
  

 

1Abstract— This paper considers H∞ control problem for 
input-delayed systems for time-varying delays. A proportional-
derivative state feedback control law is used in this paper. By 
this means, the resulting closed-loop system turns into a specific 
time-delay system of neutral type. The significant specification 
of this neutral system is that its delayed term coefficients depend 
on the controller parameters. This condition provides new 
challenging issues in theoretical research as well as providing 
new applications. In the present paper, new delay-dependent 
sufficient condition is derived for the existence of H∞ controller 
in terms of matrix inequalities, in presence of varying time-
delays. The resulting H∞ controller guarantees asymptotic 
stability of the closed-loop system as well as a guaranteed 
limited system induced norm smaller than a prescribed level. 
Numerical examples are presented to illustrate the effectiveness 
of the proposed method. 

I. INTRODUCTION 
ime-delay phenomena appear in many systems and 
processes, such as chemical and thermal processes  [1], 

population dynamic model  [2], rolling mill  [3] and systems 
with long transmission line  [4]. In many systems, time-delay 
is a source of instability. Hence, many researchers have paid 
great attention to the control of time-delay systems of 
retarded or neutral type.  

Referring to H∞ control of neutral systems, robust H∞ state 
feedback control of uncertain neutral system has been 
considered in  [5]. An optimization problem has been 
formulated with linear matrix inequality constraints to obtain 
an H∞ state feedback controller. Observer-based H∞ state 
feedback control for a class of uncertain neutral systems is 
another topic which Lien has considered in  [6]. H∞ output 
feedback control of neutral systems has also been the centre 
of attention in some research such as  [7] and  [8]. Moreover, 
Xu et al. have used bounded real lemma to design an H∞ state 
feedback and positive real control for a linear neutral delay 
system  [9]. 

A general representation of a neutral system is shown as 
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To the best knowledge of the authors, in all developed 
theories for neutral systems, no synthesis has been derived 
when both )( ihtx −  and )( ihtx −& s’ coefficients are 
dependent on the controller’s parameter, whereas this 
condition has its own merits in practical application as well 
as leading to a new challenging theoretical problem. The 
importance of the above condition is observed in the control 
systems such as active vibration suppression. Du and Zhang 
proposed an H∞ state-feedback controller for an input-delay 
active suspension system  [10]. Since the ride comfort is an 
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important objective which is related to the body acceleration 
sensed by the passenger, an acceleration feedback can 
effectively improve this performance objective in active 
suspension system or generally, in active vibration 
suppression systems. Some researchers have paid 
considerable attention to this idea such as  [11] and  [12]. 
Abdelaziz and válašek  [12] proposed a formula similar to 
Ackermann for solving the pole-placement problem for non-
delay linear single-input/single-output systems and multi-
input/multi-output systems using state-derivative feedback. 
Assoncao et.al.  [11] used this idea to design a stabilizing 
state-derivative controller for a delay-free system which 
bounds the output peak as well as the state-derivative 
feedback. Moreover, an analysis for the stability of a system 
controlled by proportional-derivative state feedback in 
presence of small uncertain delays in the feedback loop was 
presented in  [17]. To the best of our knowledge, no synthesis 
of state-derivative feedback has been presented for input-
delay systems in the literature, whereas, as described earlier, 
it could be of great significance in practice. To benefit the 
advantages of the state feedback as well as acceleration 
feedback or generally, state derivative feedback, we employ 
proportional-derivative state feedback control law as it is 
shown by the following equation: 

xKxKu &21 +=  (2) 

Assume the general representation of linear input-delayed 
systems as follows: 
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Applying the control law (2) to the input time-delay 
system (3) leads to a time-delay closed system of neutral type 
which is represented as follows: 
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As it is seen in the Equation (4), both x(t-hi) and )( ihtx −&

s’ coefficients are functions of the control law parameters. 
Therefore, finding K1 and K2 introduces a new challenging 
problem theoretically, whereas the choice of K1 and K2 can be 
very effective in obtaining desired performance in such 
applications. The main purpose of this paper is to elaborate 
this problem in detail and to design H∞-based controller for 
the closed-loop system in presence of varying time-delay. 

This paper is organized as follows. Problem formulation is 
introduced in Section 2, and in Section 3, an H∞ controller is 
designed for the time-varying delay case. This is 
accomplished in terms of some matrix inequalities for the 
closed-loop time-delay system of neutral type. Illustrative 
examples are provided in section 4 to show the effectiveness 
of the proposed method in some case studies, and real 
application. Finally, the concluding remarks are given in 
section 5. 
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II. PROBLEM FORMULATION 
In this paper, we consider the following time-delay system 

with input delay: 

( ) ( ) ( )( ) ( )
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τ

τ
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&
  (5) 

where x is the state, w∈ℜp is the disturbance input of 
system that belongs to L2[0,∞), τ(t) is the time-varying delay 
of the system and is assumed to satisfy 0 ( )tτ τ< ≤  and 

( ) 1/ 4dtτ τ< <& , u∈ℜm is the system input and z∈ℜq is the 

controlled system output. The matrices A∈ℜn¥n, B∈ℜn¥m, 
E∈ℜn¥p, C∈ℜq¥n, D1∈ℜq¥m, D2∈ℜq¥p are assumed to be 
known. In this paper we assume that all the state variables are 
measured. Considering the control law (2), the state space 
equations of the closed-loop system is given by 
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  (6) 

Therefore, the resulting closed-loop system (6) is a time-
delay system of neutral type which both coefficients of 

( )x t τ− and ( )x t τ−& depending on the controller parameters. 
Here, we state the following lemma which will be used 
further in the main result of the paper. 

Lemma 1  [14]: For a prescribed matrix, 
A

M
B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 or    

[ ]M A B=  we have the following inequality: 

( ) ( ){ } ( ) ( ) ( ){ }max , 2 max ,A B M A Bσ σ σ σ σ≤ ≤  

III. H∞ CONTROL DESIGN WITH TIME-VARYING DELAY 
In many developed theories, conventional state feedback 

controller has been used for obtaining stability as well as 
performance objectives of the closed-loop system. In spite of 
the effectiveness of state feedback controller in many 
applications, it is not suitable for the cases that we need to 
have an acceleration feedback or generally derivative of the 
state in the feedback. On the other hand, H∞ control is an 
effective method which guarantees asymptotic stability as 
well as performance objectives. This is why H∞ control for 

time-delay systems has been among the most challenging 
topics in recent years. All the aforementioned facts motivate 
us to elaborate on the following Theorem and one Lemma 
which are stated in this section. 

Theorem 1: Given scalars , 0dτ τ > , the closed-loop 

system (6) is asymptotically stable and ║Tzw║∞<γ, if there 
exist positive definite symmetric matrices L, T, H1, H2, F1, F2 
∈ℜn¥n, negative definite symmetric matrix N2 and matrices 
M1, M2, N1, ∈ℜn¥n, V, W ∈ℜm¥n satisfying matrix inequalities 
(7) ~ (9). Moreover, H∞ proportional-derivative state 
feedback control law is given by 1 1u VL x WL x− −= + & .  
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and, 
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in which ( ) 1
1 11 d LH LτΘ −= − , ( )( ) 1 1

2 21 2d d LH Lτ τΘ − −= − + , 

( ) ( ) ( )( ) ( )1 2
3 1 4 21 2 / 2 , 1 4 2 / 2 , 1d d d dF Fτ τ τ τ τ β τΘ Θ −= − = − + = +  

( ) ( )1 1 1 2 22T TLA AL N N M M N Tτ τΩ = + + + + + + − +  
First, let us prove following useful lemma which will be 

applied in the proof of Theorem 1. 
Lemma 2: Consider the neutral system (6) and assume 

d(t)=[ ( )Tw t  ( )Tw t& ]T. If ║Tzd║∞<γ, then the inequality 

║Tzw║∞<γ  is satisfied. 

Proof: Since z(s)=Tzw(s)w(s) and ( ) ( )
( ) ,

w s
d s

sw s

⎡ ⎤
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.  

where m is a real scalar value. Therefore Tzd(s) can be 
written as 

( ) ( ) ( )1
zd zw zw

mT s mT s T s
s
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By the Lemma 1 the following inequality holds as 
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Setting m=1, it can be easily concluded that if 

( )zdT s γ
∞
< , then .zwT γ

∞
<  This completes the proof.  ■ 

Corollary 1: Consider the neutral system (6) and two 
following performance indices: 

( ) ( ) ( )2 2
1 20 0

, ( )T T T TJ w z z w w d J w z z d d dγ τ γ τ
∞ ∞

= − = −∫ ∫
Where d(t)=[ ( )Tw t  ( )Tw t& ]T. Since the inequalities J1<0 and 

J2<0 corresponds to H∞ constraints zwT γ
∞
<  and 

zdT γ
∞
<  respectively, then for the inequality J1<0 to be 

satisfied, it suffices to show that the condition J2<0 is 
satisfied. 

Proof of Theorem 1: In this case a Lyapunov-Krasovskii 
functional candidate for the system (6) has the form 
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where P=PT>0, Q=QT>0, R1=R1
T>0, R′=R′T>0, Z1=Z1

T>0 
and Z′=Z′T>0. Differentiating V1 with respect to t gives us 
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It is possible to write 
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We introduce the following relation for the delayed 
derivative of the state: 
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Applying an extension of the proposed inequality in  [13], 
the following upper bound for 1V&  is obtained: 
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Also, the time derivative of V2 can be represented as follows: 
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Using Lemma 1 in  [18], we have 
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It can be shown that the time derivative of V3 and V4 are 
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( )

( )
( )
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( ) ( )( ) ( )( ) ( )

2 2

2 2

1 1

1

1

2 .

1 22
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1
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t tT Td

t t t t

T T T
d

T T
d

x t PBK x t t x t x t t Y

x t x t t x t Y x t t x t t Y x t

x t Z x t x d Z x d

x t Qx t x t t Qx t t x t R x t

x t t R x t t x t

τ τ

τ τ τ

τ τ τ

ττ α α α α
τ

τ τ τ

τ τ τ τ

& &

&

& & & &

& &

& & &&

− −

+ − + + − −

+ − − − − −

⎛ ⎞⎛ ⎞ ⎛ ⎞− ⎟ ⎟ ⎟⎜ ⎜ ⎜+ − ⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

+ − − − − +

− − − − +

∫ ∫

( ) ( )

( )( ) ( )( )

( )
( )( )

( )
( )( )

2

0 0

2

/ 2

1
2

1 4
2

Td

t tTd

t t t t t t

Z R x t

x t t R x t t

x d d Z x d d
τ τ τ τ

τ τ τ

τ α α β α α β
τ

&&

&& &&

&& &&
− − − −

′ ′+

⎛ ⎞− ⎟⎜ ′− − −⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞− ⎟ ⎟ ⎟⎜ ⎜ ⎜′− ⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ∫ ∫ ∫ ∫
( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

2 2

2 2

TT T T

TT T

x t Y x t x t Y x t

x t t Y x t x t t Y x t

τ τ τ τ ζ ζ

τ τ τ τ

Π& &

& &

+ + − − = +

+ − −
    (24) 

Assume zero initial condition, i.e. φ(t)=0, ∀t∈[-τ,0] we 
have V(q(t))|t=0=0. For a prescribed 0>γ , consider the 
following performance index J2 in Corollary 1. Therefore, J2 
can be rewritten as 

( ) ( )2 2

0

T T T
zdJ w z z w w w w dγ γ τ& &

∞
= − −∫  (25) 

Since V(t)|t=0=0 and V(t)|t→∞≥0, we obtain 

( ) ( )( ) ( ) ( )

( )( )

2 2
00

2 2

0

T T T
zd t t

T T T

J w z z w w w w V t d V t V t

z z w w w w V t d

γ γ τ

γ γ τ

∞

= →∞

∞

= − − + + −

≤ − − +

∫
∫

&& &

&& &

Hence the following inequality is obtained: 

( ) ( ){ ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 20

2 1 1 1 1 1 1 2

1 1 1 2 2 1 1 2

2 2

2 2

2

T T T T T T
zd

T T T T T T T T

T T T T T T

J w x C Cx x C D K x t x C D K x t

x C D w x t K D D K x t x t K D D w

x t K D D K x t x t K D D K x t

τ τ

τ τ τ

τ τ τ τ

&

& & &

∞
≤ + − + −

+ + − − + −

+ − − + − −

∫
 

( ) ( )}2 2
2 1 2 2 22 T T T T T T Tx t K D D w w D D w w w w w V t dτ γ γ τ&& & &+ − + − − +

 (26)
 

Considering (24), 0 ( )tτ τ< ≤  and ( ) 1/ 4dtτ τ< <&  a new 
upper bound for (26) is obtained as 

( ) ( )( ) ( ) ( ) ( )( ) ( ){ }2 20

zd

TT T T

J

x t t Y x t x t t Y x t dζ ζ τ τ τ τ τΠ
∞

≤

+ + − −∫ & &

with defined  
( ) ( ) ( ) ( ) ( ) ( )1 2x t x t x t x t w t w tζ τ τ τ ζ ζ⎡ ⎤= − − −⎣ ⎦& && &   

where ( )
( )

( )
( )( )

0

1 2,
t t

t t t t t
x d x d d

τ τ τ
ζ α α ζ α α β

− − −
= =∫ ∫ ∫& &&  

and ijΠ Σ⎡ ⎤= ⎢ ⎥⎣ ⎦  where T
ij ijΣ Σ=  and i,j= 1,2,…8. 

in which, 

( ) ( )11 1 1 1 2

1 2

12 1 1 2 1 1 2 1 1 1

13 2 2 1 2 2 2 1 2

/ 2 2T T

T T T

T T T T
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Σ ϒ ϒ
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( ) ( ) ( )
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14 17 1 2 2

18 2

22 1 1 1 1 2 1 1 1 1 1

23 1 1 2 1 2 2 1 1 1 2

24 27 1 1 1 2 1 1 2
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1
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T T T T
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T T T T
d

T T T T
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=
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( ) ( )
( ) ( ) ( )( )
( )( )
( ) ( ) ( )
( ) ( )( )

33 1 2 2 1 2

2 2 2 1 2 1 2 1 1 2

34 1 2 2

37 2 1 2 2 2 1 2 38 2 2

44 2 2 2

1

1

1 ,

, ,

1 / 2 1

T
d

T T T T
d

T
d

T T TT T

T
d d

R Y BK BK

ABK ABK BK BK K D D K

BK BK

BK E ABK AE K D D ABK E

R BK BK

τ τ

τ

τ

τ τ

Σ ϒ

ϒ ϒ

Σ ϒ

Σ ϒ ϒ Σ ϒ

Σ ϒ

=− − − +

+ + + +

= +

= + + =

′=− − + +

( ) ( ) ( )248 55 1 660, 1 2 / , 1 4 / 2d dZ Zτ τ τ τΣ Σ Σ ′= =− − =− −
2

77 1 2 2 2 78 2
2

88 2

15 16 25 26 35 36 45

46 47 56 57 58 67 68

, ,

0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0

T T T T T T

T

E E E A AE D D I E A E

E E I

γ
γ

Σ ϒ ϒ Σ ϒ

Σ ϒ
Σ Σ Σ Σ Σ Σ Σ
Σ Σ Σ Σ Σ Σ Σ

= + + − =

= −
= = = = = = =
= = = = = = =

 

where 1 1 12R Zϒ τ= +  and ( )( )2
2 2 / 2d Z Rϒ τ τ ′ ′= + + . (27) 

Considering the constraint 2 2 0TY Y= < , if 0Tζ ζΠ < , then 
the negative semi definiteness of Jzd in (26) is guaranteed for 
any varying time-delay τ(t) satisfying 0 ( )tτ τ< ≤ and 

( ) 1/ 4dtτ τ< <& . Hence, when assuming ( ) ( ) [ )2, 0w t w t L∈ ∞&

and Π<0 then implies that Jzd<0 and therefore zdT γ
∞
< . 

This condition is the H∞ performance to guarantee the 
tracking performance. By Lemma 2, the inequality 

zdT γ
∞
<  guarantees zwT γ

∞
<  to be satisfied. Using 

Schur complement, the condition Π<0 is equivalent to the 
following matrix inequality: 
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11 12

12 22
0T

Ξ Ξ⎡ ⎤
<⎢ ⎥Ξ Ξ⎢ ⎥⎣ ⎦

 (28) 

with LMI (18) and 

2

2

0
X Y
Y Z

τ
τ τ
⎡ ⎤′⎢ ⎥>⎢ ⎥′⎣ ⎦

 (29) 

where  

( )
( )

11

1 1 1 2 2 2 2

1 1 2

1 2 2 1 2

2
2 2

2

0 0
* 1 0 0 0
* * 1 0 0
* * * 0 0
* * * * 0
* * * * *

T

T T
d

T T
d

T

PBK Y Y PBK Y PE C D
Q K D D

R Y K D D

D D I
I

τ
τ

τ τ

γ
γ

Ξ =

⎡ ⎤Ω − − − +
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

−Γ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦
with  

( ) ( ) ( ) ( )( )2
11 / 2, 1 2 / , 1 4 / 2d d ddiag R Z Zτ τ τ τ τ′ ′Γ = − − −

2 2
12 1 1 2 2 3 3 4τ τ τ⎡ ⎤Ξ = ∆ ∆ ∆ ∆ ∆ ∆ ∆⎣ ⎦  

where  

( )( ) ( )
[ ]
[ ]
[ ]
[ ]

1 1 1 1 2

1 1 2

2 1 2

3 1 2

4 1 1 1 2

1/ 2 2

0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0

T T

T

T

T

T

A P PA Y Y X X Y Q

A BK BK E

AA ABK ABK AE E

BK BK

C D K D K

τ τ′Ω = + + + + + + − +

∆ =

∆ =

∆ =

∆ =
 

and 

( ) ( )( )
22

1 11 1 2 1 1 1 1 2 1 1
1 1/ 2, , , 2 , , 2 ,diag Z R Z R Z R Iτ τ α α τ αβ αβ− −− − − − − − − −

Ξ =

′ ′ ′ ′−

where 2 dα τ= +  and 1 dβ τ= + . Denote 

( ) ( )1 11 1 1 1 1 1 1 1 1
1 1, / 2, , , , 2 , 2P Z Z Z R R Rα αβ α αβ− −− − − − − − − − −′ ′ ′ ′ as L, 

F1, F2, F3, H1, H2 and H3 respectively, by performing a 
congruence transformation to (28) by diag(

1 2, , , , , , , , , , , , , ,L L L L F F I I I I I I I I I ) together with 
introducing the change of variables 1 1 ,M LX L=

( )2 1 1 2 2 1 2/ 2 , , , , , ,M L X L N LY L N LY L T LQL V K L W K L′= = = = = =

the matrix inequality (7) is derived. Furthermore, pre and 
post multiplying the LMI (18) by diag ( ,L L ) and its 
transpose and defining the same change of variables, the 
matrix inequality (8) is provided.  

Similarly, by performing a congruence transformation to 
(29) by diag ( ,L L ) and using Schur complement, we have 

( )( ) ( )1
2 2 0TLX L LY L LZ L LY Lτ τ τ−′ ′− >  

Substituting ( )2 / 2 ,M L X L′= 2 2N LY L=  and 1 1
2 ,F Zα− −′=  

the following matrix inequality is derived. 

( )( ) ( )11 1
2 2 2 22 0TM N LF L Nτ τα τ

−− −− >  (30) 

On the other hand we have 

( )( ) ( ) ( )( ) ( )1 11 1 1 1
2 2 2 2 2 2 2 22 2T TM N LF L N M N LF L Nτ τα τ τ τα τ

− −− − − −− ≥ −

 (31) 
Therefore, satisfying the following inequality guarantees 

the inequality (30) to be satisfied. 

( )( ) ( )11 1
2 2 2 22 0TM N LF L Nτ τα τ

−− −− >  (32) 

Applying Schur complement, the matrix inequality (9) is 
obtained. To guarantee asymptotic stability of the difference 
operator ( ) ( ) ( )2tx x t BK x t τ= − −D , it suffices to guarantee 

( )2 1BKσ <  or (BK2)T(BK2)< I. Using Schur complement and 
performing a congruence transformation by diag (LT, I ), the 
matrix inequality (10) is provided. This completes the 

proof.■ 
Remark 2: It should be noted that generally, the problem of 

finding the smallest γ >0, namely γ0, can be computed by 
solving the following optimization problem in L, T, H1, H2, 
F1, F2 >0, N2<0 and σ = γ2: 

Minimize σ  
Subject to L, T, H1, H2, F1, F2 >0, N2<0, σ>0 and matrix 

inequality conditions (7) ~ (9) 
Remark 3: Note that, the resulting conditions presented in 

the Theorem 1 are not LMI conditions. Gao and Wang  [15] 
presented a modified algorithm using Moon’s idea to find a 
minimum noise attenuation level γ. By following Gao’s 
modified algorithm and with the help of results of  [16], we 
can cast it into a nonlinear minimization problem which is 
much to solve than the original non-convex problem.  

IV. SIMULATIONS 
Here we provide 3 examples regarding the H∞ controller 

design to demonstrate the effectiveness of the proposed 
method. 

Example 1: In order to illustrate Theorem 1, we consider 
an unstable time-delay system with state-space equation (5) 
where 

0 1
3 2

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎣ ⎦

,
0

0.1
B

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

, 1 2

0 0 0.1
, , ,

0.001 0 0
C I D D E

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 (33) 
Now, we consider the case that 0.075secτ =  and 

0.08.dτ = We then apply Theorem 1 to find an H∞ 
proportional-derivative state feedback controller for the 
input-delayed system with state space matrices given in (33). 
Using iteration algorithm introduced in Remark 3, the 
minimum value for γ is obtained as 0.32. Table 1 shows the 
details of this result. The number of iterations in Table 1 
denotes after how many iterations the stopping criterion, i.e. 
the conditions (7) ~ (9), was activated. The H∞ proportional-
derivative state feedback controller with 0.075secτ = , 

0.08.dτ =  and γ =1.06 is given by 
( ) ( ) ( )19.3036 38.2908 0.0036 0.0228u t x t x t⎡ ⎤ ⎡ ⎤= − + − −⎣ ⎦ ⎣ ⎦ &  

TABLE 1. CALCULATION RESULT TO OBTAIN SUBOPTIMAL MINIMUM γ  
γ Iterations 

5 
3 

1.7 
1.06 

175 
178 
181 
217 
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Remark 4: The iteration algorithm, mentioned in Remark 
3, works efficiently for this example and many other 
examples. Nevertheless, it is still impossible to find an 
optimal solution for all the examples despite the fact that a 
solution exists. One way to deal with this problem is to solve 
an optimization problem similar to the one given in Remark 2 
iteratively with BMI condition obtained in the proof of 
Theorem 1. This condition is provided just before doing the 
congruence transformation. 

Example 2: Consider the vibration suppression of a platform 
which has been presented in  [17]. A state derivative 
feedback, i.e. the control law (2) with K1=0 and 

2

19.64 5.899 0.22 0.21
8.367 49.0 0.15 0.12

K
⎡ ⎤−⎢ ⎥= ⎢ ⎥−⎣ ⎦

, was used to control the 

closed loop system. We denote this controller as controller A. 
This controller is applied to the closed-loop system using a 
first order filter introduced in  [17]. The transient response 
from an initial state x(0)=[-0.01 0.02 -0.02 0.01]T can be seen 
in fig (1). As it is shown in fig. (1), the stability of the closed-
loop system is destroyed for 0.7secτ =  due to high 
frequency oscillations. Now using Theorem 1 and setting

1 2

1 0 0 0 0 0 0
, , , 0 0 0.1 0.1

0 0 1 0 0 0 0
T

C D D E
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤= = = = −⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

we obtain a state-derivative feedback with K1=0 and  

2

1.516 0.5 0.46 0.436
0.452 1.172 0.4 0.452

K
⎡ ⎤− − −⎢ ⎥= ⎢ ⎥− −⎣ ⎦

 

which guarantees the stability of the closed loop system with 
6sec, 0.2dτ τ= =  and the performance index γ=0.038. We 

denoted this controller as controller B. The transient response 
of the feedback system in presence of the same delay 

0.7secτ =  is shown in fig. (2). As can be seen, our 
controller provides the stability of the closed-loop system 
with a fast and well damped response. 

 
Fig. 1. Response of the feedback system of Example (2) with controller A 

 
Fig. 2. Response of the feedback system of Example (2) with controller B 

Example 3: In this example, we apply the proposed 
approach to design a delay-dependent H∞ controller with 
proportional-derivative state feedback. The system under 

study is an active suspension system with a quarter-car model 
and time-varying input delay introduced in  [10]. The state 
space equations are represented by the following equations 

( )
( )
( )
( )

( )
( )
( )
( )

( ) ( )

1 1

2 2

3 3

4 4

0 0 1 1
0 0 0 1
/ 0 / /
/ / / ( ) /

0 0 1/ 1/ 0 1 0 /

s s s s s s

s u t u s u s t u

T T
s u t u r

x t x t
x t x t
x t k m c m c m x t
x t k m k m c m c c m x t

m m u t c m Z tτ

&

&

&

&

&

⎡ ⎤ ⎡ ⎤⎡ ⎤−⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − +⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − − + −⎣ ⎦ ⎣ ⎦

 

Where ms is the sprung mass and mu is unsprung mass; ks 
and kt stands for suspension and tire stiffness, respectively; kt 
and ct are suspension and tire damping, respectively; Zr is the 
road displacement input; Zs and Zu are the vertical 
displacement of the mass ms and mu, respectively; u(t) is the 
control force usually provided by a hydraulic actuator; τ is the 
control input time-delay. Moreover, x1(t)=Zs-Zu and x2(t)=Zu-
Zr denote suspension travel and tire deflection, respectively; 
x3(t) is the sprung mass velocity and x4(t) denotes the 
unsprung mass velocity. 

In order to have a good compromise between the different 
performance objectives, the controlled output is composed of 
Zs-Zu, Zu-Zr and uZ&& . Therefore the vehicle suspension system 
is represented by the equation (6) where  

( ) ( )1 2

/ 0 / / 1/ 0
0 0 0 , 0 , 0 ,

0 0 0 0 0

s s s s s s s

r

k m c m c m m
C D D w t Z tα

β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

where α and β are the positive scalar weightings for the 
suspension travel and tire deflection, respectively. These two 
parameters have been chosen as α =21 and β =42 in  [10]. 
Consider ms = 972.2kg, mu = 113.6kg, ks = 42719.6N/m,       
kt = 101115N/m, cs = 1095Ns/m, ct = 14.6 and further assume   
-0.1m < Zs - Zu < 0.1m. Before designing our proposed 
controller, we investigate the state feedback controller gain 
provided in [10] which is represented as 

410 0.3292 0.6361 1.0125 0.0020K ⎡ ⎤= × − − − −⎣ ⎦  
This controller stabilizes the system (6) with the H∞ 

performance index γ =11 and a constant time-delay 0 ≤ τ(t) ≤ 
26ms. For sake of brevity, we denote this controller as 
controller I. In order to illustrate the effectiveness of our 
method, we design an H∞ proportional-derivative state 
feedback controller for the system under study. Considering 
the bandwidth requirement for disturbance rejection in 
human sensitivity range 0-65 rad/sec, a sensitivity weighting 
function is selected for the transfer function from w(t) to sZ&&  
as W(s)=70/(s+70). Furthermore, we set α=21, β=42 (as 
considered in  [10]), 40τ = ms and 0.02dτ = . Considering 
Remark 4, we obtain the following proportional-derivative 
state feedback controller and denote it as controller II: 

4
1 10 3.24 3.2 0.64 0.018K ⎡ ⎤= × −⎣ ⎦  

and,      2 6.3 3.36 1.73 0.0048K ⎡ ⎤= −⎣ ⎦  
with γ =8.28. To evaluate the performance of the active 
vehicle suspension, we investigate the transfer functions from 
w(t) to sZ&&  and w(t) to Zu-Zr in the frequency domain as 
shown in figs. 3-4. 
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It is observed from fig. 3 that applying the controller II in 
the closed loop system causes significant reduction in the 
magnitude of the transfer function from w(t) to sZ&&  compared 
to the controller I in human sensitivity range. Therefore, a 
better ride comfort is achieved for all varying time-delay 0≤τ 
≤40 ms in the desired frequency range. Fig. 4. illustrates the 
transfer function from w(t) to Zu-Zr for both controllers I and 
II in the frequency range. As it is seen, applying controller II 
results less tire deflection in the frequencies 0-15 rad/sec and 
>50 rad/sec. in the compromise between the different 
performance objectives, a larger tire deflection is observed in 
frequencies 15 ~ 50 rad/sec compared to the controller I. 

For a road disturbance input with 5cm height, the 
suspension travel of the closed-loop system with controller II 
is shown in fig. 5. in the frequency range. As it is seen in the 
fig. 5., suspension travel constraint is satisfied over the 
frequency range, whereas this criteria in passive system 
exceeds its limit in some frequencies. 

 
Fig. 3. Transfer function from w(t) to sZ&&  in the frequency range 

 
Fig. 4. Transfer function from w(t) to Zu-Zr in the frequency range 

 
Fig. 5. Transfer function from w(t) to Zs-Zu in the frequency range 

V. CONCLUSIONS 
H∞ control of a time-delay system with input delay for 

varying time-delay case is elaborated in this paper. The 
resulting closed-loop system with the proposed control law is 

a particular system of neutral type. In this system, the 
coefficients of delayed terms depend on the control law 
parameters. Since state-derivative feedback is a good remedy 
in practice, the proposed dynamic control law is of great 
practical significance as well as theoretical importance. The 
Lyapunov theory is used to derive a set of delay-dependent 
sufficient conditions in presence of varying time-delay. A 
sufficient condition is derived for the existence of an H∞ 
controller for the closed loop system in terms of matrix 
inequalities. Moreover, three examples are presented in this 
paper to illustrate the effectiveness of our method. 
Simulations show improvement in H∞ performance over the 
desired frequency range compared to the previous work. 
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