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ABSTRACT

In this paper, dynamic analysis of cable-driven parallel manipulators (CDPMs) is performed using
the Lagrangian variable mass formulation. This formulation is used to treat the effect of a mass stream
entering into the system caused by elongation of the cables. In this way, a complete dynamic model of
the system is derived, while preserving the compact and tractable closed-form dynamics formulation.
First, a general formulation for a CDPM is given, and the effect of change of mass in the cables is
integrated into its dynamics. The significance of such a treatment is that a complete analysis of the
dynamics of the system is achieved, including vibrations, stability, and any robust control synthesis of
the manipulator. The formulation obtained is applied to a typical planar CDPM. Through numerical
simulations, the validity and integrity of the formulations are verified, and the significance of the
variable mass treatment in the analysis is examined. For this example, it is shown that the effect of
introducing a mass stream into the system is not negligible. Moreover, it is non linear and strongly
dependent on the geometric and inertial parameters of the robot, as well as the maneuvering trajectory.

Keywords: cable-driven robots; variable mass Lagrangian formulation; closed-form dynamics.

APPLICATION DE LA MÉTHODE DE LAGRANGE POUR LA MODÉLISATION
DES ROBOTS À CABLES : UNE FORMULATION À MASSES VARIABLES

RÉSUMÉ

Dans cet article, la modélisation dynamique des manipulateurs parallèles à câbles est présentée.
L’effet de la variation de la longueur des câbles est pris en compte grâce à la méthode de Lagrange
pour des systèmes à masses variables. Le modèle dynamique obtenu se présente alors sous une forme
compacte. Cette modélisation est importante pour étudier en détail la dynamique du système aussi
bien que pour des études de vibration, de stabilité et de conception de systèmes de commande
robustes. Un exemple de modélisation d’un manipulateur à câbles plan est également présenté. Grâce
à des simulations numériques, la validité et l’intégrité de la formulation obtenue sont d’abord vérifiés.
Ensuite, l’effet de la variation de la masse est examiné. Pour ce faire, des simulations avec et sans
l’effet de la variation de la masse sont considérées et les résultats sont comparés. Il est montré que
pour l’exemple présenté, l’effet de la variation de la masse ne peut pas être négligé. Cette effet est non-
linéaire et dépend fortement de la géométrie du manipulateur ainsi que de la trajectoire du robot.

Mots-clés : robots à câbles; formulation de Lagrange pour masses variables; dynamique.
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1. INTRODUCTION

The equations of motion of constant mass systems can be derived using various classical
approaches, such as the Newton-Euler, Lagrangian, virtual work, and Kane formulations.
These basic principles of classical dynamics usually apply to systems comprising a definite
number of objects with constant masses [1], and they can be extended to cases where the masses
of the system components change. Such a complete treatment of the dynamic analysis of
systems with variable mass is a challenging problem. The difficulties arise from the fact that the
mass, centre of mass, and moments of inertia may vary in such mechanisms by a stream mass
that is overtaken or expelled at a non-zero velocity, and that mass may change the linear and
angular momentum of the overall system [2]. The dynamics of variable mass systems have been
studied for a very long time. Some of their first applications were in applied mechanics, in
systems of continuously variable mass, such as rockets [3], and most of the first works reported
in this area are related to these applications. Meshchersky was among the first scientists to
understand the modern dynamics of a rigid body with variable mass [4]. At the same time, in
robotics applications, the motion of robots that pick up objects can be treated by varying mass
dynamic analysis. Representative of this type of analysis is the work of McPhee in the dynamic
analysis of multiple rigid bodies [5]. Djerassi [6] reported similar work in such applications. The
most recent work reported in the area of variable mass systems has been performed by
Cveticanin [2,4,7–10]. She studied the dynamics of body separation and developed an analytical
procedure to determine the dynamic parameters of the remaining body after mass separation
[10]. This method is based on the general principles of the momentum and angular momentum
of a system of bodies. She also extended the Lagrangian formulation to systems of varying mass
[2]. The latest reported work of Cveticanin and Djukic explains the extended kinematic and
dynamic properties of a body in general motion [9], and presents their modification of the
principle of linear and angular momentum conservation to obtain the linear and angular
velocity of the body during mass separation. Furthermore, the dynamic analysis of cable-driven
parallel manipulators (CDPMs) shows their inherent complexity due to their closed-loop
structure and kinematic constraints. Although the dynamic analysis of such manipulators is
essential for stability analysis and closed loop control synthesis, little work has been reported on
the dynamic analysis of CDPMs [11–14]. In these manipulators, a change in cable length causes
the effective mass of their limbs to continuously vary in time. Moreover, the varying mass of the
cables is a function of the position of the moving platform. In all the work reported in the
dynamics of CDPMs, the effect of varying mass in cables has been neglected, because of the
small changes of mass in the cables. However, in some applications, such as the large adaptive
reflectors used in the next generation of giant telescopes [12], the cables can be as long as 1,000
meters, and so the mass variation of cables could play an important role for this class of
systems. To evaluate the aforementioned importance, a model that takes into account the mass
variation is necessary. However, the variation of mass is not the only effect that may affect this
particular class of systems. In fact, the long cables can also introduce considerable sag effect
[13]. To evaluate these effects accurately, they should be considered one at a time.

In this paper, the dynamic equations of CDPMs are discussed in detail, taking into account
the mass variation of the cables, but neglecting the sag effect. This simplification assumption is
not necessarily valid, but at this stage, we focus on the mass variation effect only. According to
this assumption, the dynamics is expressed in terms of the Lagrangian formulation, and a set of
compact and closed-form formulations is obtained. This general formulation is then adopted
for modeling a typical planar CDPM, for which a simulation study is performed. It is shown
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that the effect of a mass stream entering into the system is not negligible: it is nonlinear
and strongly dependent on the geometric and inertial parameters of the robot, and on the
maneuvering trajectory.

2. KINEMATIC ANALYSIS OF CDPMS

The general structure of CDPMs that is used in this paper is shown in Fig. 1. In this
manipulator, the moving platform is supported by n limbs (cables) of identical kinematic
structure, while the limbs are considered as rigid slender rods for the sake of dynamic analysis.
The kinematic structure of the limb may be considered as spherical-prismatic-spherical
(commonly denoted as SPS), in which only the prismatic joint is actuated. The kinematic
structure of a prismatic joint is used to model the elongation of each link. As shown in Fig. 2, Ai

denote the fixed base points of the cables, Bi denote the points of attachment of the cables to the

moving platform, and l~ l1 � � � ln½ �T denotes the vector of the cable lengths. Moreover, the
position vector of the moving platform frame pf g, as well as the cable frame cif g, are defined as

xT
p xT

c

� �T
, in which xp denotes the position of the moving platform according to the base

frame 0f g, and xc~ xT
c1 � � � xT

cn

� �T
denotes the vector of the cable coordinates where xc1 is

the position of the cable’s centre ci, according to the base frame (see Fig. 2). Similarly, the
angular coordinates of the moving platform pf g and the cables cif g relative to the base frame
are defined as QT

p QT
c

� �T
, in which Qp~ c,b,a½ �T are any user-defined Euler angles of the

moving platform, and Qc~ QT
1 � � � QT

n

� �T
is the angle vector of the cable frame cif g which is

attached to the center of the cables. Subsequently, each angle vector Qi, is defined by its three
Euler angles: Qi~ ci,bi,ai½ �T . Accordingly, the rotational matrix of moving platform coordinate

pf g, oRp and cables coordinate cif g, oRci relative to the base frame defined as:

R(c,b,a)~oRp, R(ci,bi,ai)~
oRci: ð1Þ

As explained in [12,15], and [16], the inverse kinematics of CDPMs, like that of any other
parallel manipulator, can be obtained by writing the loop closure equations. Therefore,
according to the Fig. 2 the vector loop closure formulation can be written as:

xpzEi~xAizliSi, Ei~
oRp

pxBi, ð2Þ

where liSi~AiBi, xAi and pxBi are respectively the position vectors of Ai relative to the 0f g and
the position vector of Bi relative to pf g. Since it is assumed that the z axis of the cif g frame is

Fig. 1. General structure of cable-driven parallel manipulators (CDPMs).
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directed along the cable length, the geometric model can be completed by the two following
equations:

xci~xAiz
liSi

2
, oRci½ 0 0 li �T~liSi: ð3Þ

Equatons (1–3) allow all the coordinates of the system to be expressed as a function of
the generalized coordinates. By choosing x~ xT

p QT
p

� �T
[Rm (position and orientation of the

moving platform) as generalized coordinates, we obtain:

xc~fx xð Þ, Qc~fQ xð Þ, l~f l xð Þ, ð4Þ

where fx, fQ and f l are kinematic equations obtained from the loop closure. The time derivative
of Eqs. (1–4), combined with the cross product propriety of rotation matrix (i.e.
oRa

T o _RRa~va|y where | denotes the cross product operator and va is the angular velocity
of frame af g expressed in terms of frame {a}) may lead to a relation that expresses the linear
and angular velocities of the frame attached to the cables center of mass, as well as the time
derivative of the cable lengths, as function of the linear and angular velocities of the moving
platform:

_xxc

cvc

� �
~

Jxx xð Þ Jxv xð Þ
Jvx xð Þ Jvv xð Þ

� �
_xxp

pvp

� �
, _ll~ Jlx xð Þ Jlv xð Þ½ �

_xxp

pvp

� �
, ð5Þ

where Jxx, Jxv, Jvx, Jvv, Jlx and Jlv are Jacobian matrices; _xxc and _xxp are the linear velocities of
the cables and the moving platform respectively, and cvc and pvp are the angular velocities
expressed in the cables and moving platform frame respectively. In order to eliminate the
velocities of the cable in the Lagrangian formulation presented below, Eq. (5) is used to collect
all the linear velocities of the cables and the moving platform as function of only the linear and
angular velocities of the moving platform:

_xxp

_xxc

� �
~

1 0

Jxx xð Þ Jxv xð Þ

� �
_xxp

pvp

� �
, ð6Þ

Fig. 2. A single limb in a cable-driven parallel manipulator.
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where 1 represents the identity matrix. Similarly, the angular velocities of the cables and the
moving platform are rewritten as:

pvp

cvc

� �
~

0 1

Jvx xð Þ Jvv xð Þ

� �
_xxp

pvp

� �
: ð7Þ

Conveniently for the Lagrangian formulation, Eqs. (4) and (5) can be expressed as a function of
the derivative of the generalized coordinates. In order to achieve this, the following relation
between the derivative of the Euler angles and the angular velocity can be established [15]:

pvp~JvQ xð Þ _QQp: ð8Þ

This equation can then be used to rewrite (4) and (5) as:

_xxp

_xxc

� �
~

1 0

Jxx xð Þ Jxv xð ÞJvQ xð Þ

� �
_xxp

_QQp

" #
~Jx xð Þ _xx, ð9Þ

pvp

cvc

� �
~

0 JvQ xð Þ
Jvx xð Þ Jvv xð ÞJvQ xð Þ

� �
_xxp

_QQp

" #
~JQ xð Þ _xx: ð10Þ

3. KINETIC ENERGY OF CDPMS

In order to derive the kinetic energy of the system, the kinetic energy of the robot components
are derived and added. A CDPM consists of a moving platform and several limbs, in which the
limbs are modeled as rigid slender rods. The actuators, which are often composed of motors
combined with pulleys, are not included in our formulation. Therefore, the mass of all the
objects in the mechanism can be expressed as:

M lð Þ~
Mp

0

0

Mc lð Þ

� �
, ð11Þ

in which Mp and Mc denote the mass matrices of the moving platform and all the cables
respectively:

Mp~

mp 0 0

0 mp 0

0 0 mp

2
64

3
75, Mc lð Þ~

mc1 l1ð Þ13 0 0

..

.
P

..

.

0 0 mcn lnð Þ13

2
664

3
775: ð12Þ

In this definition, mp is the moving platform mass and mc1 is the mass of the cables expressed as
a function of its linear density rm and its lengths li, as follows:
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mi lið Þ~rmli: ð13Þ

Similarly, the moment of inertia of all the components of a CDPM can be collected into:

I lð Þ~
Ip

0

0

Ic lð Þ

� �
, ð14Þ

where Ip and Ic are the inertial matrices of the moving platform and the cables respectively,
given by:

Ip~

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

2
64

3
75, Ic lð Þ~

Ic1 l1ð Þ 0 0

..

.
P

..

.

0 0 Icn lnð Þ

2
664

3
775: ð15Þ

Since the cables are modeled as slender rods and with the assumption that the z axis of the cif g
frame is directed along the cable length, the moment of inertia of the cables Ici is defined as:

Ici lið Þ~
rm

12

li
3 0 0

0 li
3 0

0 0 0

2
64

3
75: ð16Þ

According to Eq. (2), li can be expressed as a function of the generalized coordinates. Thus, the
total kinetic energy for all the components of a CDPM can be expressed as:

T~
1

2

_xxp

_xxc

� �T

M xð Þ
_xxp

_xxc

� �
z

pvp

cvc

� �T

I xð Þ
pvp

cvc

� �" #
: ð17Þ

The substitution of the Jacobian matrices defined by Eqs. (7) and (8) leads to:

T~
1

2
_xxT D xð Þ _xx, ð18Þ

where the mass matrix of the system is given by:

D xð Þ~Jx
T xð ÞM xð ÞJx xð ÞzJQ

T xð ÞI xð ÞJQ xð Þ: ð19Þ

4. VARIABLE MASS LAGRANGIAN APPROACH

In this section, the dynamics of a cable-driven parallel manipulator is obtained by the
variable mass Lagrangian formulation. As the length of the cables in a CDPM is a function of

Transactions of the Canadian Society for Mechanical Engineering, Vol. 35, No. 4, 2011 534



the position of the moving platform, the cable mass changes in time. In fact, the mass that is
added to or removed from the system will add momentum to the system or remove momentum
from it. The dynamics of the mechanism with variable mass is discussed in detail in [2] by
Cveticanin, who extends the Lagrangian formulation to:

d

dt

LT

L _xx

� �
{

LT

Lx

� �
~qzqFizdzqR� : ð20Þ

In this formulation, q and qFi are the generalized forces caused by non conservative and non-
conservative external forces acting on the system respectively. Furthermore, dzqR� accounts for
the effect of changing mass in the system. In other words, qR� is an impact force that is caused
by the mass stream entering into the system or being expelled from it, and is a function of the
mass variation and its relative velocity. Furthermore, d accounts for the direct energy that is
added to or removed from the system by entry or departure of the stream mass.

4.1. Kinetic Energy Terms
Let us examine the required terms of the Lagrangian formulation for a CDPM. As usual, the

first two terms can be derived from the kinetic energy of the system given by (16):

d

dt

LT

L _xx

� �
{

LT

Lx

� �
~D xð Þ€xxz _DD xð Þ{ 1

2

L
Lx

_xxT D xð Þ
� 	� �

_xx, ð21Þ

where _DD xð Þare the time derivatives of the terms given by (17).

4.2. Generalized Forces
As explained for the extended Lagrangian formula, qFi and q are the generalized forces

caused by conservative and non-conservative external forces acting on the system respectively.
The generalized force acting on the system caused by external non conservative forces is
composed of the elements wxzqnc, such that:

q~wxzqnc, ð22Þ

where wx is the wrench (forces and torques) corresponding to the projection of the cable force
on the platform, and qnc represents the external forces and torques acting directly on the moving
platform. According to the principle of virtual work and the Jacobians given by Eqs. (3) and (6),
the vector wx can be obtained by projecting the cable forces into the Cartesian space, using the
manipulator Jacobian matrices as follows:

wx~ Jlx xð Þ Jlv xð ÞJvQ xð Þ½ �T t~Jw
T xð Þt, ð23Þ

where t denotes the vector of the cable forces. The contribution of the gravitational forces may
be expressed as the following equation of potential energy:

V~gT Mpxpz
Xn

i~1

mi lið Þxci

 !
, ð24Þ
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where g is the gravity vector represented in the base frame. According to [2], potential energy
can be expressed as a function of the generalized coordinates. Therefore, qFi is obtained by the
partial derivative of the potential energy with respect to the generalized coordinates:

G xð Þ~{
dV

dx
: ð25Þ

4.3. Variable Mass Terms
The formulation proposed for the varying mass mechanism in [2] was defined for a particle

mass system. The additional terms required to accommodate the variable mass mechanism are
only a function of mass derivatives (a small variation in mass divided by a small variation in
time). For this reason, and because these variations are continuous, the mass derivative acts as
a particle, even for a body system. This interpretation has already been considered in [2,17] for
the analysis of the vibration of varying mass mechanisms (see also [4]). As discussed in [2], the
effect of changing mass in the system is caused by a variable momentum. This effect can be
divided into the impact forces denoted by qR�and the energy that was added or removed from
the system by the variable mass, denoted by d. Since cables are the only source of variable
mass and the variation is only function of the generalized coordinates, dk can be determined
by [17]:

dk x, _xxð Þ~{
1

2

Xn

i~1

Lmi lið Þ
Lxk

vi
T vi, ð26Þ

where vi is the velocity of the variable mass i and k denote individual generalized coordinates.
According to Fig. 1, this mass variation is located at the beginning of the cable iand its
velocity is in only one direction when it is expressed in the frame of the cable. For this reason,
vi can be considered as a scalar given by _lli. Then, using Eqs. (2) and (11), Eqs. (24) can be
rewritten as:

dk x, _xxð Þ~{
1

2
rm

Xm

i~1

Lfli

Lxk

Lfli

Lx
_xx

� �2

: ð27Þ

Now, the effect of the impact forces qR�

k can be obtained from [17]:

qR�

k x, _xxð Þ~
Xm

i~1

mi lið Þvoi
T Lpi

Lxk

, ð28Þ

where voi is the velocity of the expelled or gained mass, and p is the position of the mass
variation. This variation is also located at the beginning of the cable i and its position
variation, and its velocity is in only one direction when they are expressed in the frame of the
cable. For this reason, voi and the variation of pi can be interpreted as scalars, given by ii and
Lli=Lxk respectively. Then, using Eqs. (2) and (11), Eq. (26) can be rewritten as:
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qR�

k x, _xxð Þ~rm

Xm

i~1

Lfli

Lx
_xx

� �2 Lfli

Lxk

: ð29Þ

dk and qR�

k can be combined, as follows:

dk x, _xxð ÞzqR�

k x, _xxð Þ~ 1

2
rm

Xm

i~1

Lfli

Lxk

Lfli

Lx
_xx

� �2

: ð30Þ

4.4. Final Dynamics Equations
From Eqs. (17–19,21,23), and (28), the general form of the dynamics of CDPM can be

released in compact standard form, as:

D xð Þ€xxzc x, _xxð ÞzG xð Þ~Jw xð Þtzqnc, ð31Þ

where D is given by Eq. (17), G is given by Eq. (23), Jw is defined by Eq. (21), and c is given by:

c x, _xxð Þ~ _DD xð Þ{ 1

2

L
Lx

_xxT D xð Þ
� 	� �

_xx-d x, _xxð ÞzqR� x, _xxð Þ, ð32Þ

where each element of dzqR� is given by Eq. (28). In Eq. (30), D is the mass matrix; c is the
vector of the centrifugal, Coriolis, and mass variation terms; and G is the vector of the gravity
terms. Finally, qnc is the external wrench vector acting directly on the moving platform.

5. CASE STUDY

In this section, the dynamics of the planar CDPM discussed in [12] (see Fig. 3) was
considered. This CDPM is a simplified planar version adopted from the structure of the Large
Adaptive Reflector (LAR). This structure consists of parallel redundant manipulators

Fig. 3. (a) Simple schematic representation of the planar CDPM; (b) Vectors definitions for
Jacobian derivation of the manipulator.
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actuated by long cables. The control objective in the simplified mechanism is to track the
position and orientation of the moving platform, as desired, in the presence of disturbance
forces, such as wind turbulence. The geometric and inertial parameters used in the
simulations of the system have been adopted from the LAR design. In this way, the length of
the cables is in the order of one kilometer. The main control purpose is the positioning of the
moving platform, x~ x y Q½ �T . The geometric and inertial parameters of the system are
explained in Table 1. In this subsection at first, the dynamics of the planar CDPM is obtained
by the Lagrangian method. Then, the effect of the variable mass in the cables is studied in
detail.

From the inverse kinematic analysis, the length of the cable li and the angle ai can be
obtained easily by writing the loop closure equations as follows:

li~ xzRB cos Qi{xAið Þ2z yzRB sin Qi{yAið Þ2
h i

,

ai~atan2 yzRB sin Qi{yAið Þ, xzRB cos Qi{xAið Þð Þ,
ð33Þ

where xAi~ xAi yAi½ �T is the position of fixed points Ai.

In order to obtain the Jacobian matrix, let us differentiate the vector loop Eq. (2) with respect
to time:

_xx _yy½ �Tz _QQp K|Eið Þ~_lliSiz _aai
_lli K|Sið Þ, ð34Þ

where, K is the unit vector in z direction. vectors Ei and Si are defined as follows:

Ei~ Eix Eiy½ �T~ RB cos Qið Þ RB sin Qið Þ½ �T ,

Si~ Six Siy½ �T~ cos aið Þ sin aið Þ½ �T ,
ð35Þ

In order to obtain expressions for _lli and _aai, dot multiply and cross multiply both sides of
equation by Si respectively, we have:

Table 1. Geometric and inertial parameters of the system.

Symbols Quantity

Radius of location circle of fixed points Ai’s RA 900 m

Radius of location circle of moving platform

points Bi’s
RB 10 m

Angle of fixed points Ai hA [2135u,245u,45u,135u]
Angle of moving platform points Bi hB [245u,2135u,135u,45u]
The moving platform mass Mp 2500 kg

The moving platform moments Ip 3.5e105 kg/m

Mass density of the cables rm 0:215 kg/m
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Jxx~ Six Siy½ �4i~1, Jvx~ EixSiy{EiySix

� �4
i~1

,

Jvx~ { 1
li

Siy { 1
li

Six

h i4

i~1
, Jvv~ {

1

li
EixSiyzEiySix

� 	� �4

i~1

:
ð36Þ

Moreover, for planar CDPMs, we have JvQ~I, and the Jacobian matrices are therefore easily
defined by Eqs. (7) and (8). Finally, by deriving Eqs. (17,30), and (23), the mass matrix D, the
centrifugal, Coriolis, and mass variation terms c, and the gravity vector terms G are obtained.
Thus, the dynamic modeling of planar CDPM is expressed as follows:

D xð Þ3|3€xx3|1zc x, _xxð Þ3|1zG xð Þ~ Fx Fy tz½ �Tzqnc, ð37Þ

where Fx, Fy, and tz form the wrench applied on the moving platform, defined by:

Fx Fy tz½ �T~JW xð Þ3|4
T t4|1: ð38Þ

In Eq. (35), t4|1 is the vector of the forces in joint space or, in other words, the tensions in the
cables that are generated by the actuators (motors). As the Jacobian matrix in a redundant
manipulator is non-square, tension in the cables can be obtained by the algorithms of
Redundancy Resolution (optimal distribution of forces in cables) [19].

This resolution also ensures positive tension in all cables. In fact the redundancy resolution is
formulated as an optimization problem with equality and non-equality constraints caused by
CDPM structure and cables restriction. The equality constraint is the Jacobian transformation
between cable forces, t4|1 and the force acting on the moving platform Fx Fy tz½ �T . The
non-equality constraint ensures the positive cables forces. In other words, the redundancy
resolution problem has been considered as the problem of computing the minimum norm cables
forces with the following equality and non-equality constraints:

min t4|1k k2

under the constraints:

Fx Fy tz½ �T~JW xð ÞT3|4t4|1,t4|1w0: ð39Þ

The numerical solution of this optimization problem is explained in detail, as example, in [18].

For simulation, a specific displacement of the moving platform is chosen. This simple
trajectory is shown in Fig. 4. Then, the forces in Cartesian space are obtained by the inverse
dynamic model given by Eq. (34). These forces are compared with the forces obtained by
the same simulation, in which the effect of variable masses in the cables is neglected. Figure 5(a)
shows the forces and torque in Cartesian space. Figure 5(b) shows the projected forces in the
links space. In other words, it shows the tensions in the cables that are defined by Eq. (35) as
t~ t1 t2 t3 t4½ �T . These forces were obtained by driving the numerical algorithm used to
solve the ‘‘non negative least-squares constraints problem’’ described in [19] and implemented
in the Matlab optimization toolbox. As we expect from the dynamics equation analysis, the
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variable mass has a significant effect on the dynamics of the manipulator. In applications such
as the LAR project [12], the length and mass density of the cables are important. In this context,
the variable mass of the cables plays a vital role in the dynamics of the CDPM. Moreover, the
effects of the variable mass in the cables are strongly dependent on the position and velocity
trajectories. This effect is non linear, and dependent on parameters like the mass density of the
cables, the mass of the moving platform, and the kinematic structure. In fact, the additional
effect of the variable mass is completely described by Eq. (28). Therefore, this effect is directly
proportional to the cable mass density rm. This parameter could reduce the effect of the variable
mass. However, such a reduction would increase the flexibility of the cables, which is not
necessarily a better outcome. In addition, since f l xð Þ in Eq. (2) is a kinematic function of the
position of the moving platform, the variable mass effect is strongly dependent on the size and
topology of the CDPM.

Fig. 4. Desired trajectory.

Fig. 5. (a) Forces and torque in Cartesian space (moving platform workspace); (b) tension in the
cables (forces in the joint space).
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6. CONCLUSIONS

This paper focused on the dynamic modeling of cable-driven parallel manipulators (CDPMs)
using the Lagrangian formulation. In previous works, the effect of a mass stream entering into
the system caused by elongation of the cables is neglected, whereas in this paper, this effect is
treated using a Lagrangian variable mass formulation. In this way, a complete dynamics of the
system is derived, while the compact and tractable closed form dynamics formulation is
preserved. First, a general formulation for a general CDPM is given, where the effect of mass
variation of the cables is integrated into its dynamics. The significance of such a treatment can
be appreciated in a complete analysis of the dynamics, vibrations, and stability of such systems,
and in any robust control synthesis of these manipulators. The general formulation is applied
to a typical planar CDPM with cables 900 meters in length. Through simulation, the validity
and integrity of the formulation obtained are verified, and the significance of variable mass
treatment in such an analysis is examined. It is shown that the effect of a mass stream entering
into the system is not negligible: it is non-linear and strongly dependent on the geometric and
mass parameters of the robot, and on the maneuvering trajectory. However, the long cables do
introduce additional sag effect, which is neglected in this paper. In future work, this effect will
be studied in detail by using finite element approach.
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