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Abstract—a new approach to the observer design for descriptor 
continuous time systems is proposed and its application in the 
fault diagnosis problem is illustrated. In this observer, two 
features of disturbance decoupling and fault estimation are 
combined. Also a more general frame for fault estimation is used. 
Some numerical examples and simulation results are shown to 
justify the effectiveness of the algorithm.  

Keywords-descriptor systems; observer based fault detection; 
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I.  INTRODUCTION  
Singular systems have been attracting the interest of many 

researches since they were firstly introduced, since they 
represent a more general description for linear systems [1]. In 
addition these systems arise naturally in modeling of economic, 
computer network and chemical systems [1]. The observer 
design problem for descriptor systems can be used to estimate 
the sates of a normal system with disturbances [3].  Most of the 
existing methods for fault detection in descriptor systems are 
based on the design of an appropriate observer for the system. 
Among these methods we can address the parameterization 
approach in [4], eigen-structure assignment methods in [5], and 
algebraic methods used in [6]. Compared with proportional 
observers, Proportional Integral observers provide more robust 
estimation against model uncertainties as shown in [9] and 
better disturbance attenuating as shown in [3]. Other methods 
like co prime factorization approach of [10] and LMI 
approaches of [9] made the observer more robust. However 
they don’t provide ideal disturbance decoupling and only 
bound the effect of disturbance.  A derivative term is added to 
the observer in [11, 12]. Since the derivative term leads to 
noise amplification, it is not considered here. In [12] only 
disturbances were considered to perturb the states and an 
observer was proposed to estimate disturbances, therefore it 
can’t decouple any type of disturbances but the proposed 
observer can decouple any kind of disturbances.     

Although many papers have dealt with the problem of 
observer design for descriptor systems, a few works have been 
made in simultaneous disturbance rejection and fault detection 
which is one of the most significant features of a fault detection 
algorithm. When a system is affected by probable unknown 
fault and disturbances, an effective fault detection algorithm 
should be able to decouple disturbances from the estimated 
fault. In this paper a method is proposed to accomplish this 
task, in which, the two strategies are combined, namely, the 

unknown input observer strategy like the one proposed in [6] 
for disturbance decoupling, and the integral observer design 
introduced in [3] for fault detection (estimation). The proposed 
method preserves each method advantages while avoiding their 
drawbacks. Compared with [6], the new method is able to 
estimate time varying and even unstable faults while the 
method introduced in [6] can only detect step faults. Compared 
with Integral observers of [3, 7], the proposed method has the 
advantage of distinguishing between fault and disturbances. 
Therefore, this method can detect faults, even in the presence 
of unstable disturbances. In addition this algorithm has the 
capability of incorporating some priori knowledge about the 
fault model in the observer design. Estimating disturbances by 
their Taylor series will lead to an inaccurate disturbance 
decoupling and this is a common drawback of integral 
observers when used for fault detection. On the other hand 
unknown input observer schemes don’t have the capability of 
estimating faults. The latter is a common drawback of 
unknown input observers. From another point of view an 
Unknown input observer can’t tolerate model inaccuracy and 
its behavior is unpredictable in the presence of model 
mismatch; therefore, an unknown input observer compromises 
the robustness of the observer in order to decouple any 
disturbances. On the other hand a proportional integral 
observer can tolerate model uncertainties to some extent at the 
cost of limiting its performance to a specific group of 
fault/disturbance signals, i.e. step or ramp disturbances.  In [6] 
the general structure observer is suggested for time varying 
disturbances but the proposed method in this paper is much 
simpler than a general structure observer. The proposed 
method composed the above strategies in order to gain better 
performance. The algorithm proposed in this paper has two 
advantages over the one proposed in [6, 9]. First it works in the 
presence of a larger group of faults, and second it has a much 
simpler design method which can be done by conventional pole 
placement methods. Even the optimal estimation scheme of 
Kalman can be applied to this method in order to optimize the 
observer. This paper is organized as follows. In the second 
section the preliminary information and assumptions are 
illustrated, in the third section the main results and theorems 
are proposed and existence conditions are derived. In the fourth 
section some simulation results and comparisons are made, and 
the conclusion and remarks are drawn in the last section. 
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II. BACK GROUANDS AND PRELIMINARIES 

A. Model based Fault detection 
Consider a descriptor system described by:  
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Vectors )(),(),(),(),( tytftdtutx are the system state, input 
vector, disturbance vector, fault vector and the output 
respectively. Matrices , , , ,d fA B B B C are real valued, 
constant matrices of appropriate dimensions. 

Assumption 1: If df nn RtdRtf ∈∈ )(,)( , we assume: 
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The above assumptions are not restrictive as if they weren’t 
satisfied; we can redefine fault and disturbance vectors.  
Define: 
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Such that T and Q are of ranks dn and fn respectively. Then 
we can set: 
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Therefore, assumption 1 will be satisfied.  

Definition 1: A signal type is its highest non-zero time 
derivative.  

From the above definition, a step signal is of  type 0 and a ramp 
signal has of type 1. Also it is worth noting that a signal type is 
defined for piecewise continuously differentiable signals.  

Corollary 1: a signal of type n can be modeled as the 
impulse response of a system of degree n+1.  

Corollary 2: Any signal of type n can be exactly described 
by n+1 terms of its Taylor series. And can be estimated by n+1 
terms of its Taylor series if its n+1 and higher derivatives are 
bounded.  

Definition 2: A singular system is called impulse free if it 
doesn’t exhibit impulsive behavior in its state response.  

Lemma 1: A singular system described by (1) is impulse 
free if and only if: 

rankEAsE =− ))(det(deg  

Proof: The proof is given in [1]. 

Definition 3: A singular system is called regular if: 

0)det( ≠−∋∈∃ AsECs  

Since the above polynomial has finite number of roots, the 
regularity condition can be addressed as: 

  0)det( ≠− AsE    For almost all Cs ∈   

Definition 4: A singular system is observable if and only if: 

0)Re(, ≥∈∀=�
�

�
�
�

� −
=�

�

�
�
�

�
sCsn

C
AsE

rank
C
E

rank  

B. Fault model  
The signal )(tf  can be modeled as the output of linear time 

invariant system.  
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There is no need to assume a singular model for fault 
signal, because the fault effect on the output can be impulsive 
even if we assume a normal model as described in (2). There 
are several fault signals which can be modeled by (2) like step, 
ramp, sinusoids and exponentials. We may add a white noise to 
the above equation in order to model the uncertainties in the 
aforementioned model.  

III. UNKNOWN INPUT PI OBSERVER FOR FAULT DETECTION 
In this section we extend the results in [6] which are only 

valid for constant faults, into a more general group of faults. 
Consider the system described by (1), we wish to design a 
normal observer described by (4) such that:  
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The proposed observer has the form:  

).4()(ˆ))(ˆ)(()(

).4()(ˆ)()(ˆ

).4()(ˆ)(ˆ)(ˆ)(ˆ)(

ctwtxCtyFtw

btyDtztx

atwHtuJtyBtzAtz

Φ+−=

+=

+++=

�

�
 

This is essential to use output to construct the estimated state of 
the system in (4.b). As shown in [1] it is impossible to design a 
normal observer like (4) without including the output in 
equation (4.b). It should be noted that defining matrix F in the 
above equations is necessary and if it is omitted, as in [6],  we 
must set number of fault signals equal to number of outputs 
which is meaningless in general situations. Equations (4) 
suggest a general description for PI observers. In the rest of this 
paper we shall assume a special case of the above equations 
because fault model is not known and we construct it by 
integrating the estimation error. The fault signal can be 
modeled as: 

n
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We can model unstable faults with the above equation as 
well as stable exponentials and polynomials. Matrices 

nfff ..., 10 are unknown coefficient of fault vector which are 
aimed to be approximated by an observer. Define: 
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The above model for fault is designated to estimate the fault 
signal by the first nΦ terms of its Taylor series. It should be 
noted that depending of the fault signal type, nΦ can be equal 
to or greater than fn . If we set Φ  to zero, the proposed 
observer will be the same as in [6]. Then nΦ  and fn  will be 
equal and the observer will be efficient for step faults only. It 
then approximates fault by a constant signal namely )(tw . 
Estimated fault vector is the first  fn  integral variables. In the 
rest of paper we assume 1=fn (i.e. scalar fault) for 
simplicity.  

Lemma 3: An unknown input observer described by (4) 
exists for system (1) if there is a matrix U n nR ×∈ such that: 
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And:  
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Proof: Define: 
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Then by using (6) and assuming that Φ=Φ̂  the estimation error 
dynamics become: 
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Therefore, the condition (7) is derived easily from this 
equation.   � 
 
   Lemma 4: The system described by (1) without fault input, 
has an unknown input PI observer described by (4) which can 
estimate the state vector independent of disturbances, if:  
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The proof can be found in [6]. 
In the above lemma, #E  is defined such that: 
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From (9) and (10) it is clear that observability of the system 
(1) is a necessary condition for existence of an Unknown input 
PI observer.  
    Lemma 5: One solution to the equations (6) can be 
addressed as:  
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In (11) G is an arbitrary matrix of appropriate dimensions. 
Furthermore, if we find Â such that (7) is satisfied, we then 
have: 
     KDAB += ˆˆˆ                                                           (12) 
Where K satisfies: 
     KCUAA −=ˆ  
The design procedure for K when 0=Φ (i.e. for step faults) 
is stated is [9], however setting K to a value which can satisfy 
(7), we can easily design the observer by using equations (11) 
and (12). The design method for matrix K is a bit 
complicated so we take another approach which is stated in 
the following.  
Consider the system (1), if we augment fault signal to the 
system state vector, the augmented system will have the 
following dynamics: 
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Therefore one can obtain the following equalities: 
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   Theorem 1: The augmented system described by (13) is 
observable if the system (1) is observable and: 
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   Proof: The observability matrix for the augmented system is 
stated in (14). Because of the structure defined for Φ in (6), 
for 0≠s in (14.b), from the thn  row to the thnn Φ+  row, 

there are Φn linearly independent rows. Therefore, condition 
(14.b) is equal to: 
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A sufficient condition for the above equation is: 
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For 0=s , this condition should be satisfied: 
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Noting that Φ provides )1( −Φn linearly independent columns, 
and that the system in (1) is observable, by using assumption 
1, the above matrix is proved to be of full column rank. This 
completes the proof.    
    Remark 1: Theorem 1 is only valid for scalar faults and for 
vector faults we shall apply lemma 4 to equations (14).  
                    
   Theorem 2: The unknown input PI observer (4) exists for the 
augmented system (13) if an unknown input PI observer exists 
for system (1). 
 
Proof: Note that:  
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As a result, existence conditions (9) from lemma 4, for 
augmented system can be obtained as: 
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The latter equality is obtained using assumption 1 and theorem 
1 and the observability assumption. This completes the proof 
of theorem 2. 
  
    Corollary 3: Designing an unknown input PI observer (4) 
for system (1) for fault detection and state estimation can be 
replaced by designing an unknown input observer for system 
(13) for state estimation.  
Define the estimation error for augmented system as: 
  )()()( txEUtzt aaaa −=ξ  
Then the error dynamics obey: 
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Subscript a shows that the subscripted matrices are to be 
designed for augmented system.  We assume 0ˆ =aH because 
there is no further need to include integral action in augmented 
system. To have an unknown input observer which estimates 
the state asymptotically we must set: 
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Then the error dynamics become: 
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   Lemma 6: If the conditions of theorem 2 are satisfied then 
the pair ),( aaa AUC is observable, i.e.  
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The proof is stated in [6].  
Now we can propose the following design procedure:  
   
 Design procedure 1: 
1) Construct the augmented system in equation (13) by 
defining an appropriate model for fault in (6). 
2) Compute matrices ## ,CE such that:  
     ICCEE =+ ##  
3) Define: 
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4) Select matrix G such that GCI − is non-singular. 
5) Compute matrices aa LU , according to (11) but for the 
augmented system. 

6) Calculate aD̂  as: 

      )(ˆ ## CCILCD aa −+=  

7) Design aKsuch that aÂ is stable according to the following: 

       aaaaa CKAUA −=ˆ  
This can be done by a simple pole placement algorithm. 
Observability of the pair ),( aaa CAU is guaranteed by lemma 6.  

8) Calculate aB̂ and aĴ as: 
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This completes the design procedure.  � 
 
This procedure has two advantages over the one proposed in 
[6]. Firstly, it is able to estimate different fault types while the 
proposed method in [6] is only able to estimate step faults. 
Secondly, it has a simple and familiar design method of pole 
placement in step 7, while method in [6] requires a 
complicated procedure proposed in [9] which demands finding 
Â such that (8) is stabilized. The proposed method also 

provides more design parameters by presenting F in 
equations (4) and the idea of state augmentation, which leads 
to a simple design procedure for observer gain. However, it is 



shown in the following theorem that the proposed method is a 
more general framework compared to that in [6] and other 
similar algorithms. Consider an observer in the form of (4) is 
obtained for a system (1) by using the procedure presented in 
[6]. Then, suppose we want to design an observer for 
augmented system of (13) in order to detect more general 
group of faults. Then the following theorem is essential. 

Theorem 3: If (4) is an unknown input PI observer for (1) 
with step faults, then one solution to the observer design 
problem for the augmented system can be found as:  
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Proof: The proof is constructive; consider the design 
procedure 1, depicted in this section. First note that from 
equations (13) and the proof of theorem 2, it is clear that: 
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Then note that if G is selected such that GCI − is non-
singular in the 4th step of design procedure 1, using the 
following equation: 
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It is obtained that: 
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Furthermore using equations (11), matrices aa LU , are obtained 
as in (20). If one choose matrices Â and K as in design 
procedure 1, then from equations (12), equations (21) and (22) 
can be easily obtained, and this concludes the proof � 
 

Remark 2: Note that matrix F is calculated by partitioning 
the matrix aK as: 
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Remark 3: Although we present a method of obtaining the 
augmented observer from the original observer presented in 
[6], because of the simplicity and design degree of freedom in 
the proposed method it is recommended that one follows the 
design procedure 1, until step 7 for the original system (1) and 
then switch to the augmented system for the pole placement 
procedure. Therefore, we present the following design 
procedure. The following procedure has an advantage of 
simple pole placement compared with procedure in [6] 
combined with its low computational cost in comparison with 
design procedure 1.  

 
Design procedure 2:  
 
1) Consider the system described by (1), and satisfy the 

existence conditions of lemma 4 and 5, find ## ,CE as in (10) 
and select G such that GCI − is not singular.  
2) Compute matrices U and L according to (11).  
3) Construct aaaa CLUA ,,, according to (13) and (20). 
4) Find aK such that the eigen values of 

matrix aaaaa CKAUA −=ˆ  are located in appropriate places.  
5) Partition aK  as in (23) and compute D̂and B̂ according to 

(11) and (12).  
6) Construct the observer (4) with fUBH =ˆ and Φ as defined 

in (6) and F as in (23).  
 

IV. NUMERICAL EXAMPLE 
Consider system (1) with following matrices:  
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We assume ramp fault and ramp disturbance and a step input. 
It was assumed that although the occurrence of fault and its 
magnitude is not known, it is known that it has the form of: 

battf +=)(  
For disturbance signal there is no assumption and it is 
considered as a ramp signal added by a sinusoidal. Also a 
sinusoidal fault signal is simulated in order to examine the 
efficiency of proposed algorithm in presence of unpredicted 
fault signal types.   
 Following the procedure presented in [6] we obtain: 
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Then we have the following: 
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Figure 1 shows the fault signal and the estimated fault (i.e. 
fault residue). Fault input is a ramp signal occurred at t=5 sec 
the algorithm shows fault occurrence and estimates it after 2 
sec effectively. Compared with figure 4 it is clear that using 
the proposed observer is vital in the presence of ramp faults.    
Figure 2 shows an estimated and original state for the 
presented observer. It shows that disturbance decoupling was 
done successfully. Figure 4 shows the estimated fault in case 
of a sinusoidal fault which shows fault occurrence. Although 
fault input was not estimated correctly, residue is a fine 
indicative of fault occurrence. Figure 5 shows the original 
fault and its estimation by the algorithm proposed in [6]. In the 
following figures dashed lines are indicative of estimated 
variables while normal lines show original signals.  
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Figure 1: estimated fault signal  
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Figure 2: estimated state in presence of fault and disturbance 
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Figure 3: estimated sinusoidal fault  
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Figure 4: estimated ramp fault using method given in [6] 

V. CONCLUSION 
A new method for state observation, disturbance decoupling 
and fault detection was proposed. The effectiveness of this 
algorithm is to estimate fault signals asymptotically which is 
useful in fault diagnosis. The presented method can decouple 
any type of disturbances and estimate polynomial faults 
effectively. Also it can detect other types of faults.   
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