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Abstract-This paper proposes a method for mobile robot 
exploration based on the idea of frontier exploration which 
suggests navigating the robot toward the boundaries between free 
and unknown areas in the map. A global occupancy grid map of 
the environment is constantly updated, based on which a global 
frontier map is calculated. Then, a histogram based approach is 
adopted to cluster frontier cells and score these clusters based on 
their distance from the robot as well as the number of frontier 
cells they contain. In each stage of the algorithm, a sub-goal is set 
for the robot to navigate. A combination of distance transform 
and A * search algorithms is utilized to generate a plausible path 
toward the sub-goal through the free space. This way keeping 
a reliable distance from obstacles is guaranteed while searching 
for the shortest path toward the sub-goal. When such a path 
is generated, a B-spline interpolated and smoothed trajectory is 
produced as the control reference for the mobile robot to follow. 
The whole process is iterated until no unexplored area remains in 
the map. The efficiency of the method is shown through simulated 
and real experiments. 

Index Terms-Mobile Robot Exploration, Path Planning, Path 
Tracking 

I. INTRO DUCTION 

Autonomous mobile robots have many potential applica­

tions in real world that makes them attractive for researchers. 

Many functionalities are to be fulfilled in order to make a 

robot act autonomously. Among them is exploration capa­

bility which is "the ability of the robot to move through 

an unknown environment while building a map that can be 

used for subsequent navigation" [1]. The challenge stems 

from the fact that performance of many related algorithms 

such as localization, mapping, path planning, and tracking 

might influence the reliability and efficiency of any solution 

to the exploration problem. In addition, many objectives can 

be taken into account in proposing a method. As a result, 

different methods have been proposed by researchers which 

can be categorized based on the number and type of the robots 

involved in the exploration, the framework adopted and the 

objective sought for during the mission. 

Early works like [2] and [3] in exploration field formulated 

the problem from graph theoretic point of view and used 

information from deployed active sensors to navigate the robot 

in the environment. Later in [4] an improvement is made 

by eliminating the need for localization and map building. 

However, all of these methods are restrained by the number 

of sensors that the robot could carry during the mission. 

"Frontier Exploration" concept, primarily proposed by Ya­

mauchi [1], introduced a different point of view into the 

problem definition and became the basis for many other 

methods like [5], [6], [7]. Yamauchi defined the frontiers as 

the boundaries between free and unknown areas in the map 

and set the goal of exploration as constantly navigating the 

robot through the selected frontiers, in his case the closest 

ones. Koenig and Tovey [8] have shown that such a strategy 

which guides the vehicle to the closest unexplored point keeps 

the traveled distance reasonably small compared to the shortest 

trajectory which covers the whole environment. 

Although randomized strategies for exploration are consid­

ered in some cases (e.g. [4] and [9]), they are not guaranteed 

to achieve acceptable results and generally the contributions 

of researchers are on the selection of sub goals for robot 

movement during exploration. Information gain is considered 

in [10] and [11] for example as the basis for decision mak­

ing. Such a strategy suffers from high demand of memory 

and computational effort. In [12] robot's current direction is 

integrated into the process of frontier exploration in order to 

maintain energy efficiency. The disadvantage of method in [12] 
is that it produces paths too close to walls and boundaries 

of obstacles and objects which makes it difficult to use their 

method in practice where such paths are generally unfavorable. 

A Multi-robot version of the exploration problem does exist 

and is addressed in [13], [14], [15] but it is not the focus of our 

work. It seems that in the context of frontier based exploration, 

which requires the lowest computational cost compared to 

other methods while yielding favorable results, the problem of 

choosing the next best frontier to visit can still be investigated 

and newer heuristics can be examined. Also, circumventing 

the difficulties involved in clustering the frontier points into 

sets is of interest. 

In this paper, we consider a single robot in a bounded 

environment whose layout is unknown. We will focus on the 

details of implementation of a method that can circumvent 

many difficulties that arise when using frontier based methods 

in practice. In implementation of frontier based methods, no 

matter what criteria is used one needs to first cluster the point 

cloud of frontier cells and then choose one cluster as the 

sub-goal of navigation. Usually the centroid of the cluster is 

set as the next goal. However the clustering of frontier cells 

involves setting thresholds and tuning parameters based on the 

environment conditions and sensor parameters. The need for 

tuning put constraints on the applicability of these methods in 

practice. Even if the clustering problem is solved, the problem 

of tuning thresholds remains in selection stage. 

We aim to propose a more general method that has the 

least dependency on parameter tuning. At the same time we 

want to take advantage of a global optimization with low 

computational cost. 
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Figure 1. Block diagram of the proposed exploration technique. 

II. PROBLEM DEFINITI ON AND ASSUMPTI ONS 

Suppose a single robot with a Laser Range Finder being 
mounted on it, situated in an a priori unknown unstructured 
indoor environment. The aim is to incrementally creating a 
map of the environment while exploring it until no unknown 
area remains. We seek to take the most advantage of the 
map and find the safest and shortest way for robot navigation 
throughout exploration. 

Occupancy grid mapping is adopted for map representation 
because it takes no assumption about the structure of the 
robot surrounding and accounts for the sensor as well as robot 
motion uncertainties through using results from probability 
theory. Consequently, it is well suited for maintaining the 
map of unstructured environments. In addition, occupancy grid 
maps are able to maintain full information regarding free, 
unexplored and occupied areas in the map. 

The framework of frontier exploration is taken as the basis 
framework (see [1]) and we seek to find a computationally low 
cost and reliable method to choose sub goals for exploration 
task. Paths toward sub goals has to be determined in the grid 
map. These paths generally have discrete nature with sharp 
comers which make them hard to follow from the control theo­
retic point of view. Supposing a constant translational velocity 
for the robot, the discrete path is required to be converted to a 
reference trajectory suitable for control purposes. In order to 
achieve this appropriate smoothing and sub sampling methods 
should be utilized. 

In the next section our proposed method is explained based 
on these assumptions and criteria. 

III. PROPOSED METHO D  

In this section we will briefly describe different steps of  the 
proposed exploration method. These steps are summarized in 
the diagram of fig. 1. The Laser Range Finder (LRF) sensor 
onboard the robot regularly scans the horizontal slice of its 
surrounding. 

Figure 2. Occupancy Grid Map. Probability of occupancy for each cell is 
represented with colors ranging from white,representing free space, to black, 
representing blocked space. 

Figure 3. Global Frontier Map in which white cells define frontiers between 
known and unknown areas 

A. Mapping 

Among the many map representation methods, occupancy 
grid maps are well suited for unstructured environments as 
they take no assumption about the structure of the robot 
surrounding and account for the sensor as well as robot motion 
uncertainties. Also, there exist efficient SLAM methods for 
incrementally constructing the map of the environment as the 
robot moves (e.g. [16], [17]). We, therefore, adopt Grid SLAM 
[16] as our mapping and localization algorithm. Grid map is 
maintained as a matrix of probabilities of occupancy of grid 
cells and each grid cell in the map is equivalent to a d x d 

square in real world. The grid map contains the information 
that the robot has gathered during its exploration so far and 
is used as the input in frontier calculation and path planning 
modules of the algorithm. 

Figure 4. Global Frontier Map in which white cells define frontiers between 
known and unknown areas 
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B. Histogram Calculation 

In each cycle of the algorithm, for exploration purposes, 

the robot needs to choose a set point as a sub-goal and find 

the most reliable and simultaneously shortest possible path 

from the robot's current position to the calculated set point. 

Following the idea of frontier exploration, we first extract 

the frontiers from the grid-map. Note that the grid map is 

of probabilistic essence and therefore one can categorize grid 

cells into three sets, namely obstacles, free cells and unknown 

cells, based on predetermined occupancy intervals. After this 

categorization, frontier cells are defined as unknown cells 

adjacent to free cells and this way a global frontier map can 

be produced like fig. 3 which is the frontier map related to the 

grid-map of fig. 2. In practice, the global frontier map consists 

of several point clouds that makes it hard to determine the sub­

goals for exploration. In addition, the policy of choosing the 

centroid of the nearest frontier subset as the set point, apart 

from the difficulties its calculation involves, generally results 

in non optimal and crossed paths [12]. To circumvent these 

problems, we propose to use a histogram based method as 

follows. 

First, all points in the global frontier map are transformed to 

the robot's current coordinate frame as shown in fig. 4. Then, 

polar histogram of these points is calculated with D.e angle 

resolution in which the associated height of each bin is equal 

to the number of frontier pixels located in that bin's area. This 

results in a polar histogram like what is shown in fig. 5(a). 

After this part two modifications will be applied to the 

histogram in order to prevent unnecessary calculations and 

parameter tuning otherwise would have been needed. The 

modifications consist of first normalizing the resulted his­

togram to the [0,1] interval and subsequently smoothing the re­

sulted histogram by convolving it with a digitized Id Gaussian 

function. During smoothing, the amount of each sector will be 

changed regarding to its neighbor's amounts i.e. the amount 

of small value sectors located between two great values will 

be increased and similarly the amount of a great value sector 

located between two smaller ones will be decreased. This will 

help converging several small subsets to a bigger one and 

consequently avoiding unnecessary calculations in later steps. 

An example of applying these modifications is shown in fig. 

5(b). 

After smoothing and normalizing, climax sets are deter­

mined as distinct subsets of histogram bins which have heights 

greater than a predefined threshold value, tho This way, as 

depicted in fig. 5(c), several climaxes are extracted from 

the modified histogram, among which the candidate for next 

exploration subgoal has to be selected. In the original frontier 

exploration paradigm, closest set is always become selected. 

This wisdom may sometimes avoid the robot from choosing 

the somewhat farther but greater frontier that has more infor­

mation value in the presence of the closer but smaller frontier. 

It is reasonable then to have a compromise between nearness 

factor and the number of frontier pixels in choosing the best 

climax. Such a compromise could give the explorer a sense 

of global optimization. We perform this compromise in the 

following way. 

90 90 , 

180r-_-t--+-t--t 

90 1 

Figure 5. (a) Original histogram obtained from the map data, (b) Smoothed 
and normalized histogram, (c) extracted climaxes after applying the threshold 
to the histogram 

For each climax the number of frontier cells is calculated 

and the relative distance between robot current position and the 

centroid of the climax is also obtained using A * [18]. These 

numbers are saved in two sets and then become normalized 

to the [0, 1] interval by dividing each number to the biggest 

number of each set. Finally, score of each climax set,i , is 

calculated as follows in which Si, di and Ci are represen­

tatives for score, normalized distance and cardinality of the 

climax set respectively. nand e are tuning parameters which 

balance between the importance of nearness and cardinality. 

Please note that these tuning parameters are not considered 

as limitations of our method. On the contrary, they provide 

flexibility in the sense that by adjusting them we can favor 

each criterion accordingly in the process of choosing the next 

best frontier. 

1 
Si = n 

di 
+ eCi· (1) 

At the end, the best climax is selected as the one with the 

highest score among others and next sub-goal is set as the 

centroid of this climax. In the case that separated and unrelated 

frontiers exist in the best climax, the centroid of the nearest 

frontier will be selected as the sub-goal. Next step is finding 

a path through the unoccupied cells to reach this point. 

C. Path Calculation 

It is now needed to define the shortest and most reliable 

path from the current position of the robot to the set point 

calculated in the previous stage. It is also needed to consider 

the size of the robot in order to take a sufficient distance from 

obstacles. We account for these issues by using a combination 

of A * search algorithm and image distance transform. 

Distance Transform is a derived representation of a digital 

image which labels each pixel of the image with a number 

proportional to the distance to the nearest obstacle pixel. 
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Figure 6. Distance Transfonn: the original image in the left side and the 
image after applying the distance transfonn in the right side 

Consider for example the left image of fig. 6 as a map in which 
obstacle cells are marked with black and free cells with white. 
After applying distance transform to this map, the result would 
be a gray map image like the right side of fig. 6 in which the 
gray level of each pixel corresponds to the cost of navigating 
the robot through it. Map cells near to the obstacles will have 
higher cost, represented with dark gray, and the farther ones 
will have lower cost represented with light gray. Now, this 
cost map can be fed into the A * algorithm in order to find 
the path with the lowest cost which in our case means the 
shortest and most reliable path from the robot to the set point. 
A* algorithm (pronounced A-star) is one of the most popular 
search algorithms for path finding in grid-based maps which 
relies on the principle of best-first search [18]. However, in 
practice, the A * generated path cannot be used on its own for 
robot navigation due to the fact that it usually contains sharp 
turns which jeopardizes the stability of the robot motion from 
control theoretic point of view [15]. In fact, considering the 
scale of the map the discrete path yielded by A * needs to be 
downsampled, smoothed and converted to a trajectory before 
feeding into the robot motion controller. As it will be explained 
in the next section B-spline approximation is aided to achieve 
this goal. 

D. Trajectory Generation and Control 

1) Trajectory Generation: Reference trajectory is defined 
as the set of desired postures for robot motion along with 
their associated time stamps. In other words, the trajectory 
s(t) = {x(t), y(t), 8(t)} determines the motion profile of 
the robot in terms of its position, (x, y), and orientation, 8, 

as a function of time. In addition, generally, environmental, 
optimal and dynamical constraints are taken into account when 
determining the reference trajectory. Currently, for different 
purposes and applications, there exists some invaluable re­
search work that can be refereed to and used (e.g see [19]); 
however, for our case, which is a differentially driven mobile 
robot in indoor environment with ramps and uneven surface, 
we adopted a simple and though efficient method based on 
B-spline approximation that can be used in most of the search 
and rescue applications. The details of our method are not 
explained here due to lack of space. 

2) Control: The controller choice is affected by the robot 
hardware and software. In case of a differentially driven 
mobile robot, a reliable method has been proposed in [19] 
that is used in our implementation with slight modifications. 

Figure 7. Melon, mobile robot that is used in the experiments. A UHG-08LX 
Hokuyo LRF is mounted on a stabilizer and both on the robot. Stabilizer 
aligns the LRF with respect to the same horizontal direction during the robot 
navigation. 

Figure 8. Ground truth map of the Iran Open 20 10 rescue league. The robot 
was given the task of exploring the yellow area marked in the map. The area 
surface consists of ramps and palettes with small wooden obstacles 

IV. EXPERIMENTAL RESULTS 

The performance of the proposed method is considered in 
this section via using it in both simulated and real exploration 
scenarios. 

a) Real Scenario: We implemented our method on 
Melon, the mobile robot in our lab, which is shown in fig. 
7. Mellon is equipped with a UHG-08LX Hokuyo LRF with 
a maximum of 8 meters range measurement and 270 degrees 
field of view. The LRF is mounted on a stabilizer that always 
holds its field of view aligned with the earth horizon. Usage 
of stabilizer allows for reliable navigation and mapping in 
environments with uneven and ramped surfaces since the LRF 
always scans the environment parallel to one horizontal line. 
In our experiment we put the robot in the yellow arena of 2010 
Iran open rescue league with 28.8m2 area. The ground truth 
map is depicted in fig. 8. The goal is to explore the yellow 
arena of this region. 

The generated map and the path traversed by the robot 
are shown in fig. 9. During the experiment, the robot was 
able to navigate the environment through a smooth path while 
keeping a reliable distance from the environment boundaries 
which are marked with black in the map. This is the result of 
using distance transform for generating the cost map of path 
generator. It appears from the fig. 9 that the robot explored the 
environment with approximately shortest and safest possible 
path. This experiment shows that our method can be applied 
in real situations in which robot do not necessary navigate on 
fiat surface. 

b) Simulation 1: In order to make comparative study and 
evaluate the exploration algorithm quantitatively we also ex-
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Figure 9. Generated map of the yellow area along with the path that the 
robot traversed in order to cover the whole area. Path is shown in red color 
within the white free area enclosed by the black walls and unknown gray 
area. 

Figure 10. Simulated environment used to compare the performance of the 
original frontier exploration method vs. the proposed method 

amined our implementation in a bigger 18m X 18m simulated 
environment containing a more complicated map which is 
shown in fig. 10. The total area to be explored is 103.1m2 and 
the exploration mission is carried out using both the original 
and the proposed frontier exploration methods. Both methods 
were tested on the same map with identical assumptions about 
the kinematic and dynamic models and constants of the robot. 
The number of steps needed to completely cover the whole 
map is saved along with percentage of explored areas of the 
map per each step of robot movement. These are summarized 
in fig. 11 for both methods. Given that the path length traversed 
by the robot in each step equals O.lm and is the same for 
all steps, in each case the total number of steps for mission 
completion is an indication of total path traversed by the robot 
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Figure II. Comparison of original and proposed (Histogram Based) frontier 
exploration methods on the same map. The diagram shows the percentage of 
the explored area with respect to motion steps for each method. 

Figure 12. Comparison of the performance of Histogram Based method (left) 
with the original method (right). Each map is drawn with its associated step 
to show the progress of both algorithms along the time. The path traversed 
by the robot so far is also shown in red. As can be seen in the first and the 
second row, considering only the nearness factor causes the robot to ignore 
exploring the room like area in the right hand side of it. This does not happen 
if we consider also the cardinality of frontier sets in sub goal selection (see 
the left column). 

during the exploration. As it can be seen from fig. 11 adopting 
our method, the robot was able to completely cover the map in 
189 steps less than the original method which only considers 
the nearness factor for sub goal selection. In our experiment 
it means exploration of a 103.1m2 area with a path 18.9m 

shorter compared to the original method. 

The source of this superiority can be understood by referring 
to fig. 12 in which the explored map is shown at some certain 
steps for both methods. The first row shows that considering 
only the nearness factor causes the robot to neglect the farther 
but greater frontier in favor of the closer and smaller frontier. 
This also happens in step 561 for the original paradigm of 
frontier exploration. As a result, using the original method, 
the robot needs to come back later to these critical points 
and explore the ignored areas while at the same time, by 
applying the proposed method, the robot could have completed 
its mission (see third row of fig. 12). Such superiority is 
mainly the result of considering both the cardinality and 
nearness of the frontier sets in choice of exploration sub goals. 
Therefore, it can be concluded that introducing the new mixed 
criteria for choosing the candidate frontier set can improve the 
performance of the exploration from path length point of view 
at list in some certain cases. 

c) Simulation 2: In order to evaluate the general per­
formance of our algorithm we tested it in different simulated 
environments and by putting the robot on random locations 
in these environments. We also compared the results of our 
algorithm against the results obtained from original method 
of [1]. No effort has been made to make favorable maps for 
our algorithm and all related constants are assumed to be the 
same for both methods like the previous experiment. Maps 
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Figure 13. Maps that are used for comparing the general performance of 
original frontier exploration method against our method. Random starting 
points are marked using red squares 

left map 1 2 3 4 :, 6 
I proposed method 1215 1375 1301 1287 1486 1516 
I original method 1208 1489 1562 1542 1705 1541 

right map 1 2 3 4 5 6 
I proposed method 1563 1632 1662 1454 1477 1705 
I original method 1741 1632 1541 1540 1619 1568 

Table I 
PERFORMANCE COMPARISON FOR THE LEFT MAP AND THE RIGHT MAP OF 

FIG. 13. 

that are used for the comparison are illustrated in fig. 13 along 

with 6 randomly generated starting points for robot exploration 

marked by red squares. 

Number of steps for complete coverage of the map is 

reported in tab. I. For the left map of fig. 13 according to 

tab. I in 5 out of 6 cases our proposed method outperforms 

the original frontier exploration method and in one case it has 

a close performance. For the right map of fig. 13 according to 

tab. I, in 4 out of 6 cases our proposed method outperforms 

the original frontier exploration method. 

V. C ONCLUSION 

The research work presented in this paper introduces a novel 

criteria for selecting sub goals for frontier based exploration. It 

benefits from a simple but efficient philosophy that both close­

ness and cardinality should be taken into account in order to 

improve the performance of the original paradigm of frontier 

exploration. The method is simple to implement and needs low 

computational cost. The idea of using histogram calculations to 

gather information about frontiers also extricates us from most 

of the complexities and parameter tunings that arise dealing 

with grid maps in practice. 

It should be noted that since in exploration problem the 

environment is a priori unknown, no real optimal strategy 

could be offered. However, suggested by the above experi­

ments, our proposed method overall outperforms the original 

frontier based exploration while it has the additional flexibility 

and simplicity of implementation. Referring to (1), also, it can 

be argued that the new criteria adds a sense of global search for 

the best frontier to the exploration algorithm. One can adjust 

the algorithm coefficients in order to put more emphasize on 

local or global search, where by local we mean searching 

for the closest frontier set and by global we mean searching 

for the greatest one. In fact it is even possible to change the 

balance between nearness and cardinality coefficients during 

the navigation. This provides the opportunity to use other opti­

mizations and may be learning techniques to adapt algorithm's 

constants which consequently expands its application. Finally, 

the simplicity and low computational cost of implementation 

along with flexibility of use and extendability of the proposed 

method makes it suitable for real world applications. 
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