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Abstract: In this paper modelling and control of cable-driven 
redundant parallel manipulators with flexible cables are studied 
in detail. In this type of manipulators the cables should remain 
in tension in the whole workspace. Based on new results, cables 
can be modelled as an axial spring. With this assumption the 
system is modelled using Lagrange’s formulation. Furthermore, 
internal forces are introduced and incorporated in the proposed 
control algorithm. This algorithm is formed in cable length 
coordinates in which the internal forces play an important role. 
Finally, the closed loop system is proved to be stable, through 
Lyapunov analysis, and the performance of the proposed 
algorithm is studied through simulation.  
 
Keywords: Cable driven robot, Redundancy, Modelling, 
Vibration, Lyapunov stability.  

1. Introduction 
The first generation of industrial robots consists of 

rigid links connected in series by several joints. This is a 
general structure of serial manipulators. Nowadays, this 
type of mechanisms is widely used in industrial 
applications [1]. The extension of using robots in 
different industrial applications provides some necessities 
such as high acceleration and high accuracy. Based on 
structure of serial robots, these requirements cannot be 
fully satisfied, and to remedy this problem, parallel 
structures were proposed in the industries. In a parallel 
mechanism, all actuators are placed on the base of the 
robot, therefore, each actuator only carries part of the 
payload and does not need to support the weight of other 
actuators in comparison to serial robots. As a result, 
relatively small robots with small actuators can achieve 
high speed motion. Furthermore, since joints angle errors 
are not accumulated, this kind of robots will have high 
position accuracy. Though, parallel robots overcome 
some serial robot drawbacks, they suffer from a few 
problems, the most important one is their limited 
workspace. In general, parallel mechanisms workspace is 
mainly limited due to links conflicts [2]. Another 
drawback is singularity. Parallel robots lose their stiffness 
in singular positions and they may get one or more 

uncontrollable degrees of freedom, and as a result achieve 
undesirable motion [3]. 

To overcome these problems, from three decades ago a 
new attitude was formed in the design and 
implementation of parallel robots [4]. This attitude was 
based on using cables instead of rigid links, and to 
implement cable driven robots. A cable driven robot 
consists of a moving end-effector and a number of active 
cables connected to the end-effector. These cables are 
fixed on the base with actuating motors and pulleys. 
While the cable length is changing, the position and 
orientation of the end-effector is pulled toward its desired 
values. The most important limitation of cable robots is 
that the cables suffer from unidirectional constraints that 
can only pull and not push, while general parallel robots 
have actuators that can provide bi-directional tension.  

In cable driven robots the cables must be in tension in 
the whole workspace. Based on this fact cable driven 
robots can be sorted in two types [5]; under constrained: 
which means gravity or a passive force is needed to 
makes the cables in tension and the position of end-
effector is determined by this force. The second kind is 
fully constrained manipulators. In this type, the 
knowledge of cables lengths will determine the end-
effector position and orientation. In addition, actuator 
redundancy is needed to ensure that all of the cables are 
in tension.  

Cable driven robots have some advantages and 
drawbacks compared to conventional robots. Because of 
using cables, they have the great potential to use in very 
large workspace applications such as large adaptive 
reflectors and skycam [6,7]. Moreover, they have light 
moving components and low inertia, capable in heavy 
payloads similar to RoboCranes [8], ease in assembly/ 
disassembly and low cost. A major challenge is the 
nonlinear behaviour of the cables. Cables are usually 
flexible and have to encounter some unavoidable 
situations such as elongation because of the cable driven 
robot character. This flexibility may lead to position and 
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orientation errors. Moreover, the system might be 
exposed to undesirable disturbances which may lead to 
vibration, and cause the whole system to be 
uncontrollable.  

Because of the complication of this subject, research 
attempts on the effect of cable flexibility on modelling, 
optimal design and control are very limited and in most 
of reported research these effects are simply neglected. 
During last few decades, some researchers have studied 
cable behaviour in cable robots. Most of them have 
focused only on the kinematics and stiffness of the 
system.  Kozak in [9], considers the mass of the cables 
and by using a static model of cables, shows how cable 
sagging affect the kinematics and stiffness of the system. 
In [10] a static model of cable is proposed and static 
deformation of cables is achieved. Behzadipour 
introduced a four springs model for cable and achieves 
necessary and sufficient conditions for stability of system 
based on positive definiteness of the robot stiffness 
matrix [11].  

In this paper, considering axial flexibility in cables, we 
present a new dynamic model for cable driven robots, 
while all the cables are in tension. For the first time in 
this modelling both the cables lengths with and without 
tension are considered as the describing states in the 
modelling process. By using the obtained model, the 
control of the system is studied. Keeping the cables in 
tension is a critical point that must be noticed during 
control of the system. Next, the stability of the system is 
analysed through Lyapunov second method and it is 
proven that the system with proposed control algorithm is 
stable. Finally the performance of the proposed algorithm 
is examined through simulation.  

 

2. Dynamics Analysis 
Cable driven robots are closed kinematics chain 

mechanisms that use cable in their actuators. Though, the 
cable characteristics have been studied from long time 
ago, especially in civil engineering, using cables in 
parallel robots demonstrate a quite new application, 
compared to that studied in civil engineering. Generally, 
in civil engineering cables are heavy and bulky materials, 
whose static analysis is studied in order to stabilize the 
bridge type structures [12, 13]. However, in cable driven 
robots the cables are very light and change of length 
moves the end-effector toward its desired position.  For 
this reason in many robotics applications, cables mass 
have been neglected and cable has been considered as a 
rigid element [14,15]. With these assumptions the 
dynamics of cable driven robot is reduced to the end-
effector dynamics. However, in practice using this 
assumption will lead to some inaccuracies in control 
especially the stability of the manipulator. In this paper a 
more precise model of the cable driven robot considering 
cable flexibility is derived and being used in the 
controller design and stability analysis. 

Stiffness analysis of the cable robots with flexible 
cables, may be seen in Behzadipour's and Kozak's works 
[9, 11]. Moreover,  Zi and Merlet have studied the effect 
of flexibility on the system kinematics [10, 16]. To model 
the vibration due to flexibility in cables, Agrawal has 
used wave equation to model the cable vibration, 
providing the cables length are constant [17]. However in 
practice this assumption is also not true for cable driven 
robots. In the dynamic modelling of cable robots, this 
point should be noticed that a complete dynamic model of 
cable robots is very complicated. Furthermore, since the 
obtained model should be used in controller design 
strategies, such complicated models are useless for this 
objective, although they can accurately describe dynamic 
intrinsic characteristics of cables. Thus, in practices it is 
proposed to include only the dominant effects of flexible 
cables in the analysis.  

 Using natural frequencies of system, Diao and Ma 
have shown in [18], that in fully constrained cable driven 
robots the vibration of cable manipulator due to the 
transversal vibration of cables can be ignored in 
comparison to that of axial flexibility of cables. In other 
words, it has been justified to just model the cable as an 
axial spring in cable driven robots. By this means, this 
model can describe the dominant dynamic characteristics 
of cable and can be used in the dynamic model of cable 
robot. Based on this observation, in this paper axial 
spring are used to model cable dynamics. 

 
2.1 Robot Dynamics with Ideal Cables 

In this section let us first assume that the mass and the 
flexibility of the cables can be ignored, since they are 
much smaller and lighter than other mechanical parts. 
With this supposition the dynamics of cable driven robot 
reduced to that of the end-effector. Therefore, the 
dynamics of system can be expressed by the following 
vector equation [14, 15]: 

𝑀𝑀(𝑥𝑥)𝑥̈𝑥 + 𝑁𝑁(𝑥𝑥, 𝑥̇𝑥) = 𝐽𝐽𝑇𝑇𝜏𝜏                                              (1) 

In which, 

𝑁𝑁(𝑥𝑥, 𝑥̇𝑥) = 𝐶𝐶(𝑥𝑥, 𝑥̇𝑥)𝑥̇𝑥 + 𝐺𝐺(𝑥𝑥)                                       (2) 

Where, 

𝑀𝑀(𝑥𝑥): Mass matrix of the system, 
𝐶𝐶(𝑥𝑥, 𝑥̇𝑥)𝑥̇𝑥 : Coriolis and centrifugal terms, 
𝐺𝐺(𝑥𝑥) :  Vector of gravity terms, 
𝐽𝐽 : Jacobian matrix of system, 
𝑥𝑥 : Vector of generalized coordinates. 

On the other hand, the actuators dynamics is represented 
by 

𝐼𝐼𝑞̈𝑞 + 𝐷𝐷𝑞̇𝑞 + 𝑟𝑟𝜏𝜏 = 𝑢𝑢                                                     (3) 

Where, 

𝑞𝑞 : Angles vector of motors shaft 
𝐼𝐼 : Actuator moments of inertia matrix 



𝐷𝐷 : Actuator viscous friction matrix 
𝑟𝑟 : The radius of drums 
𝜏𝜏 :  Cable tension vector 
𝑢𝑢 :  Motor torque vector 

As for the position reference, define all 𝑞𝑞 to be zero when 
the end-effector centroid is located at the center of the 
frame; from this configuration positive angle 𝑞𝑞 will cause 
a change Δ𝐿𝐿 in cable lengths, so we have: 

𝑟𝑟𝑟𝑟 = Δ𝐿𝐿 = 𝐿𝐿 − 𝐿𝐿0 ⇒ 𝑞𝑞 = 𝑟𝑟−1(𝐿𝐿 − 𝐿𝐿0)                    (4) 

By differentiating and using manipulator Jacobian 
definition  𝐿̇𝐿 = 𝐽𝐽𝑥̇𝑥: 

 𝑞̇𝑞 = 𝑟𝑟−1𝐿̇𝐿 =  𝑟𝑟−1𝐽𝐽𝑥̇𝑥                                                   (5) 

 𝑞̈𝑞 = 𝑟𝑟−1𝐽𝐽𝑥̈𝑥 + 𝑟𝑟−1𝐽𝐽𝑥̇̇𝑥                                                   (6) 

Using equations (6), (5), (3) and (1) and some 
manipulations we can show that: 

𝑀𝑀𝑒𝑒𝑒𝑒 (𝑥𝑥)𝑥̈𝑥 + 𝑁𝑁𝑒𝑒𝑒𝑒 (𝑥𝑥, 𝑥̇𝑥) = 𝐽𝐽𝑇𝑇𝑢𝑢                                     (7)   

in which, 

𝑀𝑀𝑒𝑒𝑒𝑒 = 𝑟𝑟𝑟𝑟(𝑥𝑥) + 𝑟𝑟−1𝐽𝐽𝑇𝑇𝐼𝐼𝐼𝐼                                        (8) 

𝑁𝑁𝑒𝑒𝑒𝑒 = 𝑟𝑟𝑟𝑟(𝑥𝑥, 𝑥̇𝑥) + 𝑟𝑟−1𝐽𝐽𝑇𝑇𝐼𝐼𝐽𝐽𝑥̇̇𝑥 + 𝑟𝑟−1𝐽𝐽𝑇𝑇𝐷𝐷𝐷𝐷𝑥̇𝑥                 (9) 

As we see, actuator dynamics is transferred to 
Cartesian space by Jacobian matrix, which is a map from 
joint space to Cartesian space. 

 

2.2 Robot Dynamics with Flexible Cables 

In cable driven robots when the flexibility in cables is 
considered, position of actuator (motor rotation for 
opening the cable) is not directly related to end-effector 
position. Thus for such models, position of actuators and 
position of end-effector may be considered as system 
states vector. In other words, both the cable lengths 
before tension and the cable lengths after tension that are 
related to end-effector position by Jacobian matrix) may 
be used as independent variables into the dynamics 
analysis. New research results have shown that in fully 
constrained cable robots, dominant dynamics of cables 
are longitudinal vibration [18], therefore, axial spring 
model can suitably describe the effects of dominant 
dynamics of cable.  
 In order to model a cable driven robot with 𝑛𝑛 cables 
assume that: L1𝑖𝑖 : 𝑖𝑖 = 1,2, . . . ,𝑛𝑛 denotes the length of i'th 
cable with tension and L2𝑖𝑖 : 𝑖𝑖 = 1,2, . . . ,𝑛𝑛 denotes the 
length of the i'th cable without tension. If the system is 
rigid, then L1𝑖𝑖  =  L2𝑖𝑖   , ∀𝑖𝑖. Use the notation:  

 𝐿𝐿 =  (𝐿𝐿11 , . . . , 𝐿𝐿1𝑛𝑛 , 𝐿𝐿21, . . . , 𝐿𝐿2𝑛𝑛)𝑇𝑇  =  (𝐿𝐿1|𝐿𝐿2)𝑇𝑇   

Furthermore, if the flexibility is modeled with a linear 
axial spring with constant 𝑘𝑘𝑖𝑖 , then the potential energy of 
system can be expressed by 

𝑃𝑃 = 𝑃𝑃0 + 𝑃𝑃1                                                              (10) 

In this equation 𝑃𝑃0 is the potential energy of rigid robot 
and 𝑃𝑃1 is the potential energy of cable. Using linear axial 
spring model for cable, the total potential energy of 
cables is 

𝑃𝑃1 = 1
2

(𝐿𝐿1 − 𝐿𝐿2)𝑇𝑇𝐾𝐾(𝐿𝐿1 − 𝐿𝐿2)                                 (11) 

Where 𝐾𝐾 is the stiffness matrix of cables. Kinetic 
energy of system is 

𝐾𝐾 = 1
2
𝑥̇𝑥𝑇𝑇𝑀𝑀(𝑥𝑥)𝑥̇𝑥 + 1

2
𝑞̇𝑞𝑇𝑇𝐼𝐼𝑚𝑚 𝑞̇𝑞                                     (12) 

In which 𝑥𝑥 is the generalized coordinate in cartesian 
space, 𝑞𝑞 is  the motor shaft position, 𝑀𝑀(𝑥𝑥) is the mass 
matrix and 𝐼𝐼𝑚𝑚  is the actuator moments of inertia. The 
lagrangian is expressed by 

ℒ = 𝐾𝐾 − 𝑃𝑃 =
1
2
𝑥̇𝑥𝑇𝑇𝑀𝑀(𝑥𝑥)𝑥̇𝑥 +

1
2
𝑞̇𝑞𝑇𝑇𝐼𝐼𝑚𝑚 𝑞̇𝑞 − 𝑃𝑃0 − 

1
2

(𝐿𝐿1 − 𝐿𝐿2)𝑇𝑇𝐾𝐾(𝐿𝐿1 − 𝐿𝐿2)                                         (13) 

The equations of motion of the system can be written 
using Euler-Lagrange formulation:  

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕ℒ
𝜕𝜕𝑦̇𝑦𝑖𝑖
� − 𝜕𝜕ℒ

𝜕𝜕𝑦𝑦𝑖𝑖
= 𝑄𝑄𝑖𝑖                                                    (14) 

The final equation of motion can be written in the  
following form: 
𝑀𝑀(𝑥𝑥)𝑥̈𝑥 + 𝑁𝑁(𝑥𝑥, 𝑥̇𝑥) = 𝐽𝐽𝑇𝑇𝐾𝐾(𝐿𝐿2 − 𝐿𝐿1)                         (15) 

𝐼𝐼𝑚𝑚 𝑞̈𝑞 + 𝑟𝑟𝑟𝑟(𝐿𝐿2 − 𝐿𝐿1) + 𝐷𝐷𝑞̇𝑞 = 𝑢𝑢                                (16) 

in which, 

𝑁𝑁(𝑥𝑥, 𝑥̇𝑥) = 𝐶𝐶(𝑥𝑥, 𝑥̇𝑥)𝑥̇𝑥 + 𝐺𝐺(𝑥𝑥)                                    (17) 

𝐿𝐿2 − 𝐿𝐿0 = 𝑟𝑟𝑟𝑟                                                          (18) 

In these equations 𝐿̇𝐿1 = 𝐽𝐽𝑥̇𝑥, and furthermore,  

𝑥𝑥 : Vector of generalized coordinates 
𝑞𝑞 : Vector of angles of motors shaft 
𝐾𝐾 :  Stiffness matrix of cables 
𝐽𝐽 : Jacobian matrix 
𝑀𝑀(𝑥𝑥) : Mass matrix of the rigid system 
𝐶𝐶(𝑥𝑥, 𝑥̇𝑥)𝑥̇𝑥 : Coriolis and centrifugal terms 
𝐺𝐺(𝑥𝑥) : Vector of gravity terms  
𝐼𝐼𝑚𝑚  : Actuator moments of inertia matrix 
𝐷𝐷 : Actuator viscous friction matrix 
𝑟𝑟 : The radius of drums 
𝑢𝑢 : Motor torque vector 

Equations (15) and (16) represent cable driven robot as 
a nonlinear and coupled system. This representation 
includes both rigid and flexible subsystems and their 
interactions. 

 

3. Controller Design 
3.1 Internal Forces 

It is well known in parallel robots that Jacobian 
transpose relates the resultant forces 𝑓𝑓 applied on the 
end-effector to the cable tensions 𝜏𝜏  [3]: 

𝑓𝑓 = 𝐽𝐽𝑇𝑇𝜏𝜏                                                                    (19) 



Since in cable driven robots actuator redundancy is a 
requirement, the number of the cable actuators are greater 
than the degrees of freedom, and therefore, the Jacobian 
matrix is not square. The inverse relation to calculate the 
tension in cables from the resultant force using pseudo 
inverse is given by [19]: 

𝜏𝜏 = 𝐽𝐽𝑇𝑇†𝑓𝑓 + �𝐼𝐼 − 𝐽𝐽𝑇𝑇† 𝐽𝐽𝑇𝑇� 𝑐𝑐                                        (20) 

In which,  𝐽𝐽𝑇𝑇†  denotes the pseudo inverse of the matrix 
𝐽𝐽𝑇𝑇 . The second term is generated from the null space of 
𝐽𝐽𝑇𝑇  which is denoted by internal forces among the cables. 
Notice that since the internal forces lie in the null space 
of 𝐽𝐽𝑇𝑇it does not contribute into the driving force to the 
end-effector, and it only produce tension in cables in 
order to keep all the cables in tension. Internal force plays 
an important role in our proposed control Algorithm. 

3.2 Control algorithm in cable length space 
  In this section proposed control algorithm in cable 

length space is discussed. In this algorithm we use 
internal force to ensure that all cables are in tension. A 
cable driven robot must satisfy this condition in its whole 
workspace. As in any parallel mechanisms, inverse 
kinematics of cable robots can be easily derived. As a 
result, a desired angle vector 𝑞𝑞𝑑𝑑  which corresponds to 
desired position and desired orientation of end-effector in 
task space, may be easily obtained. By using desired set 
point vector 𝑞𝑞𝑑𝑑 , the control input 𝑢𝑢 is proposed to be: 

𝑢𝑢 = 𝐾𝐾𝑝𝑝(𝑞𝑞𝑑𝑑 − 𝑞𝑞) − 𝐾𝐾𝑣𝑣𝑞̇𝑞 + 𝑄𝑄 + 𝑟𝑟𝑄𝑄𝐺𝐺                         (21) 

where, 𝐾𝐾𝑝𝑝(𝑛𝑛 × 𝑛𝑛) [n is the number of cables] and 
𝐾𝐾𝑣𝑣(𝑛𝑛 × 𝑛𝑛) denote feedback gain matrices. The term 
𝑄𝑄(𝑛𝑛 × 𝑛𝑛) denote internal force vector and satisfy 

𝐽𝐽𝑇𝑇𝑄𝑄 = 0.                                                                  (22) 

It is important to note that the vector 𝑄𝑄 does not 
contribute into motion of the end-effector, and only 
causes internal forces in the cables. This term ensures that 
all cables remain in tension in the whole workspace. 
Moreover, this term increases the stiffness of the system, 
and as a result, minimizes the vibration in transversal 
direction of the cables. The final term 𝑄𝑄𝐺𝐺  is added to 
compensate the gravitational force. This vector must 
satisfy 

𝐽𝐽𝑇𝑇𝑄𝑄𝐺𝐺 = 𝐺𝐺(𝑥𝑥)                                                           (23) 

In the following section we discuss on stability of 
system based on this proposed control algorithm. 

3.3 Stability Analysis 
To show that the control law given in equation (21) 

achieves set point tracking, consider the Lyapunov 
function as following: 

𝑉𝑉 =
1
2
𝑞̇𝑞𝑇𝑇𝐼𝐼𝑚𝑚 𝑞̇𝑞 +

1
2
𝑥̇𝑥𝑇𝑇𝑀𝑀(𝑥𝑥)𝑥̇𝑥 +

1
2

(𝐿𝐿1 − 𝐿𝐿2)𝑇𝑇𝐾𝐾(𝐿𝐿1 − 𝐿𝐿2) 

+ 1
2

(𝑞𝑞𝑑𝑑 − 𝑞𝑞)𝑇𝑇𝐾𝐾𝑝𝑝(𝑞𝑞𝑑𝑑 − 𝑞𝑞)                                        (24) 

The Lyapunov function is generated using the total 
energy in the system. The first and second terms in 
equation (24) are the kinetic energies of the robot and 
actuators and the third term is the potential energy of the 
cables. Since 𝑞𝑞𝑑𝑑  is constant, the time derivation of the 
Lyapunov function 𝑉𝑉 is given by: 

𝑉̇𝑉 = 𝑞̇𝑞𝑇𝑇𝐼𝐼𝑚𝑚 𝑞̈𝑞 + 𝑥̇𝑥𝑇𝑇𝑀𝑀(𝑥𝑥)𝑥̈𝑥 +
1
2
𝑥̇𝑥𝑇𝑇𝑀̇𝑀(𝑥𝑥)𝑥̇𝑥 

+(𝐿𝐿1 − 𝐿𝐿2)𝑇𝑇𝐾𝐾(𝐿̇𝐿1 − 𝐿̇𝐿2) + (𝑞𝑞𝑑𝑑 − 𝑞𝑞)𝑇𝑇𝐾𝐾𝑝𝑝(−𝑞̇𝑞)       (25) 

Substitute equation (15) and (16) in (25): 

𝑉̇𝑉 = 𝑞̇𝑞𝑇𝑇[𝑢𝑢 − 𝐷𝐷𝑞̇𝑞 − 𝑟𝑟𝑟𝑟(𝐿𝐿2 − 𝐿𝐿1)] 

+𝑥̇𝑥𝑇𝑇[𝐽𝐽𝑇𝑇𝐾𝐾(𝐿𝐿2 − 𝐿𝐿1) − 𝐶𝐶(𝑥𝑥, 𝑥̇𝑥)𝑥̇𝑥 − 𝐺𝐺(𝑥𝑥)] +
1
2
𝑥̇𝑥𝑇𝑇𝑀̇𝑀(𝑥𝑥)𝑥̇𝑥 

+(𝐿𝐿1 − 𝐿𝐿2)𝑇𝑇𝐾𝐾(𝐿̇𝐿1 − 𝐿̇𝐿2) + (𝑞𝑞𝑑𝑑 − 𝑞𝑞)𝑇𝑇𝐾𝐾𝑝𝑝(−𝑞̇𝑞)       (26) 

Moreover, substitute the proposed control effort (21): 

𝑉̇𝑉 = 𝑞̇𝑞𝑇𝑇�𝐾𝐾𝑝𝑝(𝑞𝑞𝑑𝑑 − 𝑞𝑞) − 𝐾𝐾𝑣𝑣𝑞̇𝑞 + 𝑄𝑄 + 𝑟𝑟𝑄𝑄𝐺𝐺� − 𝑞̇𝑞𝑇𝑇𝐷𝐷𝑞̇𝑞 − 

𝑞̇𝑞𝑇𝑇𝑟𝑟𝑟𝑟(𝐿𝐿2 − 𝐿𝐿1) + 𝑥̇𝑥𝑇𝑇[𝐽𝐽𝑇𝑇𝐾𝐾(𝐿𝐿2 − 𝐿𝐿1) − 𝐶𝐶(𝑥𝑥, 𝑥̇𝑥)𝑥̇𝑥 − 𝐺𝐺(𝑥𝑥)] 

+
1
2
𝑥̇𝑥𝑇𝑇𝑀̇𝑀(𝑥𝑥)𝑥̇𝑥 + (𝐿𝐿1 − 𝐿𝐿2)𝑇𝑇𝐾𝐾(𝐿̇𝐿1 − 𝐿̇𝐿2) 

−(𝑞𝑞𝑑𝑑 − 𝑞𝑞)𝑇𝑇𝐾𝐾𝑝𝑝𝑞̇𝑞                                                       (27) 

To simplify this equation, use the robot mass matrix 
property [3]: 

𝑥̇𝑥𝑇𝑇 �𝑀̇𝑀(𝑥𝑥) − 2𝐶𝐶(𝑥𝑥, 𝑥̇𝑥)� 𝑥̇𝑥 = 0                                 (28) 

Then 

𝑉̇𝑉 = −𝑞̇𝑞𝑇𝑇𝐾𝐾𝑣𝑣𝑞̇𝑞 − 𝑞̇𝑞𝑇𝑇𝐷𝐷𝑞̇𝑞 + 𝑞̇𝑞𝑇𝑇(𝑄𝑄 + 𝑟𝑟𝑄𝑄𝐺𝐺) − 𝑥̇𝑥𝑇𝑇𝐺𝐺(𝑥𝑥) 

+[𝑥̇𝑥𝑇𝑇𝐽𝐽𝑇𝑇𝐾𝐾(𝐿𝐿2 − 𝐿𝐿1) − 𝑞̇𝑞𝑇𝑇𝑟𝑟𝑟𝑟(𝐿𝐿2 − 𝐿𝐿1) 

+(𝐿𝐿1 − 𝐿𝐿2)𝑇𝑇𝐾𝐾(𝐿̇𝐿1 − 𝐿̇𝐿2)]                                         (29) 

Using the Jacobian mapping between 𝐿𝐿1̇ and 𝑥̇𝑥 and the 
kinematics relation between 𝐿𝐿2 and 𝑞𝑞, 

𝐿̇𝐿1 = 𝐽𝐽𝑥̇𝑥                                                                    (30) 

𝐿𝐿2 = 𝑟𝑟𝑟𝑟 + 𝐿𝐿0 ⇒ 𝐿̇𝐿2 = 𝑟𝑟𝑞̇𝑞                                        (31) 

Substitute these relations into (29) and simplify: 

𝑉̇𝑉 = −𝑞̇𝑞𝑇𝑇(𝐾𝐾𝑣𝑣 + 𝐷𝐷)𝑞̇𝑞 + 𝑞̇𝑞𝑇𝑇(𝑄𝑄 + 𝑟𝑟𝑟𝑟𝐺𝐺) − 𝑥̇𝑥𝑇𝑇𝐺𝐺(𝑥𝑥).        (32) 

Assume that all spring constants are equal, then  

𝐾𝐾 = 𝑘𝑘𝑘𝑘 ⟹ 𝜀𝜀 = 1
𝑘𝑘
                                                     (33) 

𝑈𝑈 = 𝐾𝐾(𝐿𝐿2 − 𝐿𝐿1)                                                      (34) 

Then using (30) and (31) we have 

𝑞̇𝑞 = 𝑟𝑟−1(𝜀𝜀𝑈̇𝑈 + 𝐿̇𝐿1)                                                   (35) 

Using (22) and (35) 

𝑉̇𝑉 = −𝑞̇𝑞𝑇𝑇(𝐾𝐾𝑣𝑣 + 𝐷𝐷)𝑞̇𝑞 + 𝜀𝜀𝑟𝑟−1𝑈̇𝑈𝑇𝑇(𝑄𝑄 + 𝑟𝑟𝑄𝑄𝐺𝐺) + 𝑥̇𝑥𝑇𝑇𝐽𝐽𝑇𝑇𝑄𝑄𝐺𝐺  

−𝑥̇𝑥𝑇𝑇𝐺𝐺(𝑥𝑥) ⟹ 

𝑉̇𝑉 = −𝑞̇𝑞𝑇𝑇(𝐾𝐾𝑣𝑣 + 𝐷𝐷)𝑞̇𝑞 + 𝜀𝜀𝑟𝑟−1𝑈̇𝑈𝑇𝑇(𝑄𝑄 + 𝑟𝑟𝑄𝑄𝐺𝐺) 

+𝑥̇𝑥𝑇𝑇(𝐽𝐽𝑇𝑇𝑄𝑄𝐺𝐺 − 𝐺𝐺(𝑥𝑥))                                                  (36) 



Substitute equation (23): 

𝑉̇𝑉 = −𝑞̇𝑞𝑇𝑇(𝐾𝐾𝑣𝑣 + 𝐷𝐷)𝑞̇𝑞 + 𝜀𝜀𝑟𝑟−1𝑈̇𝑈𝑇𝑇(𝑄𝑄 + 𝑟𝑟𝑄𝑄𝐺𝐺)             (37) 

For the stability, 𝑉̇𝑉 must be negative semi-defenite: 

𝑉̇𝑉 ≤ 0                                                                      (38) 

Since 𝜀𝜀 is a small parameter, there exist large enough 𝐾𝐾𝑣𝑣 , 
to satisfy this condition can be simply met. 

4. Simulations Studies 
A simulation study has been performed in order to verify 
the effectiveness of the proposed control algorithm. In the 
following simulation study, the results of the closed loop 
performance of planar cable driven manipulator 
examined. Our model of a planar cable robot consists of a 
moving platform that is connected by four cables to a 
base platform shown in Fig. 1. 
As it is shown in Fig. 1, 𝐴𝐴𝑖𝑖  denote the fixed base points of 
the cables, 𝐵𝐵𝑖𝑖  denote point of connection of the cables on 
the moving platform, 𝐿𝐿𝑖𝑖  denote the cable lengths, and 𝛼𝛼𝑖𝑖  
denote the cable angles. The position of the center of the 
moving platform 𝐺𝐺, is denoted by 𝐺𝐺 =  [𝑥𝑥𝐺𝐺 ,𝑦𝑦𝐺𝐺], and the 
orientation of the manipulator moving platform is 
denoted by 𝜙𝜙 with respect to the fixed coordinate frame. 
Hence, the manipulator posses three degrees of freedom 
𝑥𝑥 = [𝑥𝑥𝐺𝐺 ,𝑦𝑦𝐺𝐺 ,𝜙𝜙], with one degree of actuator redundancy. 
4.1 Kinematics and Jacobian 
For kinematic analysis, as it is shown in Fig. 1, a fixed 
frame O : xy is attached to the fixed base at the point O, 
the center of the base point circle which passes through 
𝐴𝐴𝑖𝑖’s. Moreover, another moving coordinate frame G : UV 
is located on moving platform at its centre of mass G. 
Assume that the point 𝐴𝐴𝑖𝑖  lie at the radial distance of 𝑅𝑅𝐴𝐴 
from point O, and the point 𝐵𝐵𝑖𝑖  lie at the radial distance of 
𝑅𝑅𝐵𝐵 from point G in the xy plane, when the manipulator is 
at central location. For inverse kinematics analysis, it is 
assumed that the position and orientation of the moving 
platform 𝑋𝑋 =  [𝑥𝑥𝐺𝐺 ,𝑦𝑦𝐺𝐺 ,𝜙𝜙]𝑇𝑇  is given and the problem is to 
find the length variable of the manipulator, 𝑙𝑙 =
 [𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4]𝑇𝑇 . Let’s define the instantaneous orientation 
angle of 𝐵𝐵𝑖𝑖 ’s: 

𝜙𝜙𝑖𝑖 = 𝜙𝜙 + 𝜃𝜃𝐵𝐵𝑖𝑖  

The loop closure equation for each cable (i=1,2,3,4), can 
be written as, 

𝐴𝐴𝑖𝑖𝐺𝐺�������⃗ = 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖��������⃗ + 𝐵𝐵𝑖𝑖𝐺𝐺������⃗  

With some manipulation we can show that [20], 

𝑙𝑙𝑖𝑖 = [�𝑥𝑥𝐺𝐺 − 𝑥𝑥𝐴𝐴𝑖𝑖 + 𝑅𝑅𝐵𝐵 cos(𝜙𝜙𝑖𝑖)�
2 + 

+�𝑦𝑦𝐺𝐺 − 𝑦𝑦𝐴𝐴𝑖𝑖 + 𝑅𝑅𝐵𝐵 sin(𝜙𝜙𝑖𝑖)�
1
2 

Jacobian analysis plays a vital role in the study of robotic 
manipulators. Jacobian matrix not only reveals the 
relation between the joint variable velocities 𝐿̇𝐿 and the 
moving platform velocities 𝑥̇𝑥, it constructs the 
transformation needed to find the actuator forces 𝜏𝜏 from 
the forces acting on the moving platform 𝐹𝐹. For the  

 
 

 

 

 

 

 

 

 

 

 

  geometry of the manipulator as illustrated in Fig. 2, the 
manipulator Jacobian matrix 𝐽𝐽 is [20], 

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎡𝑆𝑆1𝑥𝑥 �𝑆𝑆1𝑦𝑦 �𝐸𝐸1𝑥𝑥𝑆𝑆1𝑦𝑦 − 𝐸𝐸1𝑦𝑦𝑆𝑆1𝑥𝑥

𝑆𝑆2𝑥𝑥 �𝑆𝑆2𝑦𝑦 �𝐸𝐸2𝑥𝑥𝑆𝑆2𝑦𝑦 − 𝐸𝐸2𝑦𝑦𝑆𝑆2𝑥𝑥

𝑆𝑆3𝑥𝑥 �𝑆𝑆3𝑦𝑦 �𝐸𝐸3𝑥𝑥𝑆𝑆3𝑦𝑦 − 𝐸𝐸3𝑦𝑦𝑆𝑆3𝑥𝑥

𝑆𝑆4𝑥𝑥 �𝑆𝑆4𝑦𝑦 �𝐸𝐸4𝑥𝑥𝑆𝑆4𝑦𝑦 − 𝐸𝐸4𝑦𝑦𝑆𝑆4𝑥𝑥 ⎦
⎥
⎥
⎥
⎤

 

Note that the Jacobian matrix 𝐽𝐽 is a non-square 4×3 
matrix, since the manipulator is redundantly actuated. 
4.2 Control 
The equations of motion for the end-effector can be 
written in the following form [21], 

𝑀𝑀𝑋̈𝑋 + 𝒢𝒢 = ℱ ,  𝑋𝑋 = [𝑥𝑥𝑔𝑔 ,𝑦𝑦𝐺𝐺 ,𝜙𝜙]. 

In which, by consider flexibility in the cables, as have, 

ℱ = 𝐽𝐽𝑇𝑇𝐾𝐾(𝐿𝐿2 − 𝐿𝐿1)   , 𝐿𝐿2 = 𝑟𝑟𝑟𝑟 + 𝐿𝐿0     
𝐼𝐼𝑚𝑚 𝑞̈𝑞 + 𝐷𝐷𝑞̇𝑞 + 𝑟𝑟𝑟𝑟(𝐿𝐿2 − 𝐿𝐿1) = 𝜏𝜏 

In these equations 

 𝑀𝑀 = �
𝑚𝑚 0  0
0  𝑚𝑚 0

 0  0  𝐼𝐼𝑧𝑧  
�    and      𝒢𝒢 = �

0
−𝑚𝑚𝑚𝑚

0
� 

Whose parametric values are given in Table 1. To show 
the effectiveness of the proposed control algorithm 
suppose that we want to move the system from initial 

 
 

 

 
Figure 2: Vectors definitions for Jacobian derivation of 
the planar Cable manipulator. 
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 Figure 1: The schematics of Planar Cable Mechanism. 



position 𝐿𝐿2 = [2,1,3,4] to a fixed position 𝐿𝐿2 = [5,2,6,8]. 
The controller is based on equation (21) and consists of 
three parts. PD term whose parameters are chosen as 
𝐾𝐾𝑃𝑃 = 500,𝐾𝐾𝑉𝑉 = 50, gravity compensation term based on 
equation (23), and internal forces term to ensure that all 
cables are in tension. As illustrated in Fig. (3), the results 
are satisfactory and the controller achieves the desired 
steady state values with small errors. This simulation 
verifies the stability guarantee of the proposed controller 
in presence of flexibility in the cables. 
 

Table 1: System Parameters 
Description Symbols Quantity 
Mass of end-effector m 2 
Inertia 𝐼𝐼𝑧𝑧  0.5 
Cables stiffness K 100𝐼𝐼4×4 
Motor inertia 𝐼𝐼𝑚𝑚  𝐼𝐼4×4 
Damping coefficient D 0.3𝐼𝐼4×4 
Drum radius r 1 

5. Conclusions 
In this paper modelling and control of cable driven 

robots with cable flexibility are examined in detail. In the 
modelling of this kind of manipulators cables are 
modelled by linear axial spring, and the model of fully 
constrained cable driven robot is derived using Euler-
Lagrange approach. Since in robots cables must remain in 
tension in the whole workspace, the notion of internal 
forces are introduced and directly used in the proposed 
control algorithm. The proposed control algorithm is 
designed in cable link space and consists of three parts. A 
simple PD control on the tracking error, the internal force 
that ensures us all of the cables are in tension and a 
gravity compensation term. Finally, the stability of the 
closed-loop system is analysed through Lyapunov second 
method, and it is shown that the proposed controller is 
capable to stabilize the system with flexible cables. 
Finally the performance of the proposed controller is 
examined through simulation.  
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Figure 3: Plots of desired and actual position of  𝑳𝑳𝟐𝟐 

0 5 10 15
2

4

6

8
Output & Desired Trajectory; L21

time

0 5 10 15
1

2

3
Output & Desired Trajectory; L22

time

0 5 10 15
2

4

6

8
Output & Desired Trajectory; L23

time

0 5 10 15
4

6

8

10
Output & Desired Trajectory; L24

time

http://www.skycam.tv/�

