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ABSTRACT

The kinematic sensitivity is a unit-consistent measure that has been recently proposed as a
mechanism performance index to compare robot architectures. This paper presents a robust
geometric approach for computing this index for the case of planar parallel mechanisms. The
physical meaning of the kinematic sensitivity is investigated through different combinations of
the Euclidean and infinity norms and by means of several illustrative examples. Finally, this
paper opens some avenues to the dimensional synthesis of parallel mechanisms by exploring the
meaning of the global kinematic sensitivity index.

Keywords: performance index; kinematic sensitivity; planar parallel mechanisms; redundant
mechanisms; mechanisms with dependent degrees of freedom.

ANALYSE GÉOMÉTRIQUE DE LA SENSIBILITÉ CINÉMATIQUE DES
MÉCANISMES PARALLÈLES PLANS

RÉSUMÉ

La sensibilité cinématique a été proposée récemment comme un indice de performance pour
comparer les architectures des robots en fonction de leurs propriétés cinématiques. Cet article
présente une approche géométrique robuste pour calculer la sensibilité cinématique des
mécanismes parallèles incluant des exemples illustratifs. Dans cet article, la sensibilité
cinématique est étudiée par une combinaison des normes euclidienne et infinie afin d’obtenir
la combinaison la plus sensée, d’un point de vue physique. En outre, le présent document ouvre
des pistes pour la synthèse dimensionnelle des mécanismes parallèles en explorant la
signification de l’indice global de sensibilité cinématique.

Mots-clés : indice de performance; sensibilité cinématique; mécanismes parallèles plans;
mécanismes parallèles redondants; mécanismes parallèles avec des degrés de liberté dépendants.
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1. INTRODUCTION

The definition of sound general performance indices for mechanisms, including Parallel
Manipulators (PMs), has received much attention from the robotics research community [1].
This is due to the need to provide comparisons between different robot architectures [2–4]. As
reviewed in [1], the most notorious indices, namely, the manipulability and the dexterity, still
entail some drawbacks which are well discussed in [1,5–7]. In [1], two distinct metrics are
proposed: one for rotations and one for point displacements. They are referred to as the
kinematic sensitivity indices. These indices provide tight upper bounds to the magnitudes of the
end-effector rotations and point-displacements, respectively, under a unit-magnitude array of
actuated-joint displacements [1].

Hence, the maximum kinematic sensitivity is defined as the maximum error that occurs in the
Cartesian workspace as a result of bounded displacements in the joint space. In order to obtain
consistent unit, two indices have been defined [1]:

src,f
: max

ErEc~1
EwEf ,and spc,f

: max
ErEc~1

EpEf , ð1Þ

where, w is the array of small rotations of the end-effector about the Cartesian axes, p
represents a small displacement of the operation point, and r is the array of small actuator
displacements which can be considered as the errors of the actuators. These two indices are
referred to as the maximum rotation and point-displacement sensitivities, respectively. In
[1], the definitions of the kinematic sensitivity for serial and parallel mechanisms are based
on the same norm in the constraint and the objective functions, i.e., c~f . Obviously,
different norms for the constraint and objective functions of the kinematic sensitivity lead
to different indices with different interpretations. This paper aims at investigating and
comparing these different indices, in order to end up with the most meaningful index for
planar parallel mechanisms. As a case study, emphasis will be placed on the 3-RPR parallel
mechanism, which is considered a good representative of planar parallel mechanism in
general.

Merlet in [8], concluded that the calculation of the mechanism performance indices must be
done while considering independent joint displacements, which immediately leads to c~?. The
results of this paper confirm this conclusion, and, moreover, provide some new observations
and interpretations on the use of different norms in the kinematic sensitivity indices. This paper
also extends and reviews the approach and routines used in [1] for indices having c~f ~2,
which leads to some interesting closed-form solutions, and for indices having c~f ~?, using
linear programming.

The remainder of this paper is organized as follows. First, the formulation used in [1] for
the Jacobian matrix of parallel mechanisms is reviewed. Then, the methods of computation
of the kinematic sensitivity for different combinations of Euclidean and ? norms are
detailed, and illustrated through typical examples for parallel mechanisms. The paper
extends the study by presenting the kinematic sensitivity as a global performance index of
the mechanism, and, finally, the concluding remarks are given to provide more insight into
ongoing research.
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2. KINEMATIC SENSITIVITY OF FULLY-PARALLEL MECHANISMS

Differentiating the loop-closure equations of a planar parallel mechanism results in its first-
order kinematics relationship, which can be formulated as follows [1,10]:

r~Kppzkrw, ð2Þ

in which, r [ Rn represents small actuator displacements, with n as the number of actuators, and

x~½pT ,w�T stands for the operation-point position and the orientation, i.e., the pose of the end–
effector. Moreover, consider Kp:½k1,k2�, kr:k3 and K:½Kp,kr�. In parallel manipulators,
according to Eq. (2), constraint ErEcƒ1 may be rewritten as EKxEcƒ1, which represents the set
of possible pose errors for unit bounds of the (small) actuator displacement errors. EKxE?ƒ1
and EKxE2ƒ1 can be geometrically represented by a polyhedron and ellipsoid in R3,
respectively. These geometric interpretations are used in this paper to compute the kinematic
sensitivity of the mechanisms under study.

2.1. Kinematic sensitivity in the case c~? and f ~f2,?g
The constraint EKxE?ƒ1 represents a zonotope in R3. Since the objectives of Eq. (1) are both

convex functions to be maximized, the optimum is bound to occur at a vertex of the zonotope.
The maximum objective value among all vertices are labelled sr?,? for the rotational part and
sp?,? for the point-displacement part. The maximum 2–norms of the rotational and point-
displacement parts are denoted by sr?,2

and sp?,2
, respectively. In order to compute sr?,2

and
sp?,2

, one may proceed by vertex enumeration, i.e., compute the 2–norms associated with each
vertex and retain the largest. Thus, as the first step, the coordinates of these vertices should be
obtained, and to do so, the above constraint is formulated as follows:

LDx,16, ð3Þ

in which, L:½KT{KT �T , A denotes the componentwise inequality, where 16:½11 � � � 1�T[R6.
Each row of Eq. (3) can be regarded as a plane containing a facet of the constraint polyhedron.
The vertices of this zonotope are determined by the intersection points of different
combinations of three independent rows of Eq. (3). Each vertex can be obtained by multiplying
the vector 13 with the inverse of the matrix formed by the corresponding independent rows. This
zonotope has 2n vertices and is symmetrical about the origin. Thus the computation of the
kinematic sensitivity requires only the examination of half of the vertices.

As a case study, let us consider the 3-RPR parallel mechanism shown in Fig. 1, which in a
given posture has the Jacobian matrix [11–13]

K~

0:5456 0:8380 0:0535

{0:8080 0:5892 0:5892

{0:8588 {0:5123 0:9999

2
64

3
75: ð4Þ

To obtain sp,?,? and sp,?,2, the constraint equation is EKxE?ƒ1. This constraint is equivalent
to
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0:5456 0:8380 0:0535

{0:8080 0:5892 0:5892

{0:8588 {0:5123 0:9999

{0:5456 {0:8380 {0:0535

0:8080 {0:5892 {0:5892

0:8588 0:5123 {0:9999

2
666666664

3
777777775

x

y

w

2
64
3
75,

1

1

1

1

1

1

2
666666664

3
777777775
: ð5Þ

The above can be made equivalent to a polyhedron that has eight vertices. Note that this
polyhedron is symmetric about the origin, and therefore, it is sufficient to compute a half of the
vertices vi~(xi,yi,wi), i~1, . . . ,4. This can be done by considering four subsystems of three
equations. For instance, upon considering the first two equations combined in turns with the
the third, the fourth, the fifth and the sixth equation, we obtain the vertices

v1~

0:6189

0:6706

1:8752

2
64

3
75, v2~

2:8143

{0:8301

2:9921

2
64

3
75, v3~

1:6415

0:0952

0:4586

2
64

3
75, v4~

{0:5539

1:5959

{0:6582

2
64

3
75: ð6Þ

The remaining vertices, are merely the opposites of the latter, but they are not required for
computing the kinematic sensitivity. According to the definition of the kinematic sensitivity,
when c~?, we have

sp?,?~ max ( max
i~1,...,8

xi, max
i~1,...,8

yi)~ max ( max
i~1,...,4

jxij, max
i~1,...,4

jyij)~2:8143, ð7Þ

sp?,2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

i~1,...,8
x2

i zy2
i

r
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

i~1,...,4
x2

i zy2
i

r
~2:9342, ð8Þ

Fig. 1. Schematic representation of a planar 3-RPR parallel mechanism [9].
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sr?,?~sr?,2
~ max

i~1,...,8
wi~ max

i~1,...,4
jwij~2:9921

rad

m
: ð9Þ

Note that the mechanism actuators are linear, so the unit of error in the joint space is meter (m),
and the unit of moving platform translational and rotational errors in the workspace are meter
(m) and radian (rad/s), respectively; hence spc,f

in Eqs. (7) and (8) has no unit, and the unit of src,f

in Eq. (9) is
rad

m
. As depicted in Fig. 2(a), only four vertices need to be compared in Eqs. (7–9), due

to the symmetry of the feasible set. Moreover, this mechanism has only one rotational DOF, and,
consequently, sr?,?~sr?,2

.

2.2. Kinematic sensitivity in the case c~2 and f ~f2,?g
In [1], the calculation of the kinematic sensitivity using a 2–norm constraint with a 2–norm

objective function is discussed in details. The constraint EKxE2ƒ1 geometrically describes an
ellipsoid in R3. Let us use the notation as proposed in [14] to represent this ellipsoid, i.e.,

e(03,KT K):fx[R3j(x{03)T KT K(x{03)~1g, ð10Þ

where, the first argument (vector 03) represents the position of the centre of the ellipsoid. In
order to obtain the maximum rotation and point-position kinematic sensitivities, we need to
project the constraint ellipsoid e(03,KT K) on the position and the rotation subspaces,
respectively. Directly from [1], we can determine that the projected ellipsoids are coincident
to e(02,Ep) and e(0,Er), respectively, where Ep and Er are given as follows:

Ep~KT
p PrKp,Er~kT

r Ppkr, ð11Þ

Fig. 2. Kinematic sensitivity constraint based on ?–norm and 2–norm. The ellipsoid of 2–norm
constraint is completely surrounded by the polyhedron of ?–norm constraint. (a) ?–norm
constraint (polyhedron) (b) 2–norm constraint (ellipsoid).
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Pr:13|3{Kr(K
T
r Kr)

{1KT
r ,Pp:13|3{Kp(KT

p Kp){1KT
p : ð12Þ

Having computed the projections of ellipsoid e(03,KT K) on rotation and point-position
subspaces, we may compute the lengths of their semimajor axes, which yield the corresponding
kinematic sensitivities:

sp2,2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EE{1

p E2

q
~

1ffiffiffiffiffiffiffiffiffi
min
i~1,2

q
lp,i

, sr2,2
~

ffiffiffiffiffiffiffiffiffi
E{1

r

q
, ð13Þ

In these relations, lp,i, i~1,2, represent the eigenvalues of Ep. The same procedure may be used
to compute the maximum error in every direction, xi, i~1,2,3, of the Cartesian workspace,
resulting from errors bounded by the 2–norm in the joint space (ErE2ƒ1). Skipping
mathematical details, we obtain the projection of constraint ellipsoid e(03,KT K) along the axis
xi, which we denote by e(0,Ei)

Ei~kT
i P{iki, P{i:13|3{K{i(K

T
{iK{i)

{1KT
{i, ð14Þ

in which, K{i is the Jacobian matrix K without its ith column ki. As e(0,Ei) is the projection on
the axis, it is not an ellipsoid any more, but rather an interval centred at the origin, with Ei as its
inverse squared half-length. According to the definition of the kinematic sensitivities using the
2–norm constraint and the ?–norm objective function, these indices may be computed as

sp2,?~ max
i~1,2

di, sr2,?~d3, ð15Þ

where di~
1ffiffiffiffiffi
Ei

p is the farthest distance along the xi axis.

In order to illustrate the derivation of these values, consider the case study of the 3-RPR
whose Jacobian matrix is momentarily given by matrix K of Eq. (4). We wish to compute the
kinematic sensitivity based on the 2–norm constraint for this example. From Eq. (12), we have

Pr~

0:9979 {0:0234 {0:0396

{0:0234 0:7428 {0:4365

{0:0396 {0:4365 0:2593

2
64

3
75, Ep~

0:4253 0:3049

0:3049 1:3012

� �
, ð16Þ

Pp~P{3~

0:4154 {0:1988 0:4509

{0:1988 0:0951 {0:2158

0:4509 {0:2158 0:4895

2
64

3
75, Er~E3~0:3051

m2

rad2
: ð17Þ

Using Eq. (13), one may derive

sp2,2
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EE{1

p E2

q
~1:7418, sr2,2

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EE{1

r E2

q
~

1ffiffiffiffiffiffi
E3

p ~1:8106
rad

m
: ð18Þ
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As the mechanism has only one rotational DOF, it follows that sr2,?~sr2,2
. In turn, from

Eq. (14), the maximum distance along the x and y axes is obtained as

K{x~

0:8380 0:0535

0:5892 0:5892

{0:5123 0:9999

2
64

3
75, P{x~

0:4520 {0:4390 0:2345

{0:4390 0:4264 {0:2277

0:2345 {0:2277 0:1217

2
64

3
75, Ex~0:3538, ð19Þ

K{y~

0:5456 0:0535

{0:8080 0:5892

{0:8588 0:9999

2
64

3
75, P{y~

0:1587 0:3110 {0:1918

0:3110 0:6095 {0:3758

{0:1918 {0:3758 0:2317

2
64

3
75, Ey~1:0826: ð20Þ

where, dx~1:6811 and dy~0:9611. From Eq. (15), we reach sp2,?~ max (dx,dy)~1:6811.

2.3. Comparison Between Different Variations of the Kinematic Sensitivity
Figure 3 shows a geometric representation of different versions of the kinematic sensitivity.

According to this figure, different kinematic sensitivity measures are related through the
following inequalities:

s?,2§s?,?§s2,?, s?,2§s2,2§s2,?: ð21Þ

There is no such relationship between s?,? and s2,2. According to Fig. 3, if the constraint
ellipsoid or polyhedron rotates, the value of s?,? and s2,? would change in consequence while
the value of s?,2 and s2,2 remain the same. Also, it should be noted that a change in
coordinates, although affecting the Jacobian of the mechanism for a given pose, should not
affect its kinematic sensitivity index. Because of this frame–invariant requirement, it may be
concluded that it is preferable to compute the norm of x using the 2–norm. Coupling this with

Fig. 3. Geometrical representation of different variations of kinematic sensitivity in the case of a
constrained manipulator.
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the idea proposed by Merlet in [8,13], according to which the constraint should be defined with
the ?–norm, s?,2 stands out as the most meaningful index for the calculation of the point-
displacement and rotation kinematic sensitivities.

3. KINEMATIC SENSITIVITY IN THE CASE OF REDUNDANT PARALLEL
MECHANISMS

Redundant parallel manipulators have been introduced to alleviate some of the shortcomings
of fully parallel mechanisms in terms of kinematic properties, such as their large singularity loci
[15–16]. In this section, the kinematic sensitivity of redundant planar parallel mechanisms is
investigated in order to gain a better understanding of their kinematic properties compared to
those of fully parallel mechanisms.

In redundant mechanisms, the number of planes generated by the ?–norm constraint
increases and further confines the feasible set. Figure 4(a) and Fig. 4(b) represent respectively
the kinematic sensitivity constraints, EKxEcƒ1, for a non-redundant and redundant mechanism
(a 2-RPR and a 3-RPR mechanism with zero length of moving platform). As shown in Fig. 4(b),
if the redundant rows–corresponding to the redundant limbs–constrain the feasible polyhedron
more tightly, they will reduce the mechanism kinematic sensitivities. In redundant mechanisms,
the number of vertices of the zonotope generated by the ?–norm constraint increases.
Nevertheless, these vertices can be yet determined by considering all possible subsets of three
independent rows in Eq. (3). It should be noted that some of the intersection points of these
triplets of plane constraints lie outside the feasible polyhedron, as depicted in Fig. 4(b).
Reaching this step, one should verify whether the obtained point satisfies the remaining
inequalities of Eq. (3). If not, then it is not a true vertex.

In order to illustrate the effects of redundancy, consider the previous 3-RPR parallel
mechanism, whose Jacobian matrix K is given in Eq. (4). Assume that the legs of the
manipulator are all connected at the origin O0 of the moving frame, which results in a redundant
mechanism that has only two DOFs (planar point-displacements x~½x,y�T ), and, therefore, the
associated Jacobian matrix has three rows and two columns. Considering only the first two
actuators, r1 and r2, the first-order kinematics relationship of this mechanism results in

Fig. 4. ?–norm and 2–norm constraints, (a) a non-redundant and (b) a redundant mechanism
in a given pose. The representations of other indices are omitted to avoid overloading the figure,
see Fig. 3 for more information. (a) non-redundant mechanism constraint, s2,2~1:056 and
s?,2~1:453 (b) redundant mechanism constraint, s2,2~0:963 and s?,2~1:3782.
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r1,r2½ �T~K2|2x, where, K2|2~
0:5456 0:8380

{0:8080 0:5892

� �
ð22Þ

In this case, the constraint ellipse is represented by the equation

(0:5456xz0:8380y)2z({0:8080xz0:5892y)2~1: ð23Þ

Figure 4(a) depicts the constraint ellipse and polygon corresponding to the given Jacobian.
Now, assume that the third limb of the redundant 2-DOF mechanism becomes active, while the
pose of the end effector remains unchanged. Then Jacobian matrix takes the following form:

r1,r2,r3½ �~K3|2

x

y

� �
, where K3|2~

0:5456 0:8380

{0:8080 0:5892

{0:8588 {0:5123

2
64

3
75: ð24Þ

In this case, the constraint ellipsoid is

(0:5456xz0:8380y)2z({0:8080xz0:5892y)2z({0:8588x{0:5123y)2~1: ð25Þ

It should be noted that the constraint ellipsoid of a redundant mechanism, lie inside the
constraint ellipsoid of the non-redundant mechanism obtained by removing some of its legs,
and taken in the same posture. Therefore, the kinematic sensitivity is larger or equal to that of
the latter. Using the ?-norm in the constraint leads to a similar conclusion. The number of
planes that bound the constraint polyhedron is increased in the case of redundant mechanisms,
and the constraint polyhedron becomes smaller or remains the same. Thus, the kinematic
sensitivity may either decrease or remain the same in the corresponding redundant manipulator.

From the above (Eqs. (23) and (25)) it follows that upon transforming a fully actuated
mechanism into a redundant one, by adding one limb, one term would be added to the
expression defining the constraint ellipsoid which makes the constraint shape smaller. Based on
the latter mathematical reasoning, which is based on the 2-norm constraint, one would draw an
erroneous conclusion that making a mechanism redundant, would definitely decrease the
kinematic sensitivity compared with the one of its former fully actuated mechanism. In fact, the
kinematic sensitivity would decrease or not, based on the pose and the design parameters of
the mechanism. This is coherent with the ?-norm and makes it more credible than the 2–norm
constraint. This reconfirms that the constraint of kinematic sensitivity must be computed using
?–norm and this is consistent with the conclusion reached in [8,13].

In order to clarify this issue, assume an exaggerated example, where two of the legs of a
redundant 4-RPR planar parallel mechanism coincide exactly. From intuition, the dexterity of
such a manipulator should be the same as that of the 3-RPR one obtained by removing one of
the redundant legs. In this case, exploring the kinematic sensitivity using a 2–norm constraint in
the definition of the kinematic sensitivity, will result in a smaller constraint ellipsoid in the case
of the redundant manipulator, and the kinematic sensitivity associated with the latter will be
smaller. If the problem is explored using an ?–norm constraint, however, the redundant planes
in the Cartesian workspace are coincident, just as their corresponding legs. Therefore, the shape
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and size of the polyhedron constraint remains unchanged, and the kinematic sensitivity is
invariant as it should be.

4 KINEMATIC SENSITIVITY OF PARALLEL MECHANISMS WITH DEPENDENT
DOF

This section is devoted to the computation of the kinematic sensitivity for planar parallel
mechanisms with dependent DOF. In this kind of mechanisms, the Jacobian matrix takes the
form

r

0

� �
~

Kactuation

Kconstraint

� �
x: ð26Þ

Failing to consider the equations 0~Kconstraintx in the kinematic sensitivity analysis leads to an
unbounded constraint set EKactuationxEƒ1. This is due to the fact that Kactuation does not have
full-column rank. Hence, the appropriate method for computing the kinematic sensitivity must
take into account both the equality constraint Kconstraintx~0 and the inequality constraint
EKactuationxEƒ1.

Assume that one of the actuated joints of the 3-RPR manipulator is locked, effectively
leaving two DOFs of this mechanism, which otherwise has three. Assume that x and y are the
important pose parameters for this mechanism. According to first-order kinematics of this
mechanism, its finite displacements identity may be written as

r1

r2

0

2
64

3
75~

n1x n1y (b1|n1):k

n2x n2y (b2|n2):k

n3x n3y (b3|n3):k

2
64

3
75

x

y

w

2
64
3
75, ð27Þ

in which the unit vector along the ith prismatic actuator, ri, i~1,2,3, direction is denoted by
ni~½nix,niy,0�T . Moreover, bi, i~1,2,3, is the vector connecting the centre of the moving
platform, O0, to point Bi and k~½0,0,1�T is the vector perpendicular to the end-effector plane.
Figure 5(a) shows the ?–norm kinematic sensitivity constraint associated with the kinematic
sensitivity without considering the constraint row in Eq. (27). Note that this constraint row (the
last row of Eq. (27)) represents a plane in the space R3, which is also shown in Fig. 5(a). In order
to obtain the kinematic sensitivity, we must compute the intersection of the unbounded
zonotope EKactuationxE?ƒ1 with the constraint row. Figure 5(a) shows the intersections of the
kinematic sensitivity constraint and the corresponding constraint row, which is a parallelogram.
Now, assume that K is as in the previous examples which allows to obtain sp?,? and sp?,2

. The
constraint, Eq. (3) can then be written as

0:5456 0:8380 0:0535

{0:8080 0:5892 0:5892

{0:5456 {0:8380 {0:0535

0:8080 {0:5892 {0:5892

2
6664

3
7775

x

y

w

2
64
3
75,

1

1

1

1

2
6664

3
7775, and ,

{0:8588

{0:5123

0:9999

2
64

3
75

T
x

y

w

2
64
3
75~0: ð28Þ
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The feasible polyhedron, (or parallelogram, in this case) has four vertices. Note that this
polyhedron is symmetric about origin, so that it is sufficient to compute a half of the vertices
vi~(xi,yi,wi), i~1,2. Hence, we obtain

0:5456 0:8380 0:0535

{0:8080 0:5892 0:5892

{0:8588 {0:5123 0:9999

2
64

3
75

x1

y1

w1

2
64

3
75~

1

1

0

2
64
3
75[v1~

0:0325

1:1333

0:6085

2
64

3
75, ð29Þ

0:5456 0:8380 0:0535

0:8080 {0:5892 {0:5892

{0:8588 {0:5123 0:9999

2
64

3
75

x2

y2

w2

2
64

3
75~

1

1

0

2
64
3
75[v2~

2:2279

{0:3674

1:7253

2
64

3
75: ð30Þ

The remaining vertices are the opposites of those of Eqs. (29) and (30). The corresponding
objective values are

sp?,?~ max ( max
i~1,...,4

xi, max
i~1,...,4

yi)~ max ( max
i~1,2
jxij, max

i~1,2
jyij)~2:2279, ð31Þ

sp?,2
~ max

i~1,...,4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i zy2
i

q
~ max

i~1,2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i zy2
i

q
~2:2580, ð32Þ

sr?,?~sr?,2
~ max

i~1,...,4
wi~ max

i~1,2
jwij~1:7253: ð33Þ

Fig. 5. Geometric representation of the Kinematic sensitivity constraints for a 3-RPR parallel
manipulator with dependent DOF mechanism, i.e., with a locked actuator. (a) ?-norm based
constraint (b) 2-norm based constraint.
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The kinematic sensitivity based on 2–norm constraints may be computed in a similar way when
one of the mechanism actuated joints is locked. Figure 5(b) shows the ellipse of the 2-norm
constraint obtained from the intersection of the ellipsoidal cylinder EKxE2ƒ1 and the plane of
the constraint corresponding to the locked joint.

5. KINEMATIC SENSITIVITY AS A GLOBAL PERFORMANCE INDEX

Since the kinetostatic indices generally depend on the pose of the mobile platform, the next
step consists of extending them to all the reachable poses of the mechanism. Following the
reasoning presented in [17], instead of considering the index I for a specific pose, a global index
fI covering the manipulator workspace W is introduced as:

fI~

Ð
W

IdWÐ
W

dW
: ð34Þ

Notice that when there are singular poses within the mechanim workspace W , and it is applied
for sp?,2 and sr?,2, fI tends towards infinity. Therefore, it is difficult to compare two
mechanisms that have at least one singular point in their workspace, as it is not clear whether
the integral

Ð
W

IdW converges or not. In the case where a dimensional-synthesis method would
guarantee the absence of singular poses, then Eq. (34) would hold over the entire workspace,
otherwise, however, in general, freeing the whole workspace from all singular poses is
impossible, and, consequently, there is a need for a more robust global index. To circumvent
this problem, consider the reasoning applied to the condition number in [17]. Point-
displacement and rotation sensitivities are bounded between zero and infinity, and hence, their
inverse are not helpful over the same interval. As the minimization of the variation of these
indices is of interest, the maximization of the inverse of their offshoot is suggested in this paper,
i.e., we define

s0r,2~
1

1zsr,2
, s0p,2~

1

1zsp,2
, [ 0ƒs0r,2ƒ1, 0ƒs0p,2ƒ1: ð35Þ

The above indices are well defined, and may be used for optimization purposes [10,18].

6. CONCLUSIONS

This paper investigated the interpretation and calculation of different variations of the
kinematic sensitivity of planar parallel mechanisms. As a case study, the 3-RPR planar
mechanism was analysed and the corresponding kinematic sensitivities were given geometric
interpretations. Analytical relationships to compute each of the variations were obtained and
discussed. Moreover, the calculation of the kinematic sensitivity in the case of redundant and
dependent-DOF planar parallel mechanisms are investigated, and some new observations are
reported. Finally, the kinematic sensitivity is extended to be considered as a global performance
index for optimization purposes. The principles of this paper can be applied equally well to the
other types of parallel mechanisms, such as the Stewart–Gough platform. Ongoing work
includes, the development of a robust approach to obtain representative global kinematic
sensitivity for optimization purposes.
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