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Abstract. This paper presents a new approach to the modeling and con-
trol of cable driven parallel manipulators and particularly KNTU CDRPM.
First, dynamical model of the cable driven parallel manipulator is derived
considering the elasticity of the cables, and then this model is rewritten
in the standard form of singular perturbation theory. This theory used
here as an effective tool for modeling the cable driven manipulators. Next,
the integrated controller, applied for control of the rigid model of KNTU
CDRPM in previous researches, is improved and a composite controller is
designed for the elastic model of the robot. Asymptotic stability analysis
of the proposed rigid controller is studied in detail. Finally, a simulation
study performed on the KNTU CDRPM verifies the closed-loop perfor-
mance compared to the rigid model controller.

1 Introduction

Cable driven parallel robots are a special kind of parallel robots in which rigid
links are replaced by cables. This has produced some advantages for cable driven
ones that has attracted the attention of researches [1,2,3]. High acceleration due
to the reduced mobile mass, larger workspace, transportability and ease of as-
sembly/disassembly, economical structure and maintenance are among these ad-
vantages. The most important limitation of cable driven robots is that, the cables
suffer from unidirectional constraints that can only be pulled and not pushed. In
this class of robots, the cables must be in tension in the whole workspace. Cables
are sagged under compression forces, and therefore, to enable tension forces in
the cables throughout the whole workspace, the mechanism must be designed
over-constrained [4]. KNTU CDRPM is an over-constrained parallel manipula-
tor that uses a novel design to achieve high stiffness, accurate positioning for
high-speed maneuvers [5]. Controller must ensure that the cables are always in
positive tension by using an appropriate redundancy resolution scheme, [5].

The major challenge in the controller design of these robots is deformation
of the cables under tension. Elongation is one kind of these deformations that
causes position and orientation errors. Moreover, the flexibility of the cables may
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Fig. 1. The KNTU CDRPM, a perspective view

lead the system to vibration, and cause the whole system to be uncontrollable [6].
Although cable behavior has been the subject of researches in civil engineering
but different use of them in parallel robots requires new studies. Cables in parallel
robots are much lighter than one used in civil engineering and usually we have
large changes in cable length and the tension exerted to them. Reported studies
on the effect of cable flexibility on modeling, optimal design and control of such
manipulators are very limited and usually neglected.

It should be noticed that a complete dynamic model of cable robots is very
complicated. Furthermore, such complicated models are useless for controller
design strategies, although they can accurately describe dynamic intrinsic char-
acteristics of cables. Thus, in practice it is proposed to include only the dominant
effects in the dynamics analysis. For this reason in many robotics applications,
cables mass have been neglected and cable has been considered as a rigid element
[7,8]. With those assumptions the dynamics of cable driven robot is reduced to
the end-effector dynamics, that will lead to some inaccuracies in tracking error
and especially the stability of the manipulator. In this paper a more precise
model of the cable driven robot considering cable flexibility is derived and being
used in the controller design and stability analysis. Using natural frequencies of
system, Diao and Ma have shown in [9] that in fully constrained cable driven
robots the vibration of cable manipulator due to the transversal vibration of
cables can be ignored in comparison to that of cable axial flexibility. By this
means, this model can describe the dominant dynamic characteristics of cable
and can be used in the dynamic model of cable robot. Based on this observation,
in this paper axial spring is used to model cable dynamics.

In this paper, considering axial flexibility in cables, a new dynamical model for
cable driven robots is presented. This model is formulated in the standard form
of singular perturbation theory. The most contribution of this theory in solving
the control problems of the systems is in the modeling part [10]. By using the
obtained model, the control of the system is studied. Next, the stability of the
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system is analyzed through Lyapunov second method and it is proven that the
closed–loop system with the proposed control algorithm is stable. Finally the
performance of the proposed algorithm is examined through simulation.

2 Singular Perturbation Standard Model

The singular perturbation model of a dynamical system is a state space model
where the derivatives of some of the states are multiplied by a small positive
scalar ε, that is [11]

ẋ = f(x, z, ε, t) x ∈ Rn (1)

εż = g(x, z, ε, t) z ∈ Rm (2)

It is assumed that f , g have continuous derivatives along ( t , x , z , ε ) ∈ [0, t1]×
D1 × D2 × [0, ε0], on their domains D1 ⊂ Rn and D2 ⊂ Rm. Putting ε = 0, the
dimension of the standard model reduces from m + n to n, since the differential
equation (2) changes to

g(x, z, ε, t) = 0 (3)

The model (1) and (2) is an standard model, if and only if, the equation (3), has
k ≥ 1 distinct real solutions:

z = hi(t, x) ∀[t, x] ∈ [0, t1] , i = 1, 2, 3, . . . (4)

This assumption ensures that the reduced model with appropriate order of n is
related to the roots of equation (3). For achieving the i-th reduced order model,
substitute (4) in (1) and assume ε = 0, then:

ẋ = f(t, x, h(t, x), 0) (5)

This approximation is a wise simplification of the dynamic system in which the
high frequency dynamics is neglected, which is sometimes called a quasi-steady
model. Since the velocity of variable z i.e. ż = g/ε can be a large number while
ε is small and g �= 0, therefore, variable z converges rapidly to the roots of
equation g = 0, the quasi-steady form of (2). The equation (5) is often called
slow model.

3 Dynamics

Due to redundancy characteristic of KNTU CDRPM and other over–constrained
cable driven parallel manipulators, the sagging of the cables is neglected. A
simple model that can hold elastic characteristic of the cable and also can be
used in controller design procedure, is to model the cable as a spring. This simple
model can be well included in singular perturbation theory in order to derive
a dynamic model for KNTU CDRPM considering elasticity of the cables. In
what follows, we will first describe the dynamics of rigid robot briefly and then
dynamic equations of the elastic system are derived using rigid ones. In the next
step the dynamics equations are formulated in the standard form of singular
perturbation theory.
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3.1 Dynamics with Ideal Cables

The rigid model of parallel robots can be formulated into the general form of
[12]:

M(x)ẍ + C(x, ẋ)ẋ + G(x) = JT τ (6)

in which, x is the vector of generalized coordinates showing the position and
orientation of the end-effector, M(x) is a 6×6 matrix called mass matrix, C(x, ẋ)
is a 6× 6 matrix representing the Coriolis and centrifugal forces, G(x) is a 6× 1
vector of gravitational forces, J n×6 denotes the Jacobian matrix, τ n×1 is the
cable tension vector. n is equal to the number of cables and for KNTU CDRPM
it is equal to 8. The actuator dynamics can be represented as

MmL̈ + DL̇ + τ = u (7)

in which, L is the n×1 cable length vector, Mm is a diagonal n×n inertia matrix
of actuators, D a diagonal n×n matrix including viscous friction coefficients for
actuators (pulleys), τ n×1 cable tension vector, u : n×1 actuator input vector.
Use equations (6) and (7) to derive

Meq(x)ẍ + Ceq(x, ẋ)ẋ + Geq(x) = JT u (8)

in which,
Meq(x) = M(x) + JT MmJ

Ceq(x, ẋ) = C(x, ẋ) + JT MmJ̇ + JT DJ
Geq(x) = G(x)

(9)

3.2 Dynamics with Real Cables

In parallel manipulators with elastic cables, actuator position is not directly
related to end-effector position, and therefore, both the actuator and the end-
effector positions must be taken into state vector. In other words both the cable
length in the unloaded state and the cable length under tension are taken as state
vector. For modeling a parallel manipulator with n cables, we assume L̂1i : i =
1, 2, ..., n indicate the length of i-th cable under tension and L̂2i : i = 1, 2, ..., n
indicate the i-th cable without tension. In the case of rigid system, we have:
L̂1i = L̂2i(∀ i). In vector representation

L = (L̂11, ..., L̂1n, L̂21, ..., L̂2n)T = (LT
1 |LT

2 ) (10)

The kinetic energy of the system is

T =
1
2
ẋT M(x)ẋT +

1
2
L̇T

2 MmL̇2 (11)

The sum of total potential energy of the system is

P = P1 + P2(L1 − L2) (12)
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In which P1 is the potential energy of the rigid robot and the second term, the
potential energy of the i-th cable which its elasticity is approximated with a
linear spring, is as follows

P2 =
1
2
(L1 − L2)T K(L1 − L2) (13)

and K is the matrix of the stiffness coefficients of cables. Now the Lagrangian
of the system is derived by L = T − P , as

L =
1
2
ẋT M(x)ẋ +

1
2
L̇T

2 MmL̇2 − P1 − 1
2
(L1 − L2)T K(L1 − L2) (14)

The total dynamic equations of the system is derived simply by applying the
Lagrange equations{

M(x)ẍ + C(x, ẋ) ẋ + G(x) = JT K(L2 − L1)
MmL̈2 + K(L2 − L1) + DL̇2 = u

(15)

in which, the relation between x and L1 is obtained by L̇1 = Jẋ. Furthermore,
in eq. (15), K is the n × n diagonal stiffness matrix of the cables, M(x) the
6× 6 inertia matrix, C(x, ẋ) a 6× 6 matrix with Coriolis and centrifugal terms,
G(x) the 6 × 1 vector of gravitational forces, J the n × 6 Jacobian matrix, Mm

the diagonal n × n inertia matrix of actuators(pulleys), D the diagonal n × n
matrix including viscous friction coefficients for actuators, and n = 8 for KNTU
CDRPM.

3.3 Singular Perturbation Model

The spring stiffness matrix K which connects two equations in (15) enables
us to formulate these equations in singular perturbation form. /without loss of
generality, assume that all of the cables stiffness are equal. Then write the elastic
forces in the cables in the form z = k(L1 − L2) , K = kI. Since the singular
perturbation theory is defined usually for small terms, define ε = 1/k, therefore
ε → 0 as k → ∞. Multiplying two sides of the first line of equation (15) by M−1

and consider z = k(L1 − L2), we have{
ẍ = −M−1(x)JT z − M−1(x)(C(x, ẋ)ẋ + G(x))
−εz̈ = M−1

m z − M−1
m DL̇2 + M−1

m u − L̈1
(16)

Considering the following equations,

L̇2 = L̇1 − εż

L̇1 = Jẋ

L̈1 = Jẍ + J̇ ẋ

(17)

We can summarize equation (16), which is in the standard form of singular
perturbation theory in the form{

ẍ = a1(x, ẋ) + A1(x)z
εz̈ = a2(x, ẋ, εż) + A2(x)z + B2u

(18)
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Fig. 2. The cascade control scheme

In which

A1 = −M−1(x)JT

a1 = −M−1(x)(C(x, ẋ)ẋ + G(x))
a2 = −εM−1

m Dż + M−1
m DJẋ − JM−1(x)(C(x, ẋ) + G(x)) + J̇ ẋ

A2 = −(J(x)M−1(x)JT (x) + M−1
m ) ,

B2 = −M−1
m

Note that the rigid model is the marginal mode of the elastic model of eq. (6),
when the stiffness of the cables tends to infinity or ε → 0.

4 Control

4.1 Control Law for the Rigid Model

The controller applied to the rigid model is a combination of two control loops
with an inverse-dynamic controller. The first control loop is a PD controller in
joint-space and the second one in work space (Fig. 2). It is shown that this
controller can improve the performance of the control system up to 80% com-
pared to conventional single loop controllers [5]. The structure of this controller
is illustrated in Fig. 2 and the control law is defined as:

F = Fj + Fx

Fj = JT (Kpj(Ld − L) + Kvj(L̇d − L̇))
Fx = Kpw(xd − x) + Kvw(ẋd − ẋ) + Meqẍd + Geq + Ceqẋd

u = P + Pn = (JT )†F + (I − JT †
JT )ke

(19)

in which, (·)† denotes the pseudo inverse and (·)d denote the desired values. P
and Pn are defined as

F = JT P
0 = JT Pn

and ke is an n dimensional vector which is optimized through redundancy resolu-
tion scheme, [5]. Kpj, Kvj , Kpw and Kvw are diagonal positive definite matrices.
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Stability Analysis of the Closed-loop System. First, let us derive the error
dynamics to prove the stability of the closed-loop system using the controller in
equation (19). According to the robot dynamic equations (8) and control law we
can write

Meqẍ + Ceq ẋ + Geq = Kpw(xd − x) + Kvw(ẋd − ẋ) + Meqẍd+
Geq + Ceqẋd + JT (Kpj(Ld − L) + Kvj(L̇d − L̇))

(20)

Or,
Meqë + (Kvw + JT KvjJ)ė + Kpwe + JT KpjeL + Ceq ė = 0 (21)

in which, eL = Ld −L and e = xd − x. Now, introduce a Lyapunov candidate to
prove the stability of the system under control.

V =
1
2
ėT Meqė +

1
2
eT Kpwe +

1
2
eT

LKpjeL (22)

in which, Meq, Kpw and Kpj matrices are positive definite, therefore V is positive
definite. The derivative of Lyapunov function is:

V̇ = ėT Meqë +
1
2
ėT Ṁeq ė + eT Kpwė + eT

LKpj ėL (23)

Substitute the term Meq ë from the dynamic equations of the system.

V̇ = ėT (−(Kvw + JT KvjJ)ė − Kpwe − JT KpjeL − Ceq ė)
+ 1

2 ėT Ṁeq ė + eT Kpw ė + eT
LKpj ėL

(24)

Hence,

V̇ = −ėT (Kvw + JT KvjJ)ė +
1
2
ėT (Ṁeq − 2Ceq)ė

= −ėT (Kvw + JT KvjJ + 2JT DJ)ė ≤ 0 (25)

note that JT KvjJ is a positive semi-definite (PSD) matrix, because Kvj is PD
and

yT (JT KvjJ)y = yT (JT K
1/2
vj K

1/2
vj J)y = zT z ≥ 0. (26)

Therefore, Kvw +JT KvjJ +2JT DJ which is sum of two PSD matrices and a PD
matrix, is a PD matrix. Then we can conclude V̇ ≤ 0. Therefore, we know that
the motion of the robot will converge to the largest invariant set that satisfies
V̇ = 0. In this case, V̇ = 0 results in ė = 0. Therefore, from equation (21) the
largest invariant set is

Kpwe + JT KpjeL = 0 (27)

It is shown in Appendix that J.e has the same sign of eL , hence, we can write
eL = αJe, α > 0 and then we can rewrite equation (27) in this form:

(Kpw + αJT KpjJ).e = 0, α > 0 (28)

According to the above equation and positive definiteness of (Kpw + αJT KpjJ)
it is concluded that e = 0. Therefore, as time tends to infinity we have x = xd

and this means the end-effector position converges to the desired trajectory.
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Table 1. Geometric and Inertial Parameters of the KNTU CDRPM

Description Quantity

K: Spring stiffness matrix 100I8×8

Mm: Inertia matrix of actuators 0.006I8×8

D: Viscous friction coefficients for actuators 0.244I8×8

The parameters of controllers:

K̃p = 13500, K̃v = 700
Kpj = 105I8×8, Kdj = 104I8×8

Kpw = 107diag(80, 50, 1000, 77.5, 14, 19.5)
Kdw = 107diag(24, 9, 600, 16.5, 1.14, 5.7)

4.2 Control Law for the Elastic Model

Control of the systems with real cables can be done using a composite control
scheme that is a well-known technique in the control of singularly perturbed
systems [10]. In this framework the control effort utot consists of two main parts,
i.e. u the control effort for slow subsystem, the model in eq. (8), and uf the
control effort for fast subsystem. Here we use a control law that is combination
of rigid model control and a PD controller for the fast dynamics

ut = u + K̃p(L1 − L2) + K̃v(L̇1 − L̇2) (29)

As a practical point of view, it must be said that L1 can be measured by an
encoder and L2 by a string pot. In next section, it is shown through simulation
that this controller can stabilize the closed-loop system with real cables and reach
to a desired tracking error. Stability analysis of the system with this composite
controller will be discussed in later researches.

4.3 Simulation Study

In this section, the performance of the proposed controller is demonstrated
through simulating the KNTU CDRPM. The dynamic equations of the CDRPM
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considering the elasticity of the cables are shown in eq. (15).These equations in
the standard form of singular perturbation theory are shown in eq. (18). Table
1 shows robot and controller specifications, other parameters are the same as
what is given in [5]. The desired path of the manipulator in 3D is cylindrical and
is shown in Fig. 3. The tracking performance of the CDRPM using the proposed
controller is shown in Fig. 4. As seen in this figure, the proposed control topology
is capable of reducing the tracking errors less than 0.15 millimeters in position
and less than 2 × 10−3 degrees in orientation. The tracking error of a single
controller for the rigid model i.e.u in eq. (19) is shown in Fig. 5 for comparison.
It is obvious that this controller cannot stabilize the cable driven manipulator.

5 Conclusions

A dynamical model for cable driven manipulators considering the flexibility of
the cables is proposed using cable model as a linear axial spring. The model
is formulated in standard form of singular perturbation theory. A composite
control is employed for control of cable driven manipulators, which is composition
of the controller for the rigid model and a PD controller for controlling the
fast dynamics. It is shown that the rigid control law can stabilize the system
with ideal and inflexible cables asymptotically. The efficiency of the proposed
controller is verified through simulations on KNTU CDRPM.
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A Appendix

Here, we will show that Jex = J(xd − x) has the same sign of el = (�d − �),
the proof will be done by reduction to the absurd ( or contradiction). Therefore,
assume that they have different sign:

ld − l = αJ(xd − x) , α < 0 (30)

Therefore, ∃M � 1
ε ⇒ Δl

M = α
M JΔx.

Δl
M = dl and we know that dl 
 Jdx, so from equation (30) we have:

Jdx = dl 
 α

M
JΔx (31)

dx 
 α

M
Δx (32)

Which is a wrong expression when α < 0. Thus by contradiction, we can conclude
that α > 0 , i.e. J(xd−x) and (ld−l) have the same sign.

��
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