint axis.

The rotation from the fixed frame Oxyz to the moving frame
O′x′y′z′ is defined as follows: a first rotation of angle φ is per-
formed around the x− axis followed by the second rotation about
the y− axis by angle θ. The latter leads to the following rotation
matrix:

Q =

 cosθ sinφsinθ cosφsinθ

0 cosφ −sinφ

−sinθ sinφcosθ cosφcosθ

 . (1)

In this paper the superscript ′ for a vector stands for its represen-
tation in the mobile frame. In a 5-PRUR parallel mechanism, the
axes of all the R joints are always parallel to a plane defined by
its normal vector e3 = e1× e2 where e1 and e2 are unit vectors
defining the direction of R joints. From screw theory [1], it fol-
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Figure 2. CAD MODEL OF PENTAPTERON A 5-DOF(3T2R) PARAL-
LEL MECHANISM

lows that the mechanism has no possibility to perform a rotation
about an axis which is orthogonal to a plane spanned by [e1,e2].

2 INVERSE KINEMATIC PROBLEM (IKP)

The IKP pertains to finding the set of actuated joint variables
for a given pose (position and orientation) of the platform. In the
ith leg, the motion of the actuated prismatic joint is measured
with respect to a reference point Ai, located on the axis of the
prismatic actuator. Vector eri is in turn defined as a unit vector in
the direction of the prismatic joint and therefore the vector con-
necting point Oi to point Ai can be written as ρi = ρieri . Vector
ri is defined as the position vector of point Oi, the starting point
of the prismatic actuator, in the fixed reference frame. Similarly,
vector si is the vector connecting point O′ of the platform to a
reference point Di on the axis of the last revolute joint of the ith

leg. Point Ci is defined as the intersection of the axes of the sec-
ond and third revolute joints of the ith leg. Vectors v1i and v2i are
respectively the vector connecting point Bi to point Ci and point
Ci to Di. Since in the proposed architecture vectors e1 and e2 are
orthogonal, one has: e1 · e2 = 0. Finally, the position of the plat-
form is represented by vector p = [x, y, z]T connecting point O to
point O′ and the orientation of the moving frame with respect to
the fixed frame is given by a rotation matrix Q. For a given value
of the angles φ and θ, matrix Q is readily computed and vectors
si and e2 are then obtained as:

si = Qs′i, e2 = Qe′2 = [cosθ, 0,−sinθ]T . (2)
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With reference to Fig. 1, the following equations, arising from
the kinematic constraint of the ith limb, can be written:

(xCi− xBi)2 +(zCi− zBi)2 = l2
1i (3)

(xDi− xCi)2 +(yDi− yCi)2 +(zDi− zCi)2 = l2
2i (4)

(xDi− xCi)cosθ− (zDi− zCi)sinθ = 0 (5)

such that the first two equations represent, respectively, the mag-
nitude of v1i and v2i and the last one corresponds to the kinematic
constraints between e2 and v2i, i.e., e2 ⊥ v2i. The solution for the
IKP is quite different for each case, i.e., Γ = 1 and Γ = 0, and
requires to be investigated separately.

2.1 IKP for PRUR ≡ (Γ = 0)
Let us consider the case for which the prismatic actuator is

along x axes, which is denoted as xρi. As it can be observed,
the latter expressions contains passive variables, Ci(xCi, yCi, zCi)
and Di(xDi, yDi, zDi), which are respectively the coordinates of
the passive U joint and the R joint attached to the platform. Us-
ing the fact the the last R joint is attached to the platform, the
coordinate of point Di can be related to the pose of the platform.
One has:[xDi, yDi, zDi]T = p + Qs′i. Upon eliminating the above
passive variables and by skipping mathematical details, leads to
the following for the IKP:

x
ρi =xDi +(−1)m sinθ

√
Ki

+(−1)n
√

l2
1i− (zDi +(−1)m cosθ

√
Ki− zBi)2

(6)

where Ki = l2
2i − (yDi − yCi)2. Moreover, m = {0, 1} and n =

{0, 1} stand for different working modes where it follows that the
IKP admits up to four solutions. An analogous approach leads to
obtain the IKP when the prismatic actuator is along z axis:

z
ρi =zDi +(−1)m cosθ

√
Ki

+(−1)n
√

l2
1i− (xDi +(−1)m sinθ

√
Ki− xBi)2

(7)

2.2 IKP for CUR ≡ (Γ = 1)
In this case, Eqs. (3-5) should be solved for yCi = ρi for a

given pose of the platform. Having in mind that yCi = yBi = ρi,
the coordinates of point Ci are unknown for the IKP. Thus by
eliminating passive variables, and skipping mathematical details,
it follows that IKP formulation can be divided into two expres-
sions for two different sets of working modes:

1
pρi = yDi +(−1)p

√
l2
2i− (1K ′i )2 (8)

2
pρi = yDi +(−1)p

√
l2
2i− (2K ′i )2 (9)

Figure 3. THE LOWER HALF OF A BOHEMIAN DOME. THE REPRE-
SENTATION IS ADAPTED FROM [18].

where

1K ′i =
∣∣vi · e3

∣∣−√l2
1i− (vi · e2)2 2K ′i =

∣∣vi · e3
∣∣+√l2

1i− (vi · e2)2

(10)

so that p = {0, 1}. From the above expressions it can be deduced
that the IKP admits up to four solutions.

3 WORKSPACE ANALYSIS
The complete workspace of the 5-RPUR manipulator can

be regarded as a five–dimensional space for which no visual-
ization exists. In the context of parallel mechanism workspace,
one representation that is often used is the constant-orientation
workspace, which is the set of locations of the moving platform
that can be reached with a given prescribed orientation [16]. In
this paper, the passive joints are considered to have an unre-
stricted excursion range. Moreover, the mechanical interferences
are not considered in the workspace analysis. Geometrically, the
problem of determining the constant-orientation workspace for a
limb of the 5-PRUR parallel mechanism can be regarded as fol-
lows: For a fixed elongation of the prismatic actuator, the first
revolute joint provides a circular trajectory centred at Ai with l1i
as radius. The second link generates a surface by sweeping a sec-
ond circle, with e2 as axis and l2i as radius, along the first circle.
Since the direction of e2 is prescribed and must remain constant,
such a surface generates a quadratic surface and is called a Bo-
hemian dome. This quadratic surface can be obtained by moving
a circle that remains parallel to a plane along a curve that is per-
pendicular to the same plane, as shown in Fig. 3. Once this sur-
face is obtained, it should be extended in such a way that repre-
sents the vertex space of the limb for different elongations of the
prismatic actuators with respect to its stroke ∆ρi = ρimax−ρimin.
The main challenge in obtaining the topology of the vertex space
is to find a general and complete model to extend the Bohemian
dome to the vertex space. As mentioned above, Γ = 0 and Γ = 1
have different vertex spaces. Moreover, the vertex space of each
case falls into different classes depending on the values of l1i, l2i
and ∆ρi. In what concerns the rotational parameters, (φ,θ), only
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θ influences the vertex space topology. The influences of l1i, l2i,
∆ρi and θ on the vertex space are the main reasons that make it
difficult to assess geometrically the vertex space of a PRUR limb
and for which it requires a thorough and comprehensive analysis.
In the following section, first, the topology of the vertex space,
for both cases Γ = {0,1}, is elaborated and then the constant-
orientation workspace is investigated. It is worth noticing that the
study of both vertex spaces and constant-orientation workspace
are conducted by using a CAD model and also a constructive
geometric approach inspired from the one proposed in [17].

3.1 Topology of the Vertex Space
Prior to finding the constant-orientation workspace, the

topology of the vertex space generated by both types of PRUR
limb, i.e., Γ = {0,1}, is presented. As mentioned above, among
the DOFs of the platform only θ influences the shape of vertex
space. Before presenting the details related to the construction of
the CAD model of the vertex space, the complexity of the model
is discussed briefly. In fact, θ is the rotation angle around axis
e1, which is in direction of y axis. Thus in the case for which
the prismatic actuator is along the y axis, i.e., Γ = 1, the vertex
space for different angles of θ can be obtained by applying a ro-
tation around the prismatic actuators axis by θ. It is apparent that
the latter rotation preserves the direction of the prismatic actua-
tors. Thus for Γ = 1 once the vertex space for θ = 0 is in hand
then it can be readily extended for different θ. By contrast, the
vertex space of Γ = 0 cannot be modeled readily in such a way
that covers different θ since rotating the vertex space obtained
for θ = 0 for Γ = 0 around e1 does not preserve the direction of
the prismatic actuator. In what concerns the second alternative
toward obtaining the boundary of the vertex space, a geometrical
constructive approach is used.

3.1.1 Topology of the Vertex Space for Γ = 1.
Two distinct types of holes can appear in the Bohemian dome
with Γ = 1, depending on the geometric parameters of the con-
stituting circles: a throughout hole and a side hole, called respec-
tively H1 and H2, which are due to:

1. H1: when ∆ρi < l2i
2. H2: when l2i < l1i

Thus, from the above, the topology of the vertex space for
Γ = 1 falls into four cases:

1. Γ01: ∆ρi ≥ l2i and l2i ≥ l1i, none of the holes;
2. Γ02: ∆ρi ≥ l2i and l2i ≤ l1i, just H2;
3. Γ03: ∆ρi < l2i and l2i ≥ l1i, just H1;
4. Γ04: ∆ρi < l2i and l2i < l1i, both H1 and H2.

Figure 4 demonstrates the four different vertex spaces belonging
to Γ = 1. From the latter figure it can observed how H1 and H2

(a) Γ01

H2

(b) Γ02

H1

(c) Γ03

H1

H2

(d) Γ04

Figure 4. CAD MODEL OF THE VERTEX SPACE FOR Γ0I , I =
1, . . . ,4.

may influence vertex space. It can be readily deduced that an op-
timal design for a Γ = 1 corresponds to Γ01. All the vertex spaces
depicted in Fig. 4 correspond to a configuration for which θ = 0.
As mentioned previously, vertex spaces for different values of θ

for Γ = 1 can be obtained by applying a rotation about the axis
of the prismatic actuator by θ.
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ING LINK.

For the remaining of this subsection we attempt to obtain the
vertex space by exploring the IKP and the geometrical character-
istics of Γ = 1 which will be helpful later on for the geometri-
cal construction of the constant-orientation workspace. Since in
this case we are dealing with a three dimensional space, a cross
sectional plane should be considered in order to reduce the prob-
lem to a two dimensional one. From a geometrical inspection,
it follows that a cross sectional plane, called X , which is rotated
around the y-axis of the fixed frame by angle θ results in a homo-
geneous section for vertex space and leads to conventional geo-
metric objects such as circles and lines. This helps to reduce the

complexity of the computation and, to be precise, leads to an al-
gorithm which consists in finding the intersection of some known
geometric objects such as intersections of circles and lines. In the
fixed frame, the vertex space, wi, can be formulated mathemati-
cally as follows:

wi = ri−Qs′i (11)

The particular cross section X defined above, implies that the
above expression should be multiplied by Q−1

y,θ where Qy,θ stands
for the rotation around the y-axis by angles θ:

w′i = Q−1
y,θ wi = Q−1

y,θ ri−Qx,φs′i (12)

where Qx,φ represents the rotation matrix around the x-axis by
angles φ. In the above one should be aware that Q = Qy,θQx,φ
which is coming from the rotation sequence order. Each limb is
constituted of two moving links and their corresponding motions
are shown respectively in Figs. 5 and 6. From Fig. 5 it follows
that:

(z′−w′iz)
2 +(x′−w′ix)

2 = l2
1i (13)

where w′ = [w′ix,w′iy,w′iz]. The cross section is followed along the
x′-axis. Thus, for a given x′ = xH , two solutions are in hand for
z′, called z′b j, j = {1,2}, which are the z′ coordinates of two set
of circles in Fig. 6. The equation representing the four circles in
Fig. 6 can be expressed as follows:

1Ci : (z′− z′b j)
2 +(y′−w′iy±

∆ρi

2
)2 = l2

2i, j = 1,2 (14)

Referring to Fig. 6, the expression of the four lines, called Li,
tangent to the above circles having zero slopes is:

1Li : z′b j± l2i (15)

The intervals of the vertex space are as follows:

lim
min i

x : w′ix− l1i ≤x′H ≤ w′ix + l1i : lim
max i

x (16)

wiy− l2i− ∆ρi

2
≤y′H ≤ wiy + l2i +

∆ρi

2
(17)

wix− l1i ≤z′H ≤ wiz + l1i (18)

for which the cross section should be repeated with respect to
Eqn. (16). For which [x′H ,y′H ,z′H ] stands for the coordinates of
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H1 H2 H3

Figure 7. CAD MODEL OF THE VERTEX SPACE OF Γ = 0 FOR θ =
π

6 .

the cross section. As it can be deduced from Fig. 6, the prob-
lem of obtaining the vertex space for Γ = 1 is made equivalent to
finding the intersections of the four circles connect by four lines,
Eqs. (14) and (15), for a given cross section X , with respect of
the interval given in Eqs. (16-18) and, finally, identifying which
intersection is constituting the boundary of the vertex space. To
do so, we resort to the algorithm presented in [17]. The foregoing
algorithm is not fully developed here. Thus the last step consists
in obtaining all the circular arcs and lines defined by the intersec-
tion points found above and ordering these points. This should
be accompanied by a checking procedure to identify the arcs and
lines that constitute the boundary of the workspace. To do so, for
a given curve(line or circle portion), belonging to a given arc a
point lying on the curve is chosen, preferably not one of the end
points. Then, using the IKP, it is verified whether this point has
boundary condition which means that a little variation on this
point leads to violate either the constraint inequalities of the IKP
or the strokes of the prismatic actuator. Since a CAD model is
presented for the vertex space of Γ = 1 thus the vertex space ob-
tained by using the above procedure is omitted. However, the
above formulation will be used for obtaining the constructive ge-
ometric analysis of constant-orientation workspace.

3.1.2 Topology of the Vertex Space for Γ = 0. The
vertex space generated by a PRUR limb having a prismatic ac-
tuator along x− axis is equivalent to the vertex space generated
by the same leg having the prismatic actuators along z-axis but
rotated by π

2 around the axis of the prismatic actuator. Thus, only
the vertex space for limb with prismatic actuator in the direction
of z axis is elaborated.

In the case of Γ = 0, the topology of the vertex space is
highly related to θ in such a way that the vertex space for θ = 0
could not be extended to other θ by a simple rotation. Moreover,
for different θ the shape and characteristic of the holes vary. In

θ

z
z′

x′

wiz

w′ix

wix

w′iz

x
∆ρi

2l1i

Figure 8. BOUNDARY GENERATED BY THE FIRST MOVING LINK
FOR Γ = 0.

this paper the complete instructions are not given for obtaining
the vertex space of Γ = 0 and will be the subject of an upcom-
ing publication. However some general outlines are given. In
contrast of Γ = 1, in the case of Γ = 0, there are three types of
holes:

1. H1: Always exists, except for θ = 0,π. This hole is overall
with respect of the following condition:

if (l1i cosθ− ∆ρi sinθ) > 0 the condition becomes:

l2i >

√
l2
1i−

(
∆ρi
2

)2− ∆ρi
2 cosθ;

otherwise, the condition is: l2i > l1i
sinθ

.

2. H2 and H3 exist when ∆ρi < 2l1i:

H2 is overall when: l1i sin(θ−β)
sinθ

< l2i where β =

arcsin
(

∆ρi sinθ

2l1i

)
;

H3 is not overall but it would be larger when ∆ρi de-
creases.

Figure (7) represents the CAD model of the vertex space for a
limb with l1i = 100, l2i = 90 and ∆ρi = 140 for θ = π

6 .
For the rest of this subsection, the vertex space of Γ = 0

is obtained using the constructive geometric approach. As each
limb is constituted of two moving links thus their corresponding
motions are shown respectively in Figs. 8 and 9. Skipping math-
ematical details, the equations for the circles and lines in Fig. 8
are:

(z′−w′iz±
∆ρi

2
sinθ)2 +(x′−w′ix±

∆ρi

2
cosθ)2 = l1i2 (19)

z′ sinθ+ x′ cosθ = wix± l1i (20)

For a given x′, solving z′ from above, called z′b j, j = 1,2, leads to

7 Copyright c© 2010 by ASME



z′

y′

2l2i

w′zi

w′yi

Figure 9. BOUNDARY GENERATED BY THE SECOND MOVING LINK
FOR Γ = 0 DUE TO THE FIRST MOVING LINK.

the following circles and lines which are depicted in Fig. (9):

0Li : (z′− z′b j)
2 +(y′−w′iy)

2 = l2
2i (21)

0Ci : y′ = w′iy± l2i (22)

The intervals for which includes the vertex space are:

lim
min i

x : w′ix− l1i− ∆ρi

2
|sinθ| ≤x′h ≤ w′ix + l1i +

∆ρi

2
|sinθ| : lim

max i
x (23)

w′iy− l2i ≤y′H ≤ w′iy + l2i (24)

w′iz− l1i− ∆ρi

2
|cosθ| ≤z′h ≤ w′ix + l1i +

∆ρi

2
|cosθ| (25)

Using the same reasoning explained previously for Γ = 1, the
problem of obtaining the vertex space for Γ = 0 is made equiv-
alent to finding the intersections of two pairs of two circles con-
nect by two lines, Eqn. (21) and (22), for a given X cross section
and identifying which arc or line is constituting the boundary of
the vertex space. This can be done by having in mind the rea-
soning provided above for Γ = 1: checking the boundary condi-
tion for the chosen point and also using the algorithm presented
in [17]. Since a CAD model is presented for the vertex space of
Γ = 0, Fig. 7, thus the vertex space obtained by using the above
procedure is omitted.

3.2 Constant-orientation Workspace
Several methods are presented in the literature for the de-

termination of the constant-orientation of a parallel mechanism.
However the great majority of these approaches rely on the idea
to intersect the vertex space of each limb either by a CAD soft-
ware or by obtaining the geometrical expression of the vertex
space and implement into a computer algebra system. An elab-
orated survey about the advantages and drawbacks of both ap-
proaches can be found in [20]. The analysis of the vertex space

i (ri)x (ri)y (ri)z (s′i)x (s′i)y (s′i)z

1 140 0 70 0 -30 30

2 140 70 0 30 0 0

3 70 140 0 0 30 0

4 0 70 0 -30 0 0

5 0 140 70 0 30 30

Table 1. GEOMETRIC PROPERTIES (IN MM) ASSUMED FOR THE 5-
PRUR PARALLEL MECHANISM.

in the preceding sections is arranged in such a way that allows to
obtain the constant-orientation workspace using both approaches
mentioned above. Having in place the CAD model of the vertex
space we are one step away from the CAD model of the constant-
orientation workspace. The final step is to apply an offset vector
to all the five vertex spaces which is in opposite direction of the
vector connecting the last joint of the limb to the mobile frame
attached to the platform, si. Finally, the workspace will be the
intersection of the five offsetting vertex spaces. Figure 10(a) il-
lustrates the CAD model of the constant-orientation workspace
for a given orientation of the platform. Emphasis in this section
is placed on geometrical construction of the constant-orientation
workspace which is inspired from the algorithm presented in [17]
which was also used above for the geometrical construction of
the vertex space. The foregoing algorithm is not fully developed
here and only some primordial issues are presented which should
be inevitably considered in order to find the constant-orientation
workspace of a 5-PRUR parallel mechanism. The first step is to
reduce the three-dimensional space to two-dimensional one us-
ing the cross section plane X defined in Eqn. (12). As pointed
out previously, Eqn. (12) results in homogeneous sections for
X which are constituting of some circles and lines. Consider a
5-PRUR comprising g limb having Γ = 0 and 5− g limb with
Γ = 1. The set of all the circles and lines obtained by applying
the cross section plane X for the five vertex spaces is defined
respectively as C and L :

C = {0C1, . . . ,
0Cg,

1C1, . . . ,
1Cg−5} (26)

L = {0L1, . . . ,
0Lg,

1L1, . . . ,
1Lg−5} (27)

The cross section X is repeated along x′ axis, x′H , over the fol-
lowing interval:

max
{

lim
min i

x
}
≤ x′H ≤min

{
lim
max i

x
}

, i = 1, . . . ,5 (28)

In the above, lim
min i

x and lim
max i

x were defined in Eqs. (16) and (23)

for Γ = 1 and Γ = 0, respectively. Having in place all the infor-
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3 FOR THE DESIGN PRESENTED IN TABLE1.

mation concerning the circles (centre and radius) and lines (ex-
pression) from Eqs. (26) and (27) and considering the required
interval for applying the cross section, the following steps should
be followed in order to find the constant-orientation workspace:

1. Finding the intersection points of all the circles in C ;
2. Finding the intersection points of circles, C , with lines,L ;
3. Finding the intersection points between lines, L ;
4. Ordering the intersection points found above. (Hint: The in-

tersection points of circles are ordered using atan2 function
and intersection point of lines in ascending order);

5. Determining each arc or line constituting the boundary of
the constant-orientation workspace.

The last item is the most challenging part and it should be elab-
orated with care. To do so, one should verify whether a given
point, preferably the mid-points, belonging to the arc or line
is inside of all the vertex spaces. To do so, the mid-point of
the arc or line is considered and substituted into the IKP of all
the limbs. Obviously, the arc or line will be a boundary of the
workspace if the mid-point satisfies the boundary condition, i.e.
the IKP inequality constraint, and the strokes of all the actuators.
Figures 10(b) represent the constant-orientation workspace for
given rotation angles of the platform. The constant-orientation
workspace obtained by the CAD software, Fig. 10(a), is coherent
with the one obtained by implementing the geometrical construc-
tive approach in a computer algebra system, Fig. 10(b). As it can
be observed form the latter two figures, the constant-orientation
workspace is highly irregular and also may have an extremely
small isolated part which is usually unexpected.

As elaborated in [17], reaching this step the volume of the
constant-orientation workspace can be obtained. The technique
is essentially based on the Gauss Divergence Theorem which
can be applied to planar regions. As mentioned previously, the
constant-orientation workspace for a given cross section consists
of the intersection of circles, resulting in some arcs, and lines.
Thus, in order to compute the area, Di, for a given section the
area created by both arcs and lines should be considered. Based
on results obtained in [17], apart from some minor modifications,
the area created by an outer-arc— with centre of curvature as
[h,g]T , its radius of curvature r and the angle corresponding to
the end points θ1 and θ2, (not to be confused with θ for DOF)—
can be written as:

Di = hr[sinθ2− sinθ1]+gr[cosθ1−cosθ2]+ r2[θ2−θ1]. (29)

In what concerns the area created by the lines based on the for-
mulation given in [17] for the Gauss Divergence Theorem, upon
performing the integration, for the outer lines, it follows that :

Di =


−y′l(z

′
u− z′l) vertical line located in the left side ofw′iy

y′r(z′u− z′l) vertical line located in the right side ofw′iy
−z′l(y

′
r− y′l) horizontal line located in the lower side ofw′iz

z′u(y′r−u′l) horizontal line located in the upper side ofw′iy
(30)

where (z′l , z′u) and (y′r, y′l) stand respectively for the z′ (lower and
upper) and y′ (right and left) components of the line constitut-
ing the boundary of the constant–orientation workspace found
by the algorithm. For the inner lines and arcs the negative values
of Di should be considered. Finally, the area of the workspace
is 1

2 ∑Di. The above formulation for computing the volume of
the workspace is integrated inside the algorithm for obtaining
the boundary of the constant-orientation workspace. Figure 11
represent the volume of the constant-orientation workspace with
respect of two permitted orientations, (φ, θ), for the designs pre-
sented in Table (1).

4 CONCLUSION
This paper investigated the constant-orientation workspace

of 5-DOF parallel mechanisms (3T2R) with a limb kinematic ar-
rangement of type PRUR. From the results for the IKP, two types
of 5-PRUR limbs were presented, Γ = 0 and Γ = 1, whose IKP
and the vertex spaces are completely different. Bohemian domes
appeared in the geometrical interpretation of each limb and led
to a CAD representation of the constant-orientation workspace.
An algorithm was proposed in order to find the boundary of the
vertex space and the constant-orientation workspace which can
be implemented in any computer algebra system. The algorithm
made it possible to find the volume of the constant-orientation
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workspace by applying the Gauss Divergence Theorem and pro-
vided some insight into the optimum synthesis of 5-PRUR paral-
lel mechanisms. ongoing works include the optimum design of
such mechanisms with regard to the singular barriers.
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