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Abstract
The growing interest in the use of parallel manipulators in machining applications requires clear deter-
mination of the workspace and dexterity. In this paper, the workspace optimization of a Tricept parallel
manipulator under joint constraints is performed. This parallel manipulator has complex degrees of free-
dom and, therefore, leads to dimensionally inhomogeneous Jacobian matrices. Here, we divide the Jacobian
entries by units of length, thereby producing a new Jacobian that is dimensionally homogeneous. By multi-
plying the associated entries of the twist array to the same length, we made this array homogeneous as well.
The workspace of the manipulator is parameterized using several design parameters and is optimized using
a genetic algorithm. For the workspace of the manipulator, local conditioning indices and minimum singular
values are calculated. For the optimal design, it is shown that by introducing the local conditioning indices
and minimum singular values, the quality of the parallel manipulator is improved at the cost of workspace
reduction.
© Koninklijke Brill NV, Leiden, 2011
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1. Introduction

Parallel manipulators have received extensive attention over the last two decades.
This popularity is due to the fact that they possess some specific advantages over
their serial counterparts, such as stiffness, high accuracy and high load carrying
capacity [1, 2]. One of the most famous parallel manipulators with machine tool
application is the Tricept family, which has both rotational and translational de-
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grees of freedom (d.o.f.) [3]. In engineering applications, we often attach a great
importance to the study of the dexterous workspace of a manipulator rather than the
reachable workspace, especially for spatial parallel manipulators. The workspace of
a manipulator is the domain of reach of its moving platform, which is bounded in
the three-dimensional space. Moreover, kinetostatic performance or dexterity mea-
sures how well the system behaves with regard to force and motion transmission.
Several dexterity criteria could be taken into account, such as service angle, manipu-
lability, minimum singular values (MSVs), maximum singular values and condition
number [4].

Most spatial parallel manipulators have complex d.o.f. This leads to dimension-
ally inhomogeneous Jacobian matrices [5]. Making the Jacobian matrices dimen-
sionally homogeneous is very important when one deals with their singular values.
Ranjbaran et al. [6] resolved this inconsistency by defining a characteristic length,
by which they divided the Jacobian entries that have units of length, thereby pro-
ducing a new Jacobian that is dimensionally homogeneous. Ma and Angeles [7] in-
troduced another ratio called the natural length and used it for design optimization.
Chablat et al. [8] used the characteristic length to determine the design parameter
of a planar parallel mechanism with PRR chains to have an isotropic condition.
Gosselin [9] introduced a method for formulating a dimensionally homogeneous
Jacobian matrix for a planar mechanism with 1 rotational and 2 translational d.o.f.
This Jacobian matrix relates the actuator velocities to the velocities of the x and y

coordinates of two points on the moving platform. Kim and Ryu [10] furthered this
work by using the velocities of three points on the moving platform to develop a di-
mensionally homogeneous Jacobian matrix. Pond and Carretero [11] furthered this
method again by using three independent coordinates of three points on the moving
platform. Moreover, Angeles [12] introduced the engineering characteristic length
for a rigid body transformation matrix to make it homogeneous. Mansouri [13] used
a power transition concept to make the Jacobian homogeneous.

Upon recalling the concept of characteristic length, we divide the Jacobian en-
tries by units of length, thereby producing a new Jacobian that is dimensionally
homogeneous. At the same time, we multiply the associated entries of the twist ar-
ray by the same length, thereby producing a new twist array that is dimensionally
homogeneous, as well. As this length makes a balance between linear and angular
velocities of the twist array, we call it a weighting factor. Moreover, we will show
that this weighting factor is position dependent for those methods that make the
Jacobians homogenous differently [10, 11]. Furthermore, one can also assign dif-
ferent weighting factors to the different coordinates of the twist array with the same
unit.

Parallel manipulators suffer from smaller workspaces relative to their se-
rial counterparts; therefore, many researchers addressed the optimization of the
workspace of parallel manipulators [14–16]. However, optimization for such a pur-
pose might lead to a manipulator with poor dexterity. To alleviate this drawback
some others considered both performance indices and volume of workspace si-
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multaneously [17, 18]. Here, the workspace is parameterized using three design
parameters, which are the moving and base platform radii and the upper part of
the passive link length. Moreover, some geometric constraints are considered in the
problem. Owing to the nonlinear discontinuous behavior of the problem, the genetic
algorithm (GA) method is used here to optimize the workspace. For the workspace
of the manipulator, local conditioning indices (LCI) and MSVs are calculated. Fi-
nally, the workspace is optimized by also considering these dexterity measures.

2. Tricept Mechanism

A Tricept robot, as depicted in Fig. 1, has 2 rotational and 1 translational d.o.f.
[3]. The manipulator has three actuated limbs that connect the base to the mov-
ing platform. Each of these limbs consists of a spherical–prismatic–spherical (SPS)
kinematic chain, where only the prismatic joint is actuated. Alternatively, one of the
spherical joints can be replaced by a universal joint. Moreover, a passive prismatic–
universal (PU) limb connects the center of the moving platform to the base. We
attach frames {P(uvw)} and {O(xyz)} to the moving and base platforms, respec-
tively. When the moving platform is parallel to the base, the two revolute axes of
the universal joints of the center passive leg are parallel with the base frame’s x-
and y-axes, respectively.

Siciliano [19] studied the kinematics and manipulability of Tricept. Pond and
Carretero [20] formulated its square dimensionally homogeneous Jacobian matri-
ces based on three independent coordinates of three nodes of the moving platform.
Architectural optimization of Tricept was studied by Zhang and Gosselin [21]. They
used the GA method to optimize the stiffness and moving platform accuracy. Here,

Figure 1. Tricept structure and geometric model.
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we use the weighting factor method, analytical method and a numerical search to
calculate the workspace. Moreover, we use the GA method to optimize the dexter-
ous workspace of the Tricept robot.

2.1. Velocity Analysis

The geometric model of the manipulator is depicted in Fig. 1. The closure equation
for the ith leg can be written as:

c + R(ai + d) = binbi + linli , (1)

where c and d are the vectors from O to C and C to P , respectively. R is rotation
matrix carrying frame {P } into an orientation coincident with that of frame {O};
ai is the position vector from P to Ai in frame {P }; bi is the position vector of
point Bi in the global frame. Moreover, nbi and nli are the unit vectors showing the
directions of vectors bi and li , respectively.

Taking the first time derivative of (1) yields:

ċ + ωp × (R(ai + d)) = l̇inli + ωl × linli , (2)

where ωp and ωl are the angular velocity vectors of the moving platform and the
limb, respectively. The inner product of the both sides of (2) by nli upon simplifi-
cation leads to:

nli ċ + nliωp × (R(ai + d)) = l̇i . (3)

Writing (3), for i = 1, . . . ,3, in the following form yields:

Jẋ = q̇, (4)

where ẋ is the three-dimensional (3-D) twist vector, q̇ is the 3-D actuator velocity
vector and J is the Jacobian matrix:

ẋ = [ ċ ψ̇ θ̇ ]T (5)

q̇ = [ l̇1 l̇2 l̇3 ]T (6)

J =
[

nl1z (R(a1 + d) × nl1)x (R(a1 + d) × nl1)y
nl2z (R(a2 + d) × nl2)x (R(a2 + d) × nl2)y
nl3z (R(a3 + d) × nl3)x (R(a3 + d) × nl3)y

]
. (7)

3. Workspace Analysis

There are several methods (geometrical [22], analytical and numerical [23]) to an-
alyze the workspace of manipulators. In this section, we study the workspace of a
Tricept manipulator based on a combination of analytical and numerical methods.

• Algorithm. In order to generate the workspace of a Tricept parallel manipulator,
we divide the three dimensional ψ–θ–Z workspace of the moving platform into
a series of subworkspaces that are parallel to the ψ–θ plane. Then a numerical
searching method is adopted to determine the boundary of the subworkspaces.
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Figure 2. Boundary points of a subworkspace.

Finally, the volume of the workspace is calculated quantitatively. The searching
method adopted here is similar to the one used in Ref. [24].
In the particular subworkspace at elevation Zi (within the workspace), to de-
termine the boundary of the subworkspace one may find trajectories formed by
the end of polar vector ρi rotating about the z-axis from 0 to 2π (Fig. 2). When
the boundary point in the direction of ρi is found as Pi(ρ cosα,ρ sinα,Zi),
where ρi is the distance between Zi and Pi , α will be increased by �α and the
next point will be found, similarly. The determination of point Pi is based on
the inverse kinematics of the Tricept. When searching the next boundary point
Pi+1, we set the initial value of ρi+1 as ρi and judge whether point Pi+1 is in
the range of the workspace; if yes, then increase ρi+1, if not, then decrease ρi+1
until point Pi+1 is on the boundary of the workspace. Once the boundary points
in the subworkspace are all searched out, Zi will be decreased by �Z and the
new search will be performed again. Moreover, when α is increased by �α, the
unit volume of the corresponding workspace can be expressed approximately
as:

dV = �α

2π
πρ2

i �Z. (8)

Therefore, the volume of the workspace can be calculated as:

V =
Zmax∑

Zi=Zmin

2π∑
α=0

1

2
ρ2

i �α�Z. (9)

• Geometric constraints. There are some geometric constraints in the design pro-
cess. These constraints include upper and lower limits of actuators, spherical
and universal joints, links lengths and platforms radii. It is simple to calculate
the cone angle of joints (ζ ) by using the geometric relations between actuator
vector and the moving platform pose. The geometric constraints of the Tricept
robot are given in Table 1.
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Table 1.
Geometric constraints of the Tricept manipulator

Actuator (mm) ζ (deg) d (mm) rb (mm) ra (mm)

400–750 ±60 0–200 300–500 200–300

• Design constraints. These constraints include all the expected performances of
the design process, such as stiffness, dexterity, etc. Condition number is quite
often used as an index to describe the dexterity of a robot and the distance of a
pose from a singularity. The condition number also measures the magnitude of
the relative error of the wrench introduced by the relative error in joint torques
and reflects the sensitivity of the wrench due to joint torque error. Similarly,
the use of minimum allowable singular value restricts the workspace to poses
where the manipulator moves at a minimum allowable speed. The advantage in
this region is that the resolution over the moving platform pose is finer. Here,
we optimized Tricept for dexterity measures, namely the condition number as a
LCI and the MSV.

3.1. Weighting Factor or Points Based Method

Condition numbers and MSVs of the Jacobian matrices are known as a kinetostatic
performance indices of parallel manipulators [7, 25]. Indeed, in order to determine
the condition number and MSV of the Jacobian matrices, we must order their sin-
gular values from largest to smallest. However, in the presence of positioning and
orienting tasks, three of these singular values (i.e., those associated with position-
ing) are dimensionless, while those associated with orientation have units of length,
thereby making such an ordering impossible. This dimensional inhomogeneity can
be resolved by a weighting factor.

Dividing the second and the third columns of the Jacobian matrix of (7) by a
length and multiplying the second and the third coordinates of the twist vector to
the same length leads to the following dimensionally homogeneous relation:⎡

⎢⎣
nl1z

(R(a1+d)×nl1)x
l

(R(a1+d)×nl1)y
l

nl2z
(R(a2+d)×nl2)x

l

(R(a2+d)×nl2)y
l

nl3z
(R(a3+d)×nl3)x

l

(R(a3+d)×nl3)y
l

⎤
⎥⎦

⎡
⎣ ċ

lψ̇

lθ̇

⎤
⎦ =

⎡
⎣ l̇1

l̇2

l̇3

⎤
⎦ . (10)

Physically, this implies some sort of tradeoff between position and orientation
components of the twist vector. This weighting factor should be constant throughout
the workspace. Moreover, one might compare one unit of the linear velocity with
m× l units of angular velocity around the x-axis and n× l units of angular velocity
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around the y-axis. Thus, we can assign different weighting factors to the different
coordinates of the twist vector:⎡

⎢⎣
nl1z

(R(a1+d)×nl1)x
lm

(R(a1+d)×nl1)y
ln

nl2z
(R(a2+d)×nl2)x

lm

(R(a2+d)×nl2)y
ln

nl3z
(R(a3+d)×nl3)x

lm

(R(a3+d)×nl3)y
ln

⎤
⎥⎦

⎡
⎣ ċ

lmψ̇

lnθ̇

⎤
⎦ =

⎡
⎣ l̇1

l̇2

l̇3

⎤
⎦ . (11)

Pond and Carretero [11] have shown the kinematic equation as:

JdẊ′′ = q̇, (12)

where Jd is dimensionless Jacobian matrix and Ẋ′′ is a vector of the z coordinate
velocity of three points of a moving platform which is given as:

Ẋ′′ = [ Ȧ1z Ȧ2z Ȧ3z ]T , (13)

in which the components are functions of the moving platform pose coordinates,
according to:

Ȧ1z = ċ + ψ̇(−d sinψ cos θ) + θ̇ (−d sin θ cosψ − ra cos θ) (14)

Ȧ2z = ċ + ψ̇

(−d sinψ cos θ

+ ra cosψ cos θ sinα

)

+ θ̇

(−d sin θ cosψ − ra cos θ cosα

− ra sin θ sinψ sinα

)
(15)

Ȧ3z = ċ + ψ̇

(−d sinψ cos θ

+ ra cosψ cos θ sinβ

)

+ θ̇

(−d sin θ cosψ − ra cos θ cosβ

− ra sin θ sinψ sinβ

)
. (16)

Consequently, (12) can be written as:

JdDẋ = q̇, (17)

where:

D3×3 =
[1 p1 t1

1 p2 t2
1 p3 t3

]
, (18)

in which:

p1 = −d sinψ cos θ (19)

p2 = −d sinψ cos θ + ra cosψ cos θ sinα (20)

p3 = −d sinψ cos θ + ra cosψ cos θ sinβ (21)

t1 = −d sin θ cosψ − ra cos θ (22)

t2 = −d sin θ cosψ − ra cos θ cosα − ra sin θ sinψ sinα (23)

t3 = −d sin θ cosψ − ra cos θ cosβ − ra sin θ sinψ sinβ. (24)
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Table 2.
Parameters of the Tricept design

Actuator stroke Actuator minimum C stroke d rb ra
(mm) length (mm) (mm) (mm) (mm) (mm)

350 400 200–400 200 500 200

Figure 3. Loci of LCI at z = 500 mm with a weighting factor equal to 200 mm.

Pond and Carretero [11] evaluated the MSV and condition index of Jd, while
others, including the present study, consider the conditioning of Jacobian matrix
JdD. It is noteworthy that the relation between joint rates and twist vector is of
great interest in kinetostatic analysis. Therefore, considering the conditioning of Jd
bears no physical meaning and one should always consider the conditioning of JdD.
Moreover, they explicitly considered some weighting factors, namely those singular
values of D that are obviously pose dependent. Thus, using a predefined weighting
factor, as suggested in the present study, leads to a homogeneous Jacobian whose
conditioning has immediate physical meaning. In the following, a design of a Tri-
cept as given in Table 2 is considered. The LCI of the homogeneous Jacobian with
a weighting factor equal to 200 at z = 500 mm is depicted in Fig. 3. Moreover, the
LCI of the homogeneous Jacobian according to the point based method at the same
elevation is depicted in Fig. 4. One can see the obvious differences between the
plotted LCIs. Those points with higher LCI, based on the first method, have a poor
LCI according to the second method and vice versa.

4. GA Optimization

One of the drawbacks of parallel manipulators is their limited workspaces. It is
more limited in the presence of constraints such as dexterity, isotropy and joints
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Figure 4. Loci of LCI at z = 500 mm by point coordinates-based formulation.

limits. Clearly, the optimal design problem is a constrained nonlinear optimization
problem. Here, we resort to a direct search method; namely GA, which has been
widely studied as a global optimization technique [26, 27]. The algorithm is robust
(i.e., it normally works regardless of irregularities of the objective function).

4.1. Setup of the GA Optimization

4.1.1. Design Variables
There are three parameters to be optimized to define the manipulator architecture:
the moving and base platform radii (ra and rb), and the upper part of middle link
length (d), whose limitations are given in Table 1.

4.1.2. GA Parameters Setup
In order to apply the GA for optimization, six fundamental issues are required to
be determined: chromosome representation, selection function, genetic operators,
population size, termination criteria and evaluation function [28].

The chromosome representation of the GA is mainly classified into three cate-
gories of binary representation, gray representation and real number representation,
known as float point representation. Like most applications of the GA to constrained
optimization problems, the float point representation, which is encoded as a vector
of real numbers to represent a solution, is adopted for the problem at hand. Here,
the normalized geometric selection is adopted, and the non-uniform mutation and
arithmetic crossover are selected as genetic operators, as well.

The population size determines the number of individuals in the population at
each generation and the size is set to be 50 in the current optimization. The most
frequently used termination criteria is a specified maximum number of generations.
The maximum number of generations is chosen as 100. Moreover, the objective
functions are chosen as the evaluation functions.
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5. Case Study

5.1. Maximum Workspace Volume with Geometric Constraints

Here, the workspace is parameterized using three design parameters, which are the
moving and base platform radii (ra and rb) and the upper part of passive link length
(d), all summarized in the following vector:

λ = [ra, rb, d]T. (25)

Then, using the GA method, the workspace is optimized subject to some geometric
constraints as given in Table 1.

Therefore, our optimization problem yields:

V ∗ = Max(V (d, ra, rb)), (26)

subject to:

(i) 200 < ra < 300, 300 < rb < 500, 20 < d < 200;

(ii) 400 < actuator length (L) < 750, −60 < ζi < 60 deg.

Solving this optimization problem by the GA leads to the data given in Table 3, in
which the maximum workspace is 944.2176 (mm · rad2). Moreover, this workspace
is illustrated in Fig. 5.

Table 3.
Maximum workspace volume with geometric constraints

No. of iterations V ∗ (mm · rad2) d (mm) rb (mm) ra (mm)

51 944.2176 20 300.062 200

Figure 5. Maximum workspace volume with geometric constraints.
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5.2. Constraint Evaluation

In the following, we evaluate non-geometric constraints (i.e., MSV and LCI) for
different elevation ranges of the foregoing manipulator. MSV and LCI for different
elevation ranges are depicted in Figs 6 and 7, respectively.

Moreover, the workspace volume of the manipulator versus the minimum per-
missible limit on singular values is depicted in Fig. 8. As the minimum permissible
limit on singular values is reduced, the dexterous workspace continues to be re-
duced and vanishes at the minimum permissible limit on a singular value equal to
1.21. Moreover, the workspace volume of the manipulator versus the minimum per-
missible limit on the LCI is depicted in Fig. 9. As the minimum permissible limit on
the LCI is reduced, the dexterous workspace continues to be reduced and vanishes
at the minimum permissible limit of the LCI equal to 0.71.

Figure 6. MSV for different elevations (from lower, 275 mm to upper, 775 mm).

Figure 7. LCI for different elevations (from lower, 275 mm to upper, 775 mm).
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Figure 8. Workspace volume variation versus the minimum permissible limit on singular values.

Figure 9. Workspace volume variation versus the minimum permissible limit on the LCI.

5.3. Dexterous and High Velocity Workspace Volume

Dexterous and high velocity workspaces are subworkspaces of the reachable
workspace of Fig. 5. Considering any minimum permissible limit on singular values
leads to the workspace with a lower bound for moving platform velocities, while
considering the minimum permissible limit on the LCI leads to the manipulator as
close as to isotropic conditions. For the workspace of the manipulator, depicted in
Fig. 5, considering the minimum permissible limit on the LCI to be greater than or
equal to 0.6 and the MSV to be greater than or equal to 1 yields the workspace of
Fig. 10, with the volume of 269.2702 rad2·mm. This volume of workspace is 72.5%
less than the volume without considering these constraints.

In the following, the workspace volume of the Tricept is optimized by constrain-
ing the MSV and LCI of the Jacobian matrix to be within the defined ranges along
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Figure 10. Subworkspace of the maximum workspace by limiting the MSV and LCI.

Table 4.
Optimization results for the design constrained workspace

No. of iterations W∗ (mm · rad2) d (mm) rb (mm) ra (mm)

52 363.9267 98.974 379.508 211.949

with the geometric constraints of Table 1. Therefore, the optimization problem can
be rewritten as:

W ∗ = Max(V (d, ra, rb)), (27)

subject to:

(i) LCI � 0.6;

(ii) σmin � 1;

(iii) 200 < ra < 300, 300 < rb < 500, 20 < d < 200;

(iv) 400 < actuator length (L) < 750, −60 < ζi < 60 deg.

Items (i) and (ii) represent the design constraints, while items (iii) and (iv) rep-
resent the geometric constraints. Solving this problem by the GA leads to the data
given in Table 4, in which the maximum workspace is 363.9267 mm·rad2, 35.1%
more than that volume of Fig. 10. This workspace is illustrated in Fig. 11.

Moreover, the convergence of the algorithm is very fast and it is shown in Fig. 12.

6. Conclusions

In this paper the workspace optimization of a Tricept has been performed. This
parallel manipulator has complex d.o.f. and, therefore, leads to dimensionally inho-
mogeneous Jacobian matrices. Here, some entries of the Jacobian have been divided
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Figure 11. Maximum dexterous workspace.

Figure 12. Convergence of optimization procedure.

by units of length, thereby producing a new Jacobian that is dimensionally homo-
geneous. By multiplying the associated entries of the twist array to the same length,
this array has been made homogeneous as well. As this length makes a balance be-
tween linear and angular velocities of the twist array, we have called it a weighting
factor. It was illustrated that the weighting factor method was more reliable than
the other methods. Moreover, for the platform, the workspace has been parame-
terized using three design parameters, which were the moving and base platform
radii and the upper part of the passive link length. Then, using the GA method, the
workspace has been optimized subject to some geometric constraints. Furthermore,
two workspace performance indices (i.e., LCI and MSVs) have been calculated for
the workspace of the manipulator. Finally, it has been shown that by introducing the
LCI and MSVs, the quality of the parallel manipulator was improved at the cost of
workspace reduction.
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