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Abstract: Using a non-linear model in model predictive control (MPC) changes the control problem from a convex
guadratic programme to a non-convex non-linear problem, which is much more challenging to solve. In this study,
we introduce an MPC algorithm for non-linear discrete-time systems. The systems are composed of a linear
constant part perturbed by an additive state-dependent non-linear term. The control objective is to design a
state-feedback control law that minimises an infinite horizon cost function within the framework of linear
matrix inequalities. In particular, it is shown that the solution of the optimisation problem can stabilise the
non-linear plants. Three extensions, namely, application to systems with input delay, non-linear output
tracking and using output-feedback, are followed naturally from the proposed formulation. The performance

and effectiveness of the proposed controller is illustrated with numerical examples.

1 Introduction

Receding horizon control (RHC), also known as model
predictive control (MPC) [1], is a well-established control
strategy for different industrial plants. In this strategy, at
each instant of time, the first element of an input trajectory
is chosen to optimise a performance index. Since there is
no restriction on the type of model used in the prediction,
many formulations have been developed for linear or non-
linear systems (e.g. [2—5]), and found wide applications in
different industries in recent years [6].

Although most industrial processes are inherently non-
linear, the MPC applications are widely based on linear
dynamic models. By using a linear model and a quadratic
objective, the nominal MPC algorithm takes the form of a
structured convex quadratic programme (QP), for which
reliable solution algorithms can easily be found. This is
important because the solution algorithms converge
properly to the optimum. Nevertheless, there are cases
where non-linear effects are significant enough to justify

the use of non-linear MPC.

On-line computational complexity is a major concern in
MPC of non-linear systems. For fast sampling applications,
high-dimensional systems and control problems that demand
the use of large prediction horizons, this concern is more
stringent. Since, the performance costs and constraints are
generally non-convex functions of the predicted inputs, the
numerical techniques used to solve the optimisation problem
may exceed the available time for an on-line computation. It is
therefore essential to look for suboptimal solutions. A convex
problem that is efficiently solvable via semi-definite
programming can be extended to MPC for non-linear
systems, either through linear dynamic approximation together
with bounds on the error of approximation [7, 8], or by using
a linear differential inclusion [9, 10] in place of the original
non-linear system. In this case, an invariant ellipsoid for an
uncertain linear time-varying system is determined (e.g. [10,
11]). In fact, for on-line implementation of MPC synthesis,
there is a need for computationally effective techniques that
allow incorporation of a broad class of non-linear models.

More recently, min—max formulations with quadratic
criteria are addressed in the powerful framework of LMI
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optimisation (e.g. [11-14]). The LMI methods are flexible in
permitting the inclusion of a wide variety of additional design
requirements, such as the size and the structure of matrices,
degree of exponential stability, time delay and recasting
much of the existing robust control theory. Our special
interest in this paper is to exploit the ability of the LMI
approach to accommodate an MPC-based technique for the
control of plants with non-linearity, through linear dynamic
approximation, together with Lipschitz bounds on the error
approximation. In the proposed algorithm at each time step,
a state-feedback that minimise a ‘worst-case’ infinite horizon
performance objective is obtained, and the problem of
minimising an upper bound on the ‘worst-case’ performance
objective function is reduced to a convex optimisation
involving linear matrix inequalities (LMlIs). By this means a
computationally cost effective algorithm is proposed, which
is implementable for a wide range of non-linear plants.

The paper is structured as follows. Section 2 presents some
preliminaries, while Section 3 describes the mathematical
formulation of the proposed MPC problem with state-
feedback as an LMI problem. Then, an extended
formulation is given to incorporate input constraint. In
Section 4, the proposed formulation is extended to the
systems with non-linear output and input delay. Also, an
extension to the output-feedback case is presented in the
framework of state-feedback. In Section 5, several
numerical examples are presented to illustrate the design
procedure, and the effectiveness of the method. In the last
two examples, both the proposed approach and the
extended dynamic matrix control (EDMC) are applied to
benchmark processes and the performances of the two
controllers are compared. Finally, the benefits of the
proposed controller are concluded in Section 6.

2 Preliminaries and problem
statement

Consider the non-linear discrete-time dynamic
x(k+ 1) = f(x(k), u(k)) 1)

where % is the discrete time index, x(2) € R" the state,
u(k) € R” the input, f(-, -) € C?, and F(0, 0) = 0. Let,
A=209f/9x(0,0), B=09f/dx(0,0) then the dynamic

system (1) can be reformulated as
x(k+ 1) = Ax(k) + Bu(k) + f (x(%), u(%)) )
where
Fl®), u®)) = f(x(R), uk) — (Ax(k) + Bu(k))

and f (-, ) is a Lipschitz non-linearity. The state and
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control variables are required to satisfy the following
constraints

x(k+ilk) € X
_ ©)
u(k+ilk) € U,

1>0

where X and U are compact subsets of R” and R, respectively,
both containing the origin as an interior point. In order to design
a state-feedback control law u(% + i|4) = L(k)x(% + i|£) (i > 0)
for (2), one may consider the minimisation problem with respect
to u(-) of the infinite horizon cost function.

o0

J@® =" wlk+ i) Qull+ il#) + ull + ile) Rulk + il#)
=0

(4)

subject to (2) and (3), in which, Q and R are positive definite

weighting matrices. Let us introduce a quadratic function
V(x) = x' Px, P> 0 of the state x(k|%) of the system (2), with
7(0) =0. At sampling time %, suppose the following
inequality is satisfied
Vk+i+118) — V(k+ ilR) > —(alk+ il D) Qulk + il&)

+ ulk+ i18) Rulk + il )

®)

Summing (5) from i = 0 to i = o0, we have

x(00] &) Px(00| &) — x(k|&) Px(k|&) > —]

If the resulting closed-loop system for (2) is stable, x(c0|£) must

be zero and result in
J < x(RI&) Px(kI) < —y 6)

where 1y is a positive scalar and is regarded as an upper bound of
the objective in (4)

o0

> xll + il8)" Qull + ilk) + ulk + ile) Rulk + ilk) <
=0

(7)
Let us present the following technical lemmas for later use.
Lemma 1 (Schur complements): The LMI
S
[ Q(x% (x)] =0 ®)
S(x)"  R(x)

in which, Q(x) = Q(x)T, R(x) = R(x)T and S(x) are affine

functions of «, and is equivalent to

R(x) >0, Qx) — S(x)R(x)"'S(x)T" >0
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or, equivalently

Q) >0, R(x)— 8" QxS >0

Proof see [10]. O

Lemma 2: Let M, N be real constant matrices and P be a
positive matrix of compatible dimensions.

Then
M'PN + NTPM < eM™PM + ¢ 'NTPN  (9)
holds for any € > 0.

Proof: The proof follows from the condition

1

1 1
N

(vem - 7

NT)P(\/EM— N) >0

3 Model predictive control
via LMI

In this section, we discuss the MPC problem formulation for
non-linear systems and then, we incorporate an input
constraint.

3.1 State-feedback MPC

In the previous section, a convenient form of representing the
processes to be controlled by MPC is presented. Now, we
propose a convex optimisation method to solve the MPC
problem. The idea behind this method is to solve the
minimisation problem in order to determine the update of
iterative input. In this method, instead of minimising Jin (4)
an upper bound of J is minimised. We minimise this upper
bound  with a state-feedback ~ control  law
u(k+ i|k) = L(k)x(k + ilk) (i > 0) for non-linear discrete-
time system (2), and then give a representation of MPC law
in terms of feasible solutions to LMIs. The following
theorem is devoted to constructing the state-feedback matrix L.

Theorem 1: Consider the discrete-time system (2) at each
time £ and let x(%|%) be the measured state x(%). Then, the
state-feedback matrix L in the control law that minimise
the upper bound V(x(£|4)) of objective function at instant £
is given by L =YX ~1 where X> 0 and Y are obtained
from the solution of the following optimisation problem
with variables vy, & X, Yand Z = [X; Y]

and

_X
VA+eUdX+BY) —X « * *

1
<1+—>WZ 0 —¢&
&

%
o'*x 0 0 —yI =«
L Ry 0 0 0 —yI|
<0 (11)

Proof? To obtain (11), the modified quadratic function V7 is
required to satisfy

V(k+ i+ 118) — V(k+ilk) < —(xlk+ ild) Qulk + ilk)
+ uk + i18) T Rulk + i|k))
(12)

Substituting the state space (2), in inequality (12) results in

ule + i18) “Rulk + i) + x(k + i|1)" Qul(k + i|&)
— x(l+ iR Px(k + i|k) + {Ax(k + i|%)

+ Bulk + il8) + f (x(k + il8), ulk + i)}
x P{Ax(k + i|k) + Bu(k + i|k)

+ f o+ ilR), ulk+ il&)} < 0 (13)
Defining the function g(x, «) as

&(x, u) = {Ax(k + i|k) + Bu(k + i|k)

+ F (ol + ilR), ulk + i1&)}T P
x {Ax(k + i|&) + Bu(k + i|#)

+ f (el + i), u(k + il A))
= {Ax(k + i|B) + Bu(k + i|2)}* P{Ax(% + i|k)
+ Bulk + iR} + {dx(k + i) + Bu(k + i A)}"
x P{f(x(k+ i8), ulk + il4))}
+ { el + il8), ulk + i)} PAx(k + il#)
+ Bu(k + i)} + { F(x(k + i|&), uk + i|&)}"

x P{f (x(k + i|), u(k + i|7))}
(14)

and applying Lemma 2, the upper bound of g(x, #) becomes

min, g, #) < (1 + &){Ax(k + i|#) + Bulk + il&))" P
. X {dx(k + i k) + Bulk + i|A)}
subject to N
I 4 + A+ N Falk+ k), ulk + ilR)} P
10 . . .
[x(@ —X} 10) X (F(ah o+ i), ulh+ 1) (15)
1924 IET Control Theory Appl., 2010, Vol. 4, Iss. 10, pp. 1922-1932
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Consider
P<AJ<ul

where A, is the maximum eigenvalue of P and ul is the
corresponding upper bound, then

(e, u) < (1 + &)k + il8) + Bu(k + il&)} P
x {Ax(k + i|k) + Bu(k + i|k)}
+ (1 + & Dl Falk+ ilk), u(k + ilA)}"
x { f(x(k+ ilk), u(k+ ilk))}

The term involvingf (-, -)intheabove equation is bounded as

F ol + ilk), ulle+ il B) F (e + i)8), ke + il &)

< [+ BT ulk+ D VW W x(k+ ilk); ulk+ il2)]
(16)

Then

g(x, u) < (1+ &){dx(k + il&) + Bulk+ il&)} P
x {Ax(k + il#) + Bulk + ik))
+ 1+ e Hulxt+ i18)" ut+ i) 1w W
x [k + i|k); ulk + i|A)]

Inorder to satisfy (12) forall i > 0, we should guarantee that the
following equation is negative

u(l + il Rk + i) + x(k + i|8)" Qx(k + i)
— x(k + il&) " Px(k + i|)

+ (1 4 &){Ax(k + i|£) + Bu(k + i|£)}" P
X {Ax(k + i|k) + Bu(k + ilk)}

+ A+ e ulxt+io)T wl+ il W w
x [xlk+ i|k); u(k+il&)] <0 17)
Replacing u(% + i|%) by Lx(% + i|), (17) is rewritten as

(1 + e)x(k + i|A) (A + BL)"P(4 + BL)x(k + il&)
— w(k+ il&) " Px(k + i)
+ x(k + i18)T Qu(k + ilR) + x(k + i|&) LT RLx(k + ilk)
+ 1+ e Y+ iR [T LW W L)
x x(k+ ilk) <0 (18)
That is satisfied for all 7 > 0 if

(1+ &) A+ BL)'P(A+BL)— P+ Q+ L'RL
+ A +e Wl LW W(I; L1 <0 (19)

www.ietdl.org

Substituting X = yP~', X >0, Y= LXand ¢ = yu . Pre-
and post-multiplying (19) by X, and then applying Schur
complements, (19) becomes

X * * * *

JA+edX+BY) —-X x * *

(1 + 1) wz 0 ¢ * * <0
&
o'’ x 0 0 —yI =%
Ry 0 0 0 —vI |

— X+ <0

where the symbol > stands for symmetric terms in the matrix.

Applying Schur complements to (6), we derive

—I %
[x(k) —X} =0 O

By solving the inequalities of (10) and (11) the solution of the
convex programming problem (4) provides a feedback gain L.
The control law achieved by this means guarantees the
closed-loop stability for a non-linear system described by
(1). In this algorithm, the stability domain that is defined
by an ellipsoidal invariant set S = {xlx" X e <1} is re-
evaluated at a new iteration until it becomes constant.
Thus, the algorithm converges to a local minimum for each
sampling time.

Remark 1: Theorem 1 can cover different kinds of
unstructured uncertainty that can be replaced by a function
of states and inputs.

Remark 2: Although the LMI conditions (10) and (11) are
formulated for a non-linear system, the results can be readily
extended to a linear system.

Remark 3: During the derivation of (15), the coefficient & is
introduced so as to convert the original non-convex problem
into a convex problem. For finding the optimal value of ¢, let
us consider the following inequality

gl 1) < [+ DT ulk+ ilDT]
x {(14 &) + BL)'P(4 + BL)
+ 1+ e W Wk + ilk); ulk+ ilA)]

Since matrix (4 + BL)TP(H + BL) is symmetric and positive
semi-definite, therefore, based on [15], the following
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condition can be derived

g, u) < [a(k+ i1 ulk+ iAWl + &)

X Ao ([4 BI'[4 B]) + (1 + & DA (W W)}
X [x(& + il&); u(k+ i|k)]

=[xk + il®)" wll+ il® 1l + €02 ([4 B])
+ (14 & o (W)l + ilk); ulk + i|A)]

= s [x(k + 105 ulk+ 0]
In which, the scalar function s(¢) is given by
s(&) + (1 + 8)on ([ B) + (1 + & 1ol (W)

and this function possesses its minimum at

0 V)
A (7Y} 0

this value can be used as the optimal value of € in the process
of controller design.

3.2 Input constraint

Inherent physical limitations in the process impose hard
constraints on the manipulated variables. Imposing two-
norm hard constraint in the problem discussed in Theorem 1,
Kothare e al. have developed a routine to incorporate
constrained inputs in the optimal infinite horizon MPC
[11]. This routine can be used in our proposed controller
design scheme to incorporate input hard constrains in the
optimisation solution. Consider an input two-norm
constraint in the form of

(ke + il&)ly < thpa 2y i2>0 1)
From (6), we know that the states (% + 7), i > 0 determine
an ellipsoidal invariant set

S= {x|xTX71x <1} (22)
Therefore
|l + itB)|2 = | Lat + iklB)|

= VXV Ptk + )

< w2, (23)

from (21) and (23), the input two-norm constraint in (21) is
rewritten as

YIXY -2, 1<0 (24)

Applying Schur complements, (24) is equivalent to

2
{_”m‘“@] : } <0 (25)
Y X

This is an LMI and can easily be combined with problem (4).

4 Formulation extensions

In the previous section, an LMI formulation of the predictive
controller that uses a state space representation of the system
was derived. In this section, we will extend the preceding
development to several problems.

4.1 System with non-linear output

In many industrial applications penalising the output
tracking error in the cost function is of utmost importance.
As a general formulation consider that the outputs are
measured as a non-linear function of the states. In order to
incorporate this case into the original problem, the output
prediction is transformed into a new state prediction.
Assume that the plant can be described by the following
discrete-time, non-linear, state-space model

x(k + 1) = f(x(k), u(k))

26
Y(&) = h(x(k)) 6)

where y(k) € R? is a vector of process outputs, which is
measured as a non-linear function of states. The MPC
control algorithms described in this section solve a non-
linear programme of the form

min ) y(k+ 18T Qylk + il&) + ulk+ i) Ruk + ik)
M i=0
27)

subject to model trajectories. Define an augmented state
%(8) = [x" (&) yT(k)]T. As mentioned above, in terms of the
new variables of the system, the objective function is given by

o0

LB =" wl+ ilh)" Qux(k+ ilk)
i=0
28
+ ulk + i|A) " Rulk + i) 29
wlk+ ilk) = LRk + ilk) (i > 0)

where

Le=[L; ... L, 0 ... 0]

0 0
le[o Q}

As in Section 3, the problem of minimising the upper bound

1926
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of function (27) can be reduced to an objective minimisation
as in Theorem 1.

Note, for dynamic equation (26), quadratic Lyapunov
function V(x) = «' Pyx + yTPZy, P, P, >0, is defined to
establish closed-loop stability.

Remark 4: The choice of Q; can be generalised to include
pure state tracking error into the cost function.

4.2 Output-feedback controller

Most of the existing techniques for MPC assume a
measurable state, and apply state-feedback that is selected
oft-line or optimised online. However, stabilising non-
linear MPC algorithms dealing with the output-feedback
problem are still well established. Our goal in this section is
to extend the controller developed in the previous section
to a static output-feedback controller that makes the
closed-loop dynamics of system (26) regular and stable. In
this section, by using a suitable state-space representation
of the process the output-feedback controller converted to a
state-feedback controller.

As discussed for the objective function (27), the
state vector #(%) = [x' (&) yT(k)]T makes problem (27) into
the standard form (4). For the system (26), our output-
feedback controller is of the following form

ulk+ i — d|k) = Ly(k + i) (i > 0)

Note that with the state vector %(k), output-feedback
controller can be written as

u(k + i|k) = LBk + i|k) (i > 0),

0 Ly - L]

L:[O

where L is the gain matrix with appropriate dimension. So,
with a new structure of gain matrix the straightforward
result can be obtained from Theorem 1. This reformulation
of the output-feedback control law to a state-feedback is
without any loss of performance, and, as it turns out, it
simplifies the numerical solution of the problem.

4.3 System with input delay

Time delays are very common phenomena in many real
industrial applications. Time delay can be named as a great
source of causing instability and poor performance. During
the past few decades, the control of systems with time delay
has received considerable attention. However, only few
reported results for non-linear systems have considered the
time delay in inputs. In this section, a new MPC controller
of non-linear systems with delayed input is studied.
Consider the following discrete-time non-linear system
with delay elements, described by the equation

x(k+1) = f(x(k), ulk — d)) (29)

www.ietdl.org

atsampling time £ > d, we would like to design a state-feedback
control law w(k+i—d|k) =Lx(k+i—d|k) (i>0) to
minimise the following performance function

o0

L&) = "xlk+i—dlk) Quk+i— d|k)
=0
+ ull + i18) Ruk + ilk) (30)

Let us associate with dynamic (29) the following Lyapunov—
Krasovskii

d
V(&) = x(k) Pox(®) + Y ke — i) Pk — i) = () P3(k)
i=1

where P = diag{P,, P, ..., P,},inwhichP,,i =0,1, ..., d
are appropriately positive definite matrices in terms of an
augmented state which is defined by

2R = [« xk =1 - wlk— )]

Therefore, the cost function (30) may be represented by

B8 =3 &k + DT Qa(k+ ilk) + ulk+ il8) Rulk+ il&)
=0

(31)
ulk + i|k) = L&k + i|2) (i = 0)

where

i(k):[O 0 L,,] and Q2:[8 gi|

As previously discussed, we can reduce the problem to the
standard form proposed in Section 3.

5 Numerical examples

In this section, six numerical examples are presented to
elaborate digital implementation of the algorithms. The
first example is chosen from a model of a laboratory tank in
order to illustrate the basic implementation of the proposed
algorithm. In Examples 2 to 4, the control strategy
proposed in Section 4 was implemented on a three-stage
column. For the sake of comparison, we also show
simulations with EDMC controller and the proposed
MPC controller in the last two examples. For all examples,
the LMI control toolbox [16] in the MATLAB
environment was used to compute the solution of the
objective minimisation problem, and we use Euler’s first-
order approximation for all derivatives.
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5.1 Example 1

Consider a laboratory tank with the following dynamic
behaviour [17]

%1(2) = —0.625x,(#) + 0.625u(2)

1 (32)
x =1—4{Fin —F,}), A=36w

where A is the tank area, F, and F,, are the inlet and outlet

out
flow rates. The flow equations are given by

Fy= (a0 10 [agh
Fout = k’u\/ 2g(x2(t) + bO)

a=0.0522, 4=0.0325, ¢= —0.0638

g=981, A, =1100,

ourmp by = 38.62

where £, = 0.5299, g and 4, are constant values representing
acceleration of gravity and liquid initial height, respectively. 4,
b and ¢ are parameters estimated by identification methods.

In these equations, states x; and x, denote the inlet valve
position and tank height, respectively. The second state is
considered as output, while the input is pressure signal. A
discrete time model has been obtained from (32) using
1 (sec) sampling time. If the controller input is set on 44,
the tank overflows and spills, and if it is 36, the tank is
drained. In this example, the desired input is considered as

40 and then the set point for the tank height is 25.3 (Fig. 1).

As discussed in [18], we can define an incremental state
%(k) = x(k) — x,, and incremental input (k) = u(k) — u, to
reduce the problem into a standard regulation problem
stated in Section 3.

26

1 L 1 1
0 50 100 150 200 250 300 350
Time, sec

20 L

Figure 1 Open-loop response for liquid level (u = 40)

output

30 40 50

—— No input constraint
— Imposed input constraint

input

38 1 1 L 1

Time, sec

Figure 2 Closed-loop response and control law for Example
1: no constraint (solid) and imposed constraint (dash-
dotted)

Fig. 2 shows the closed-loop response of the system
corresponding to weighting matrices @ =1, R =0.5. Q, R
are the tuning parameters used to scale the controlled and
manipulated variables weights. They can be specified by the
user on the basis of control objective priorities. By tuning
these parameters we can obtain a modest manipulated variable
move size. The other adjustable parameters in the proposed
MPC include Lipschits weighting matrix /# and constant &.

Matrix W is the Lipschitz weighting matrix and is selected
on the basis of process dynamics. This matrix should bind the
non-linear part of system. In this example, we have selected it
as W =diag([0 0.1 0]). Zero elements in this matrix
illustrate less effective process variables in the Lipschitz
condition and the non-zero elements will determine other
process variables relative contribution in the non-linear
dynamic behaviour of the system. Therefore, these weights
illustrate the magnitude of each process variable and its
importance in the Lipschitz condition. We know the
changes of these weights can be effective on the response of
the corresponding process variables. Therefore, by tuning
these parameters using a trial and error tuning procedure,
we can achieve a set point tracking with minimal overshoot.
Note by increasing matrix J the feasible regions of
inequalities (10) and (11) will decrease.

Constant ¢ is the only remaining adjustable parameter that
represents the relative compromise between linear and non-
linear terms whose minimum value is given in (20). In this
example, this parameter is selected as € = 0.1.

It is clearly seen from Fig. 2 that the response is stable and
the performance is very well behaved, while the control effort
is within the practical limits. The closed-loop response
obtained from the proposed controller is more than ten
times faster than the open-loop one. Fig. 2 also
demonstrates the influence of the imposed input constraint
(Nl + 1A, <3, i>0) on the system performance. It
can be seen that the control signal stays close to the
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constraint boundary, while a slower response is achieved
compared to that of unconstrained MPC.

5.2 Example 2

For the second example, consider a simple column with only
three stages proposed by Skogestad [19]. The continuous
time of the model is given as

1(2) = Lyxy(£) — Viy1(¢) — Bxy(2)
x,(2) = Fzp + Vi (&) + Lyxg(£) — Vyyy(£) — Ly (2)
i3(£) = Vyy,(2) — Lyx3(2) — Day(2)
o
A+ (= Day(,(0)*
Ly=L+F, Ly=L V=V
D=V—-L, B=L+F-V

=1,2 (33)

7:(2)

The column separates a binary mixture with a relative
volatility & = 10, and has two theoretical stages (V= 2)
plus a total condenser, namely, the liquid feed enters in
stage 2 and the reboiler in stage 1. In these equations,
index i is used to denote the stage number. Index B
denotes the bottom product and index D denotes the
distillate product. Feed rate F and feed composition z are
considered 1 and 0.5, respectively.

Note that £; and ¥; denote liquid and vapour flow from stage
i, x; are the system states and y; are the system outputs that are
of the liquid and vapour composition in stage 7. With these
assumptions, the following discrete-time equations can be
obtained from their continuous-time counterparts by
discretisation, using a sampling time of 0.01 min.

2y (R + 1) = 2,(8) + 0.01(Ly, (8) — V3, (R) — By (&)

xy(k+ 1) = () + 0.01(Fzy + Vyyy(B) + Ly (8)
— Voya (k) — Lyx,(4))

x5 (k+ 1) = 23(8) + 0.01(Fyy5(8) — L35(R) — Dixy(8))

o
(A + (@ — D (%)

)’i(k) =

)

where £ and V are defined as inputs. The goal is to minimise
the objective function given in (27), in which the weighting
functions are assumed as @ = I, R = I, and the steady-state
column data are summarised in Table 1. Fig. 3 illustrates four
graphs, where the graphs stacked horizontally illustrate
process output response and manipulated variable actions for
initial state x(0)=1[0 0.17 0.7]%, £=0.001 and
W= diag([0.01 0 0 0.01 O0]). As shown in this figure
through feasible control effort of the two manipulated
variables very smooth set-point tracking is achieved for y; and
y,. This figure shows that the proposed controller forces the
compositions to increase by decreasing liquid and increasing
vapour flow in 2 min.

Table 1 Steady-state column data

Stage il L % X; Vi
reboiler 1 3.55 ] 0.1000 | 0.5263
feed stage | 2 | 3.05 | 3.55 | 0.4737 | 0.9000
condenser | 3| 3.05 0.9000
0.6 3.15
0.5
0.4 3.1
> 03 5
0.2 3.05
0.1
0 3
0 1 2 3 4 0 1 2 3 4
0.95 4
0.2 3.5
N 0.85 N
0.8 $
0.75 25
0 1 2 3 4 0 1 2 3 4
Time, min Time, min

Figure 3 Process output and manipulated variable for
distillation column

5.3 Example 3

To illustrate the application of proposed approach on output
feedback, consider the three-stage distillation column
described by (33) and by initial condition as Example 2
where £=0.0001 and W =diag([0 0.001 0 O
0.001]). Fig. 4 shows time profiles for the closed-loop
system. It can be seen that the MPC with output-feedback
controller achieves the required tracking performance.
When we use output-feedback controller, the input flows
change sharply at the beginning of control time. Note that

0.6 3.8

0.2 =

3.2
0 3
0o 1 2 3 4 5 0 1 2 3 4 5
0.95 3.7
0.9 3.6
& 0.85 L 35 //’_
3
0.8 34
0.75 3.3
] 1 2 3 4 5 0 1 2 3 4 5
Time, min Time, min

Figure 4 Time profiles for the closed-loop system in
Example 3
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these changes immediately result in corresponding changes in
outputs and we can see immediate response for distillate
composition y;. However, the effect of changes in bottom
composition y, is much smaller.

5.4 Example 4

Let us consider the system (33) with delay in the input
(u(z — d)). Set the delay time as 4= 0.5. The performance
objective function is given in (30), and Q =1, R = 101.
For the following given initial state
x(0)=[0 0.17 O.7]T. Fig. 5 shows the states of
discrete-time system with delay and the corresponding
control action.

Note that during the first 0.5 min in which the control
effort is not applied to the output, the slow zero-input
response is obtained. While after the 0.5 min timeout delay
the control effort is significantly affecting the response, and
a very well-behaved tracking performance is obtained, while
the input limits are satisfied.

5.5 Example 5

As shown by Peterson ez al. [20], overall system with EDMC
works properly for processes with single sign and slowly
varying steady-state gain. Otherwise the iterative method
used in algorithm converges to an unacceptable result. In
this example, we want to show that this limitation is
removed by the proposed MPC. Consider a DC/AC
converter plant model that is borrowed from [21]

2
() = "28 ~ Sy () + Su(?)
X1
i (£) = 50 _ 7x,(£) + (5 20 Loy (z‘)) u(?) (34
TR0 2 () !

W(2) = x,(2)

The discrete-time model can be obtained by considering the
sampling time as 0.01 min. As discussed in [22], this process

0.1 3.4

7 ¥
0

0 05 1.5 25 35
0.5

0 1 2 3 4
o~ /—(7
* 025 N3

0 1 2 3 4

0 1 2 3 4

<~ 005

0 2
0 05 1.5 2.5 3.5

1 Time, min

= 0.8

£

0.6

Time, min

Figure 5 States and control signal for three-stage column

—— Proposed MPC
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0 005 01 015 02 025 03 035 04 045 05
Time, min

Figure 6 Control signal of the controllers in Example 5:
EDMC (dashed) and proposed MPC (solid)

is stable in all its working condition. When the process input
is positive, the process exhibits no sign changes in the output.
However, its variation rate differs for different inputs. Figs. 6
and 7 show the results of both controllers for state initial
condition x(0) = [0.1 O]T.

The parameters considered for EDMC is given by
Shridhar and Cooper [23]

N=2 P=20, M=3, X=001, vy=1
and the following values is used for proposed controller
0=1, R=1, £=0.001, W =diag([0.01 0.01 0)]

Since steady-state gain is almost zero for small magnitude of
the inputs, #(4#), EDMC produces large control signal
(Fig. 6). As shown in Fig. 6, the iterative method used in
EDMC causes the large initial move size for » which
results unacceptably large overshoot in output. The

35F
oo —— Proposed MPC
3k . --- EDMC
L \
25! \\
I \
1 \
= 2} : *
Al
! N
1.5 b
] \\
1 T
i 0 gz = -
I
)
054
O L 'l 1 L 1 'l J

1 L 1
0 005 01 015 02 025 03 035 04 045 05
Time, min

Figure 7 Responses of the controllers in Example 5: EDMC
(dashed) and proposed MPC (solid)
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maximum amplitude of output is 3.5 times more than steady
state.

From Fig. 7, we can clearly verify the advantage of the
method described in this paper. This figure shows that
the proposed MPC achieves significant improvement in the
closed-loop performance response despite less required
actuator effort illustrated in Fig. 6. Generating a small
control law with smooth variation is the best method for

controlling this process, which is achieved by the proposed
MPC.

5.6 Example 6

In this example, another comparison is drawn between
EDMC and proposed MPC. A plant model is taken from
[24], which is a model of an isothermal series/parallel Van
de Vussue reaction in continuous stirred-tank reactor.

i, (£) = —50x,(£) — 10a3(2) + (10 — x,(£)u(2)
3, (£) = 50x1(£) — 100x,(2) — x5 (£)u(2) (35)
¥(2) = x,(2)

In this system, there is only one sign change in the steady-
state gain on output 1.266. When set point is considered as
1.266, EDMC produces highly varying control signal
because of almost zero steady-state gain. Control signal is
shown in Fig. 8 using the following set of control

parameters for EDMC

N=2, P=21, M=3, A;=001, y=1

Fig. 9 shows the proposed controller laws are generated for
different choice of R, while maintaining the other
adjustable parameters constant at Q=1, £=0.1 and

W = diag([0.1 0.15 0]).
In all cases, this figure shows that the proposed MPC
achieves smooth control law behaviour irrespective of the

choice of weighting matrix R.
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Figure 8 Control signal of EDMC in Example 6

www.ietdl.org

80
— R=1
7958 — Re0d
£ --- R=0.05
79h
1
=2 1
\
7850 1
\ \
\\
781"\
A"
\\
77.5F S
?? 1 ' 1 L 1 1 1 1 L
0 001 002 003 004 005 006 007 008 009 0.1

Time, h

Figure 9 Control signal of proposed MPC for R = 1 (solid),
R = 0.1 (dashdot), and R = 0.05 (dotted)
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Figure 10 Responses of the controllers in Example 6: EDMC
(dashed) and proposed MPC (solid)

By considering R = 1 and sampling time 0.002 h, Fig. 10
shows the performance responses of both controllers
corresponding to state initial condition of x(0) = [2.5 1]T.
It can be seen that the proposed MPC achieves better
closed-loop performance and faster response compared to
that of EDMC. The oscillation and long settling time seen
in EDMC response are the result of more aggressive move
in the manipulated variable.

6 Conclusions

In this paper, a sufficient synthesis condition is derived and
formulated as an LMI optimisation, in order to generate an
MPC effort for non-linear discrete-time systems. The stability
of MPC is guaranteed as long as the optimisation problem is
solvable at the initial step. As it is discussed, the proposed
algorithm can be formulated into a QP form, resulting in a
strictly convex non-linear programme. The only pay off is a
moderate increment in the conservativeness of the obtained
bounds. Moreover, the significant reduction of the
computational burden opens new fields of applications to the
MPC controllers. Most importantly, the proposed framework
is suitable for systems with non-linear outputs and input

delay. An additional result shows that stabilising output-
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feedback controller can be obtained by defining a state-feedback
non-linear RHC law with a special structure. Several examples
are given in this paper to illustrate different applications of the
proposed control technique, and comparison to the EDMC
shows superior performance, risk reduction of instability and
less signal variation.
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