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Abstract— This paper investigates some kinematic properties of a 
five-degree-of-freedom parallel mechanism generating the 3T2R 
motion and comprising five identical limbs of the RPUR type. In 
this study, two classes of simplified designs are proposed whose 
forward kinematic problems have either a univariate or a closed-
form solution. The principal contributions of this study are the 
solution of the forward kinematic problem for some simplified 
designs— which may have more solutions than the FKP of the 
general 6–DOF Stewart platform with 40 solutions— and the 
determination of the constant orientation workspace based on 
algebraic geometry (Bohemian domes). 

Keywords- 5–DOF parallel mechanisms; Forward kinematic 
problem; Constant orientation workspace; Bohemian dome 

I.  INTRODUCTION  
Five–degree–of–freedom (DOF) parallel mechanisms 

are a class of parallel mechanisms with reduced DOFs 
which, according to their mobility, fall into three 
classes: (1) three translational and two rotational 
freedoms (3T2R), (2) three rotational and two planar 
translational freedoms (3R2Tp) and (3) three rotational 
and two spherical translational freedoms (3R2Ts) [9]. 
Since, in the industrial context, the 3T2R motion can 
cover a wide range of applications including, among 
others, 5-axis machine tools and welding, therefore, in 
this research, the kinematic properties of this class will 
be investigated. In medical applications that require at 
the same time mobility, compactness and accuracy 
around a functional point, 5-DOF parallel mechanisms 
can be regarded as a very promising solution [1]. 1 

Although hexapods, 6–DOF parallel mechanisms, can 
be used as versatile robots and machine tools, their 
complexity is a major deterrent to their widespread in 
industry [11] which stimulates interest for parallel 
mechanisms with lower-mobility in some particular 
applications. It is generally believed that in comparison 
with a general-purpose manipulator a limited-DOF 
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parallel manipulator has the advantages of simple 
mechanical structure, low manufacturing cost, simple 
control algorithm, and therefore high-speed capability 
[2]. 

As far as 5–DOF mechanisms with identical limb 
structures are concerned, researchers have mainly 
worked on the type synthesis [9, 3–6]. In fact, it was 
believed that symmetrical12 5-DOF mechanisms could 
not be built [13] until [14] proposed a first architecture.  

To the best knowledge of the authors, up to now, very 
few kinematic studies have been conducted on 
symmetrical 5-DOF parallel mechanisms (especially in 
3T2R symmetrical parallel mechanisms). This is 
probably due to their short history.  

The main focus of this research is the FKP of 
symmetrical 5-DOF parallel mechanisms, more 
precisely 5-RPRRR, which can be regarded as one of 
the most challenging topics in the kinematics of parallel 
mechanisms. The analytical resolution of the FKP in the 
context of parallel mechanisms, due to its mathematical 
complexities, initiated several researches. In some cases, 
upon considering design conditions, such as the 
coalescence of connection points and planar base and 
platform, the FKP can be expressed in a closed–form 
solution, i.e., an explicit solution for the FKP. The 
general approach toward obtaining a univariate 
expression for the FKP is based on elimination theory, 
such as the Resultant method.  

The remainder of this paper is organized as follows. 
The architecture and the general kinematic properties of 
the 5-RPRRR parallel mechanism which originated 
from the type synthesis performed in [6, 9] are first 
outlined. The FKP are addressed and from the results 
obtained two classes of simplified designs— which 
include in total 9 simplified designs— are found whose 
FKP have either a univariate or a closed–form solution. 
The constant–orientation workspace is interpreted 
geometrically and the results are implemented in a CAD 

                                                           
1 In the context of this paper, the symmetric properties refer to the limb type 
and not to the geometry, such as centro–symmetrical simplifications 
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system. Moreover, an algorithm, inspired from the one 
presented in [7] is proposed for computing the boundary 
and volume of the constant orientation workspace. 

II. ARCHITECTURE AND KINEMATIC MODELING 
Figs. 1 and 2 provide respectively a representation of a 

RPUR limb and a CAD model for a 5-DOF parallel 
mechanism providing all three translational DOFs, plus two 
independent rotational DOFs (3T2R) of the end-effector, 
namely (x, y, z, �, �)  In the latter notation, (x, y, z) are the 
components of vector p and represent the translational DOFs 
with respect of the �xed frame O, illustrated in Fig. 1, and (�, 
�) stand for the orientation DOFs around axes x and y(e1i), 
respectively. The rotation from the �xed frame Oxyz to the 
moving frame Ox´y´z´ is de�ned as follows: a �rst rotation of 
angle � is performed around x�axis followed by the second 
rotation about e1i by angle �. For more information concerning 
the kinematic modeling see [11].  

From [11] it follows that Q cannot be prescribed arbitrarily 
since the mechanism has only two degrees of rotational 
freedom. Therefore, a rotation matrix consistent with the 
orientation capabilities of the mechanism must be chosen. 
Indeed, the motion capabilities of the mobile platform should 
be limited to the position and orientation of a line attached to 
the mobile platform. Hence, based on the results presented in 
[12] and on the de�nition of angles � and � given above, this 
rotation matrix can be written as: 

  .
coscoscossinsin

sincos
sincossinsincos

Q
�
�
�

�

�

�
�
�

�

�

θϕθϕθ−
ϕ−ϕ

θϕθϕθ
= 0  (1) 

III. FORWARD KINEMATIC PROBLEM (FKP) 
The FKP pertains to finding the pose of the platform for a 

given set of actuated joints. With reference to Fig. 1, the 
following equations, arising from the kinematic constraint of 
the ith limb, can be written: 

 222
iAiBiAiBi )zz()xx( ρ=−+−  (2) 

 2222 )()()( iBiCiBiCiBiCi lzzyyxx =−+−+−  (3) 

 0=θ−−θ− sin)zz(cos)xx( BiCiBiCi  (4) 

Such that the first two equations represent, respectively, the 
magnitude of �i and vi and the last one corresponds to the 
kinematic constraints between e2 and vi, i.e., e2 � vi.  

For the FKP, the above system of equations should be 
solved for (x, y, z, �, �) with respect to input data which are 
the lengths of the prismatic actuators, �i. 

Equations (2–4) contain the coordinates of the two passive 
joints, namely Bi and Ci. Since Ci is attached to the platform, 
its coordinates can be written directly in terms of the platform 
pose. One has: 

 .s],,[ i′+= Qpzyx T
CiCiCi  (5) 

Upon eliminating the coordinates of the passive variable Bi 
(xBi, yBi, zBi), having in mind that yBi = yAi, Equations (2–4) lead 
to (x, y, z, u, t) where u and t stand respectively for the tan of 
half angle substitution of � and �. The degrees of the 
equations are respectively (4,4,4,8,8). Thus it follows that the 
univariate expression in the three dimensional kinematic space 
for a RPUR limb is of degree 20. Numerous approaches were 
proposed in the literature and practice including the use of 
numerical procedures, simplifying the mechanism by the 
coalescence of some of the connection–points on the platform 
or the base and, finally, to use some extra sensors. In this 
project, simplifying the mechanism by the coalescence of 
some of the connection–points is considered for solving the 
FKP with the aim of obtaining a simpler design, reducing the 
mechanical interferences and increasing the workspace 
volume. 

From the results obtained in [12], the following conclusion 
can be drawn: Any mechanical simplification which provides 
the coordinates of two pairs of U joints explicitly or a relation 
among them leads to a univariate solution for the FKP. The 
above issue remains central to the development of the 
simplified designs having either a univariate or a closed–form 
solution to the FKP. With the above conclusion in mind, 
consider two limbs, i and j, for which: 

1. The connection points at the base, Ai and Aj, are in a plane 
with e1 as normal or coincide; 

 
Figure 1.    CAD model of a 5-RPUR parallel mechanism. 

 
Figure 2.    Schematic representation of a RPUR limb. 
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2. Both second moving links have the same length, li = lj, or 
coincide; 

3. The connection points on the platform, Ci and Cj, are 
aligned with e2, or coincide. 

Therefore, in a design for which two pairs of limbs fulfill 
the latter conditions, on the basis of the above conclusion, 
FKP admits a univariate solution. There are three distinct 
situations, S = {A1A2A3}, in which the latter conditions 
described above can occur as depicted in Fig. 3. Therefore, all 
second order subsets of S adopt a polynomial form for their 
FKP, namely: 

{{A1A1},{A1A2},{A1A3}}, 

                       {{A2A3},{A2A3},{A3A3}}.                  (6) 

IV. CLOSED–FORM SOLUTION FOR THE FKP OF A {A1A1} 
DESIGN 

Fig. 4 represents a CAD model for a {A1A1} design. 
Referring to Fig. 3(a), the coordinates of the U joints 
belonging to the simplified arrangement A1, B12 and B34, can 
be readily computed and consist of the intersection of two 
circles centered at A1 and A2 (A3 and A4) with radius �1 and �2 
(�3 and �4). Four solutions can be found as a whole for the 
coordinates of the latter U joints. Having in place the 
coordinates of these two joints and upon subtracting (4) for 
i=1, 2 from i = 3, 4 leads to:  

).ss(sin)zz(cos)xx( BBBB 123412341234 −=θ−−θ−     (7) 

Applying the half–tan substitution for t=tan(�/2) results in a 
quadratic expression:  

12341234

3412
ssxx

Hzzt
BB

BB
−+−

±−=                          (8) 

With  

 .)ss()xx()zz(H BBBB
2

1234
2

1234
2

1234 −+−−−=    (9) 

From the above it can be deduced that q have up to 2×4=8 
solutions (2 and 4 stand respectively for the quadratic 
expression and for the number of solution for the coordinates 
of the two U joints). 

Having determined the value of � and the coordinates of 
both U joints, the next step consists in computing the 
coordinates of the U joint belonging to the regular limb, B5. 
Skipping mathematical derivations, (2) for i = 5 can be re-
written with respect to the obtained values and solved for xB5 
as follows: 

2
55

2
55

2
55 )cosx(sin cossinxx AAB �� −θ−ρθ±θ+θ=               

(10) 

Where  
Figure 3.    Simplified kinematic arrangements. 

 
Figure 4.    CAD model of a {A1A1} parallel mechanism. 
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).ss(sinzcosx BB 15115 −+θ−θ=�            (11) 

From the above it can be concluded that two sets of 
solutions can be found for (xB5, zB5). 

Reaching this step, all the passive variables, Bi, and � are 
known. Combining (3) and (4) for the limbs i = 1(2),3(4),5 
leads to: 
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This implies that the univariate expression for u=tan(�/2), 
Ru1, is of degree six. Then, a back-solving procedure for (12) 
leads to construct the corresponding position of the 
mechanism (x, y, z) for a given (�, �). Consequently, the FKP 
of this mechanism admits up to 6×8×2 = 96 solutions where 
(6, 8, 2) is coming respectively from the upper bound of 
solutions for (Ru1, �, B5).  

One could arrive to the same result for the upper bound of 
the FKP solutions upon considering a geometrical approach. 
Starting from (8), it follows that � admits up to 8 solutions for 
the FKP. From Fig. 4, it can be seen that in a {A1A1} design the 
loop B12C12C34B34 can be made equivalent to a 4–bar linkage. 
This result is valid for all {AiAj} designs. As it is well–known, 
the motion of a 4–bar linkage generates a sextic, i.e., a sixth 
order curve [29]. Thus, in such a design, the FKP corresponds 
to the intersection of the sextic and a circle centered at B5 
which is generated by the regular limbs. From Bezout’s 
theorem, it follows that this intersection results in 2×6 = 12 
intersection points including two circular imaginary points as 
triple points [10]. Thus the intersection of the sextic and the 
circle results in up to 2×6–2×3 = 6 real intersection points (2 
stands for the degree of the circle, 6 for the sextic and 3 for the 
imaginary points). From the IKP, it is known that there are two 
possibilities (two working modes) for the position of B5. 
Taking account all the above factors, for one given value of � 
the FKP of this mechanism results in 6×2 = 12 solutions. 
Since the 4–bar linkages can be constructed upon 8 ways then 
the upper bound for the number of postures of the FKP is 

12×8 = 96 which is consistent with the conclusion reached 
above by direct manipulation of the equations. 

V. WORKSPACE DETERMINATION 
The complete workspace of the 5-RPUR manipulator can 

be regarded as a five–dimensional space for which no 
visualization exists. Geometrically, the problem of determining 
the constant–orientation workspace for a limb of the 5-RPUR 
parallel mechanism can be regarded as follows: For a fixed 
elongation of the prismatic actuator, the first revolute joint 
provides a circular trajectory centered at Ai with �i as radius. 
The second link generates a surface by sweeping a second 
circle, with e2 as axis, along the first circle. Since the direction 
of e2 is prescribed and must remain constant, such a surface is a 
quadratic surface and is called a Bohemian dome. The above 
geometrical interpretation for the limb workspace of a RPUR is 
fully explained in [12]. A CAD model for the constant 
orientation of a RPUR limb can be found, as shown in Fig. 5, 
and is referred to here as Bi. Up to now, the geometry of the 
mobile platform has not been considered. Following the same 
method as in [7] the workspace of a limb attached to a platform 
can be computed by applying an offset vector -si to the limb 
workspace, Bi. Finally, the workspace of the mechanism is 
found by intersecting five offset Bi. Fig. 6, obtained with a 
CAD system, represents an example for the constant 
orientation workspace of a 5-RPUR parallel mechanism, whose 
design parameters are presented in TABLE I. In this section, it 
is assumed that li = 150mm, �min = 250mm and �max = 400mm. 
It should be noted that the mechanical interferences are omitted 
in this study. In what follows, an approach, inspired from the 
algorithm proposed in [7], is proposed which brings insight into 

TABLE   I. GEOMETRIC PROPERTIES (IN MM) ASSUMED FOR A GENERAL 5-
RPUR. 

i (ri)x (ri)y (ri)z (s´i)x (s´i)y (s´i)z 

1 -55 30 50 -50 0 0

2 245 30 50 50 0 0

3 20 205 0 0 50 0 

4 200 180 0 0 50 -50 

5 0 0 0 0 50 -50 

 

 
Figure 5.    The constant orientation workspace for a RPUR limb by 

considering �min = 250mm, �max = 400mm, l = 150mm and � = 0. 

 
Figure 6.    Constant orientation workspace for � = 0 and � = 0. 
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the problem and is very useful during the design stage [8]. 

Being aware that each vertex space Bi should be offset by    
-si, then, mathematically, the center of each Bi can be expressed 
as follows: 

.iii sQrw ′−=                       (13) 

Since in the case of the constant–orientation workspace we 
are dealing with a three dimensional space, a cross sectional 
plane should be considered in order to reduce the problem to a 
two dimensional one. From a geometrical inspection, it follows 
that a cross sectional plane, called Hi, which is rotated around 
the y axis of the fixed frame by angle � results in a 
homogeneous section for the Bi and to conventional geometric 
objects such as circles and lines. Fig. 7 represents five 
intersected Bi for �=�/4 and �=�/4 for which Hi crosses at x´H. 
This particular cross section implies that (13) should be 
multiplied by Q-1 y,� where Qy,� is the rotation around the y axis 
by angle �:  

 
,1

,
1
,

1
, ixiyiyi sQrQwQw ′−==′ −−−

ϕθθ           (14) 

 The next step is to determine the interval for which the 

cross sectional plan should be applied in order to avoid non–
essential cross sections. This can be done by considering Fig. 8 
which represents schematically a Bi for a x´–z´ view. From Fig. 
8, it can be seen that Hi crosses all the Bis iff it lies inside of 
this interval:  

1,2,...5i    ),min()max( maxmax =+′≤′≤−′ iixHiix wxw ρρ   
                  (15) 
Where  

T
iziyixi ]w,w,w[w ′′′=′                             (16) 

As mentioned previously, the defined cross sectional plane, 
Hi, results in a homogeneous section for which, the obtained 
circles in each section have the same radius. Reaching this step, 
the problem of obtaining the constant orientation workspace of 
a 5-RPUR parallel mechanism is made equivalent to the 
determination of the constant orientation of the 6–DOF Gough–
Stewart platform [7]. 

Fig. 9 shows a cross section at x´H = 50mm for a design 
whose geometrical parameters are presented in TABLE I, for 
�=�/4 and �=�/4. From the number of possible point 
intersections, it can be deduced that the arrangement of these 
intersections in order to identify which ones constitute the 
boundary of the workspace should be a delicate task. The last 
step consists in obtaining all the circular arcs and lines defined 
by the intersection points found above by ordering these points.  

This should be accompanied by a checking procedure to 
identify the arcs and lines that constitute the boundary of the 
workspace. To do so, for a given curve (line or circle portion), 
belonging to a given Bi, a point lying on the curve is chosen, 
preferably not one of the end points. Then, it is verified that 
whether or not this point is located inside all the other Bis. This 
can be regarded as the most challenging part of the workspace 
determination that should be elaborated with care and is fully 
explained in [7].  

Finally, applying the above procedure for different x´H leads 
to obtaining the constant orientation workspace in three 
dimensional space. Fig. 10 represents the constant orientation 

 
Figure 9.    Cross section at x´H = 50mm of five Bi and the possible 

intersections among them. 

 
Figure 7.    Cross sectioning five Bi by the plane Hi at x´H. 

 
Figure 8.    A schematic representation of a Bi including the used 

parameters. 
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workspace for a design presented in TABLE I for � =� = 0 and 
it can be seen that it is the same that is found with the CAD 
system in Fig. 6.  

As the constant orientation workspace for a given cross 
section consists of some arcs and lines, the Gauss Divergence 
Theorem which can be applied to planar regions can be used to 
obtain the workspace area for all the sections located in the 
interval which is mentioned in (15). Finally the volume of the 
constant orientation workspace can be obtained using 
numerical integration of all the sections area.   Fig. 11 
represents the volume of the constant–orientation workspace 
with respect of two permitted orientations, (�, �), for the 
design presented in TABLE I. 

VI. CONCLUSION 
This paper investigated the FKP and constant–orientation 

workspace of 5-DOF parallel mechanisms (3T2R) with a limb 
kinematic arrangement of type RPUR. From the results for the 
IKP, two sets of simplified designs were presented whose FKP 
can be expressed either by a univariate expression or by a 
closed–form solution. Bohemian domes appeared in the 
geometrical interpretation of each limb and led to a CAD 

representation of the constant–orientation workspace. An 
algorithm was proposed, inspired from the one presented in [7], 
in order to find the boundary of the constant–orientation 
workspace which can be implemented in any computer algebra 
system. The algorithm made it possible to find the volume of 
the constant–orientation workspace by applying the Gauss 
Divergence Theorem. The principles of this paper can be 
applied equally well to the other types of symmetrical 5-DOF 
parallel mechanisms, such as 5-PRUR, in order to obtain 
similar results for the FKP. Ongoing works include the solution 
of the FKP in a univariate form for a general design and the 
study of the singular configurations.  
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