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ABSTRACT
In this paper modeling and control of cable driven redundant parallel manipulators with

flexible cables, are studied in detail. Based on new results, in fully constrained cable robots,
cables can be modeled as axial linear springs. Considering this assumption the system dynamics
formulation is developed using Lagrange approach. Since in this class of robots, all the cables
should remain in tension for the whole workspace, the notion of internal forces are introduced
and incorporated in the proposed control algorithm. The control algorithm is developed in
cable coordinates in which the internal forces play an important role. Finally, asymptotic
stability of the closed loop system is analyzed through Lyapunov theorem, and the performance
of the proposed algorithm is studied by simulations.

Keywords: Cable driven robot; redundancy; elastic cables; flexibility; internal force; Lyapunov
stability.

ANALYSE DYNAMIQUE ET COMMANDE DES ROBOTS PARALLE ` LES
ENTRAÎ NÉS PAR CÂBLES

RÉSUMÉ
Dans cette e·tude, la mode·lisation et la commande des me·canismes paralle‘les redondants

entra��ne·s par ca�bles sont e·tudie·es en de·tail en tenant compte de la flexibilite· dans les ca�bles.
Dans cette classe de robots, les ca�bles doivent rester sous tension dans l�espace atteignable
global. Base· sur des nouveaux travaux concernant les me·canismes a‘ ca�bles comple‘tement
contraints, les ca�bles peuvent e�tre mode·lise·s comme des ressorts axiaux. Conside·rant cette
hypothe‘se, la formulation dynamique du syste‘me est de·veloppe·e en utilisant l�approche de
Lagrange. Les forces internes sont introduites et inte·gre·es dans l�algorithme de contro� le
propose·. Cet algorithme est formule· dans le syste‘me de coordonne·es ope·rationnelles dans lequel
les forces internes jouent un ro� le primordiale. Enfin, il est de·montre· que le syste‘me en boucle
ferme· est asymptotiquement stable a‘ travers l�analyse de Lyapunov, et la performance de
l�algorithme propose·e est ve·rifie·e par des simulations.

Keywords: Robots paralle‘les entra��ne·s par ca�bles; redondance; ca�bles e·lastiques; flexibilite·;
force inte·rieure; stabilite· de Lyapunov.
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1. INTRODUCTION

Increasing performance demands necessitates design of new types of robots with larger
workspace, being capable to perform at higher accelerations. It is well known that parallel
manipulators can generally perform better than serial manipulators in terms of stringent
stiffness and acceleration requirements. However, their limited workspace and the existence of
singular regions inside their workspace confines the applications of parallel manipulators for
large workspace requirement. In a cable driven parallel manipulator the linear actuators of
parallel manipulator are replaced by electrical powered cable drivers, which leads immediately
to a larger workspace. A cable driven parallel robot consists of an end-effector and a number of
active cables connected to the end-effector from one side, while the cable drivers are fixed to the
base. By this means the position and orientation of the end-effector is forced toward the desired
values by careful control of cables lengths. Cable driven robots have some advantages over
conventional robots, and since cables are used in their structure, they are potentially suited for
large workspace applications such as large adaptive reflector and SkyCam [1,2]. Since cables
have negligible mass and inertia, this type of robots are also suitable for high acceleration
applications. Characteristics such as transportability and ease of assembly/disassembly,
reconfigurability by changing the location of motors and updating the control algorithm and
economical structure and maintenance due to simple mechanical structure and low cost and
simple mechanical components, insure their high potential in many applications such as
handling of heavy materials [3], high speed manipulation [4], rapidly deployable rescue robots,
cleanup of disaster areas [5], and access to remote locations and interaction to hazardous
environment [6].

The most important distinction of cable driven robots to conventional parallel robot roots in
the major property of cables in their actuation. Cables work only under tension and they can be
used only to pull and not to push any object. Therefore, in this class of robots, the cables must
remain in tension in the whole workspace. Based on this fact, cable driven robots can be
classified into two types; under constrained and fully constrained robots [5]. This paper focuses
on the control of fully constrained cable driven robots, in which a major challenge in
mechanical and control design of them, is the nonlinear behavior of the cables. Cables are
usually flexible and show elongation under tension. This flexibility may lead to position and
orientation errors. Moreover, the system may encounter unavoidable vibrations which may
cause uncontrollability of the robot. Cable induced vibration may be a major concern for
applications which require high bandwidth or high stiffness [7].

Though, the cable characteristics have been studied from long time ago, especially in civil
engineering, using cables in parallel robots demonstrates a quite new analysis horizon.
Generally, in civil engineering applications cables are very heavy and bulky, and only static
analysis is performed in the design of bridge type structures [8,9]. However, in cable driven
robots the cables are very light, and their dynamic analysis is of utmost importance in order to
carefully study the motion of the end-effector. Reported studies on the effect of cable flexibility
on modeling, optimal design and control of such manipulators are very limited and these effects
are usually neglected in the literature. Stiffness analysis of the cable robots with flexible cables,
is reported in [10] and [11]. Behzadipour and Khajehpour introduce a four springs model for
cable and achieve necessary and sufficient conditions for stability of system based on positive
definiteness of the robot stiffness matrix [10]. Kozak et al. considers the mass of the cables and
by using a static model of cable, they show how cable sagging affects the kinematics and
stiffness of the system [11]. In [12], a static model of cable is proposed and static deformation of
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cables is determined. The vibration problem of cable driven robots has received less attention
though, and in order to model the vibration due to flexibility of cables, Zhang et al. has used
wave equation to model the cable vibration, provided that the cables lengths are constant [13].
However, in practice this assumption is very limiting for cable driven robots. Kawamura et al.
showed that the internal forces of cables can play a vital role in reducing the vibration of the
system [14]. To investigate the vibration analysis of cable driven robots, linear and nonlinear
springs are used to model the behavior of cables [12,14]. However, in most of the reported
researches it is assumed that cable has only axial flexibility and the transversal flexibility is
negligible.

In the dynamic modeling of cable driven robots, it should be noticed that a complete dynamic
model for cable driven robots is very complicated. Furthermore, since the obtained model shall
be used in controller design, further simplifications are needed. Thus, in practice it is proposed
to only include the dominant effects in the dynamic analysis. For this reason in many robotic
applications, cable mass is neglected and cable is considered as a rigid element [15,16]. With
those assumptions the dynamics of cable driven robot is reduced to the end-effector dynamics.
However, in practice using this assumption will mislead the results in control especially the
stability of the manipulator. Ottaviano and Castelli have shown suitability of neglecting the
cables mass, based on numerical and experimental results given in [17]. They have shown that
this assumption is valid if the ratio of end-effector to cables masses is large or generally, the
ratio of the end-effector wrenches to the tensions is small. Using natural frequencies of system,
Diao and Ma have shown in [7], that in fully constrained cable driven robots the vibration of
cable manipulator due to the transversal vibration of cables can be neglected compared to that
of axial flexibility. It has been justified, therefore, to only model the cable as an axial spring in
cable driven robots. By this means, this model will describe the dominant dynamic
characteristics of the cables and can be used in the dynamic model of cable robot. Based on
these observations, in this paper axial spring is used to model dominant dynamics of cable and a
more precise model of the cable driven robot with flexible cable is derived and being used in the
controller design and stability analysis.

In this paper, considering axial flexibility in cables, a new dynamic model for fully
constrained cable driven robots is presented. In this structure the cables� lengths with and
without tension are considered as the describing states in the model. Then the control of the
system is studied in detail, while the stringent requirement of keeping the cables in tension
is fully addressed. Next, the stability of the system is analyzed through Lyapunov second
method, and it is proven that the closed loop system with the proposed control algorithm is
asymptotically stable. Finally, the performance of the proposed algorithm is examined through
simulations.

2. DYNAMIC ANALYSIS

Generally, four different models of cable have been considered for the dynamic analysis of
cable driven robots. The simplest one is massless inextensible model. It is assumed in this model
that cables have no mass and no flexibility. In elastic but massless models, only the elasticity of
cable is considered and the mass of cable is ignored. In many applications especially in fully
constrained applications, where the workspace is not very large and the cable mass is much lower
than that of the end-effector, this model is found to be appropriate [7,17]. Other models are also
reported in the literature, namely cable with continuous mass and elasticity [11,12], and cables
with lumped mass and elasticity [18], which are mostly used in static analysis of cable robots.
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2.1. Robot Dynamics with Ideal Cables
In this section let us first assume that the mass and flexibility of the cables can be ignored.

The dynamics of cable driven robot under this assumption reduces to that of the end-effector,
and therefore, it can be expressed by the following vector equation [15,16]:

M (x)€xxzN(x, _xx)~{JT t t§0 ð1Þ

in which,

N(x, _xx)~C(x, _xx) _xxzG(x) ð2Þ

and,

M (x): Mass matrix of the robot, C(x, _xx) _xx: Coriolis and centrifugal terms, G(x): Vector of
gravity terms, J: Jacobian matrix of robot and x: Vector of generalized coordinates for position
and orientation of end-effector. On the other hand, the actuators dynamics is represented by

Im€qqzD _qq{rt~u ð3Þ

where,

q: Angles vector of motors shaft, Im: Actuator moments of inertia matrix, D: Actuator viscous
friction matrix, r: The radius of pulleys, t: Cable tension vector and u: Motor torque vector.

As for the position reference, define all q to be zero when the end-effector centroid is located
at the center of the frame; from this configuration positive angle q will cause a change DL in
cables lengths, therefore, we have:

DL~rq~L{L 0[q~r{1(L{L 0) ð4Þ

Where L 0 is the initial length vector at x~0. By differentiating and using manipulator Jacobian
definition _LL~J _xx:

_qq~r{1 _LL~r{1J _xx , €qq~r{1J€xxzr{1 _JJ _xx ð5Þ

Using Eqs. (5), (3) and (1) and some manipulations we can show that:

M eq(x)€xxzNeq(x, _xx)~JTu ð6Þ

in which,

M eq~rM (x)zr{1JT ImJ

Neq~rN(x, _xx)zr{1JT Im
_JJ _xxzr{1JTDJ _xx ð7Þ

It can be seen that actuator dynamics is transformed into task space by Jacobian matrix, which
is a projection from cable length space to task space.
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in which,

N(x, _xx)~C(x, _xx) _xxzG(x) , L 2{L 0~rq

In these equations _LL 1~J _xx, and other parameters are defined as before. Equations (13) and (14)
represent cable driven robot as a nonlinear and coupled system. This representation includes
both rigid and flexible subsystems and their interactions.

3. CONTROLLER DESIGN
3.1. Internal Forces

In cable driven robot end-effector is supported by cables. However, since cables can provide
only tension, actuator redundancy is necessary due to unidirectional characteristic of cable
tension. Such redundant actuation for a cable driven robot is similar to the actuation of the
multi-fingered robots, in which, contact between fingers and an object is regarded as frictionless
points. Therefore, it is possible to apply the concept of vector closure which is introduced in the
research of multi-finger robots to parallel cable driven robots. Generally, vector closure is
expressed in the following way [19]:

In an n-dimensional space, a set of vector JT is a vector closure if and only if JT has at least
nz1 vectors (j1, . . . ,jnz1) satisfying the following two conditions (ji is n|1):

1) Each set of n vectors in nz1 vectors in JT is linearly independent.

2) A vector b~(b1, . . . ,bnz1)T exists (bi is scalar), that satisfies

JT b~
Xnz1

i~1

jibi~0n|1 ð15Þ

in which, each element of vector b has the same sign (positive or negative), biw0 (for any i) or
biv0 (for any i).

It is well known in parallel robots that Jacobian transpose relates the resultant forces applied
on the end-effector to the cable tensions t [20]:

f~JT t ð16Þ

where, matrix JT denotes Jacobian transpose and may be expressed by its columns:
JT~½j1,j2, . . . ,jm�. The vector closure conditions mean that each cable tension remains positive
while any resultant force vector can be generated. This result implies that at least nz1 cables
are necessary to realize the motion with n degrees of freedom. Since in cable driven robots
actuator redundancy is a requirement, the number of the cable actuators are greater than the
degrees of freedom, and therefore, the Jacobian matrix is not square. The inverse relation to
calculate the tension in cables from the resultant force using pseudo inverse may be given by:

t~toz(I{J{JT )c ð17Þ

in which, J{ denotes the pseudo inverse of the matrix JT , to denotes the base pseudo inverse
solution given by to~J{f , I denotes an m|m identity matrix, and c is any arbitrary vector in
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Rm. This general solution consists of two parts, the first part is the base solution to, and the
second part spans the null space of the matrix JT and can be considered as internal forces
among the cables. Notice that since the internal force spans the null space of JT it does not
contribute into the resulting force applied to the end-effector, and it only produces tension in
cables in order to keep all the cables in tension. Internal force plays an important role in our
proposed control algorithm.

3.2. Control Algorithm in Cable Length Space
In this section the proposed control algorithm in cable length space is discussed. This

control algorithm consists of a simple PD control plus internal forces to ensure that all
cables are in tension in the whole workspace, and a gravity compensation term in
companion with a damping term. By using desired set point vector qd , the control input u is
proposed to be:

u~Kp(qd{q){Kv _qqzQzrQGzKs( _LL 2{ _LL 1) ð18Þ

where, Kp(n|n), in which n is the number of cables, Kv(n|n) and Ks(n|n) denote feedback
gain matrices. The term Q(n|n) denotes internal force vector and satisfies

JTQ~0 ð19Þ

It is important to note that the vector Q does not contribute into motion of the end-effector,
and only causes internal forces in the cables. This term ensures that all cables remain in
tension in the whole workspace. Moreover, this term increases the stiffness of the system,
and as a result, minimizes the vibration in transversal direction of the cables. The term QG is
added to compensate the gravitational force. This vector must satisfy

JTQG~G(x) ð20Þ

Furthermore, L 2 and L 1 vectors are cables lengths without and with tension, respectively. L 2

is relatively measured by shaft encoder at the motor side and is related to q by rq~L 2{L 0. L 1

denotes cables lengths when cables are in tension and can be measured by pot strings. In the
following section we discuss the stability of the closed loop system based on this proposed
control algorithm.

3.3. Stability Analysis
To show that the control law given in Eq. (18) achieves set point tracking, consider the

following Lyapunov function:

V~
1

2
_qqT Im _qqz

1

2
_xxTM (x) _xxz

1

2
(L 1{L 2)TK(L 1{L 2)z

1

2
(qd{q)TKp(qd{q) ð21Þ

The Lyapunov function is generated using the total energy in the system. Since qd is constant,
the time derivative of the Lyapunov function V is given by:
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find the length variable of the manipulator L 1~½l1,l2,l3,l4�T . Let�s define the instantaneous
orientation angle of B,

is:

wi~wzhBi

With some manipulation we can show that [23],

li~½(xP{xAi
zRB cos (wi))

2z(yP{yAi
zRB sin (wi))

2�
1
2

Jacobian analysis plays a vital role in the study of robotic manipulators. Jacobian matrix not
only reveals the relation between the length variable velocities _LL 1 and the moving platform
velocities _xx, it constructs the transformation needed to find the actuator forces from the
wrench acting on the moving platform. For the geometry of the manipulator as illustrated in
Fig. 1(c), the manipulator Jacobian matrix J is,

J~

S1x S1y E1xS1y{E1yS1x

S2x S2y E2xS2y{E2yS2x

S3x S3y E3xS3y{E3yS3x

S4x S4y E4xS4y{E4yS4x

2
6664

3
7775 ð33Þ

Fig. 2. Plots of desired and actual position of L2~rqzL0.
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in which, the subscripts x, and y denote the corresponding component of the Si and Ei vectors.
Note that the Jacobian matrix J is a non-square 4|3 matrix, since the manipulator is
redundantly actuated.

4.2. Control
The equations of motion for the end-effector can be written in the following form [24],

M €xxzG~F

in which, x~½xP,yP,w�, and by considering flexibility in the cables,

F~JTK(L 2{L 1) , L 2~rqzL 0

Im€qqzD _qqzrK(L 2{L 1)~t

and,

M ~

m 0 0

0 m 0

0 0 Iz

2
64

3
75 and G~

0

mg

0

2
64

3
75

Fig. 3. Plots of position and orientation of end-effector in task space.
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model of fully constrained cable driven robot is derived using Euler-Lagrange approach. Since
in such robots cables must remain in tension in the whole workspace, the notion of internal
force is introduced and directly used in the proposed control algorithm. The proposed control
algorithm is designed in cable length space and consists of four components. A simple PD
control on the tracking error, the internal force to ensures that all cables are in tension, a gravity
compensation term and finally a damping term. The stability of the closed-loop system is
analyzed through Lyapunov second method, and it is shown that the proposed controller is
capable to stabilize the system in presence of flexible cables. Finally the performance of the
proposed controller is examined through simulations.
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