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Abstract--FastSLAM is a framework using a Rao-Blackwellized 

particle fIlter. However, the performance of FastSLAM depends 
on correct a priori knowledge of the process and measurement 

noise covariance matrices (Q, and R, ) that are in most 

applications unknown. On the other hand, an incorrect a priori 

knowledge of Q, and R, may seriously degrade the performance 

of FastSLAM. To solve these problems, this paper presents 

H 00 FastSLAM. In this approach, H 00 particle fIlter is used for 

the mobile robot position estimation and H 00 fIlter is used for the 

feature location's estimation. TheH 00 FastSLAM can work in an 

unknown statistical noise behavior and thus it is more robust. 
Experimental results demonstrate the effectiveness of the 
proposed algorithm. 
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I. INTRODUCTION 

The simultaneous localization and mapping (SLAM) is a 
fundamental problem of robots to perform autonomous takes 
such as exploration in an unknown environment. It represents 
an important role in the autonomy of a mobile robot. The two 
key computational solution to the SLAM are extended kalman 
filter (EKF-SLAM) and Rao-Blackwellized particle filter 
(FastSLAM). The EKF-SLAM approach is the most popular 
approach to solve the SLAM. Until now extensive research 
works have been reported employing EKF to the SLAM 
problem [5], [19-20]. Several applications of EKF-SLAM 
have been developed for indoor applications [3], [19], outdoor 
applications [1], underwater applications [24] and 
underground applications [16]. However, EKF-SLAM suffers 
from two major problems: the computational complexity and 
data association[18]. Recently, FastSLAM algorithm approach 
has been proposed as an alternative approach to solve the 
SLAM problem. FastSLAM is an instance of Rao­
Blackwellized particle filter, which partitions the SLAM 
posterior into a localization problem and an independent 
landmark position estimation problem. There exist two 
versions of FastSLAM: FastSLAMl.0 and FastSLAM2.0. As 
FasSLAM2.0 is superior to FastSLAM1.0, this paper 
addresses FasSLAM2.0. In FastSLAM2.0, extended kalman 
particle filter is used for the mobile robot position estimation 
and EKF is used for the feature location's estimation. The key 
feature of FastSLAM, unlike EKF -SLAM, is the fact that data 

978-1-61284-985-0/11/$26.00 ©2011 IEEE 

association decisions can be determined on a per-particle 
basis, and hence different particles can be associated with 
different landmarks. Each particle in FastSLAM may even 
have a different number of landmarks in its respective map. 
This characteristic gives the FastSLAM the possibility of 
dealing with multi-hypothesis association problem. The ability 
to simultaneously pursue multiple data associations makes 
FastSLAM significantly more robust to data association 
problems than algorithms based on incremental maximum 
likelihood data association such as EKF-SLAM. The other 
advantage of FastS LAM over EKF-SLAM arises from the fact 
that particle filters can cope with nonlinear and non-Gaussian 
robot motion models, whereas EKF approaches approximate 
such models via linear functions. There have been many 
investigations on FastSLAM [8], [9], [12], [13], [17], [21]. In 
references [2], [4], [10], [12], [13] it has been noted that 
FastSLAM degenerates over time. This degeneracy is due to 
the fact that a particle set estimating the pose of the robot 
loses its diversity. One of the main reasons for losing particle 
diversity in FastSLAM is sample impoverishment. It occurs 
when likelihood lies in the tail of the proposal distribution [7]. 
Researchers have been trying to solve those problems in [7], 
[8], [9], [21], [25-29]. In all previous research on FastSLAM, 
it is assumed that a priori knowledge of the process and 
measurement noise statistics is completely known. However, 
in most application these matrixes are unknown. On the other 
hand, an incorrect a prior knowledge of Qt and Rt may 

seriously degrade the Kalman filter performance [6], [14. In 
this paper to solve these problems, H 00 FastSLAM is 

proposed. 

II. THE SLAM PROBLEM 

The goal of SLAM is to simultaneously localize a robot and 
determine an accurate map of the environment. To describe 
SLAM, let us denote the map by 0 and the pose of the robot 

at time t by St. The map consists of a collection of features, 

each of which will be denoted by (}n and the total number of 

stationary features will be denoted by N . In this situation, the 
SLAM problem can be formulized in a Bayesian probabilistic 
framework by representing each of the robot's position and 
map location as a probabilistic density function as: 

p(s,,0Iz ',u',n') (1) 
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In essence, it is necessary to estimate the posterior density of 

maps E> and poses S I given that we know the observation 

z' = {z l' ... 'z,} , the control input u' = {ul' ... 'u,} and the data 

association n' . FastSLAM is an efficient algorithm for the 
SLAM problem that is based on a straightforward 
factorization as follows [12-13]: 

N 

performance in minimum mean square error (MMSE) sense, 
this filter requires both process model noise and measurement 
model noise process to be Gaussian. If the noise statistics are 
unknown, then kalman filter is no longer optimal. Unlike the 
kalman filter algorithm which gives the MMSE estimate of 

e k , the H 00 filtering algorithm gives the optimal estimate of 

e k such that the effect of the worst disturbance on the 

( I Q I I I I) p( I I I 
ul 

1)I1 (B I I I I I) (2) estimation is minimized. To describe H � filter, consider the p s ,0 z ,u ,n = s z, ,n p n S ,z ,u ,n � 
n=1 following time variant state space model: 

where s' = {s po •. ,s,} is a robot path. This factorization states 

that the SLAM problem can be decomposed into estimating 
the product of a posterior over robot path and N landmark 
posteriors given the knowledge of the robot path. The 
FastSLAM algorithm implements the path estimator 

p(S I I Z I 
,ul ,nl) using a particle filter and the landmarks 

pose p (On I S I ,z 
I 
,u 

I 
,n 

I ) are realized by EKF, using separate 

filters for different landmarks. The Structure of the 
M particles is as follow [12], 17]: 

s[m) =<sl,[m) I/Jm) �[m) I/[m) �[m) > (3) t , r"l,t , 1,t , ... , r-N ,t' N ,t 

Where [m] indicates the index of the particle, and sl,[m) is the 

m th particle's path estimate, and pr:} ,�� 1 are the mean 

and the covariance of the Gaussian distribution representing 

the n th feature location conditioned on the path s 
I ,[ m) • In 

general, it is not possible to draw samples directly from the 
SLAM posterior. Instead, the samples are drawn from a 
simpler distribution called the proposal distribution 

q(sl,[m)lz
I
,ul,nl). The choice of the proposal distribution 

q (s}m) I sl
-

I,[m) ,z 
I 
,ul ,nl) is one of the most critical issues in 

the design of a FastSLAM. In FastSLAMl.0, new poses are 
sampled using the transitional prior [11]: 

q(sl,[m)lz
I-l

,ul ,nl
-1) = P(SI IUpS}:'I) (4) 

However, FastSLAMl.0 approach is particularly troublesome 
if the observation is too accurate relative to the vehicle' 
motion noise. To solve this problem, Montemerlo proposed an 
improved version called FastSLAM2.0 [13]. In FastSLAM2.0, 
vehicle poses are sampled under consideration of both the 
control u

l 
and measurement z I , which is denoted as follow: 

( I ,[m) I 1-1 I 1-1) _ (1,[m)1 1-1 I 1-1) (5) q s z ,u ,n -p s z ,u ,n 

As a result, the fastSLAM2.0 is superior to FastSLAM1.0 in 
all aspects. In FastSLAM2.0, the importance weight is given 
by following equation: 

( 
I 

I,[m) 1-1 I I ) ([m) I 1-1 I I ) 
wlm) _ wlm) p Z

l 
S ,z ,u ,n PSI z ,u ,n 

(6) k - TJ k-l ([m)1 I-l,[m) I I I) PSI S ,z ,u ,n 

III. THE H 00 FILTER 

The kalman filter minimizes the variance of estimation error. 
The optimality of kalman filter depends on the knowledge of 
the state space model noise. For providing optimal 

Xk+l = Fkxk + Gk wk 
Yk = Hkxk +vk 

(7) 

where Fk ,Gk , and H k are know matrix with appropriate 

dimensions. The process noise W k and the measurement 

noise vk are assumed to be energy bonded 12 signals whose 

statistical properties are unknown, i.e. , 

I� k II� = L: =0 
W r W k < 00 I� k II� = L: =0 v 

r v k < 00 

The optimum H 00 coast is given as follow [30-34]: 

J = L:=oIlYk -J\II� 
< 

IIxo -ioll�-, + L:=ollwkll�k-' + L:=ohll�k-' r 

(8) 

(9) 

Where Po, Q k , R k are the weighting matrices for the initial 

condition, the process noise and the measurement noise. 

Moreover, Po > 0 , Qk > 0 and R k > 0 . The notation 

IIx k I�k is defmed as IIx d�k = x r Qk x k . The denominator of 

J can be considered as the energy of the unknown disturbance, 
and the numerator is the energy the of the estimation error. 
The objective of H 00 estimation is to minimize the maximum 

value of J as following 

min max J < 
r 

(10) 
Xk Vk,Wk'XO 

The attenuation factor r > 0 is the maximum attention value 

specified by the user. Therefore, the H 00 filter aims to 

provide a uniformly small estimation error ek = Yk - Yk for 

any W k ,v k E 1
2 

and x 0 ERn, such that the energy gain J is 

bonded by a prescribed value. The solution for 
H 00 optimization can be obtained by augmenting the state 

constraint to cost function in (9) using a set of lagrange 
multipliers and performing the min and max operations with 
respect to the state space model variables. For a given A > 0 ,  

one possible level r, H 00 filter as following equation[30-34]: 

Xk+l = Fkxk 
lk�1 = FkPk F[ + GkQkG[ 
Where 

Kk = Pk"H[(Hklk-H[ +R kr1 

(11) 

(12) 

(13) 
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(14) [ R k R -e,k - 0 
(15) 

IV. THE H 00 FASTSLAM 

In this section, H 00 FastSLAM describe in detail. The 

algorithm update of posterior of H 00 FastSLAM can be 

described as: 

1. Sampling Strategy in H 00 FastSLAM 

2. Landmark estimation based on H 00 filter 

4. Feature Initialization 
3. Calculate importance weight 
5. Resampling 

A. Sampling Strategy in Hoo FastSLAM 
The FastSLAM relies on importance sampling, so it requires 
the design of proposal distributions that can approximate the 
true posterior reasonably well. The most common strategy is 
to sample from the transition motion. However, this strategy 
can fail if the most measurements appear in the tail of the 
proposal distribution, or if the likelihood is too sharp in 
comparison to the proposal distribution. In this case, most of 
weights of participles are insignificant and samples 
impoverishment occurs. Several researchers have introduced 
the most current observations into the proposal distribution 
and have used some heuristic techniques to improve the 
accuracy of the proposal distribution [8], [9], [11], [13], [16], 
[17], [27]. However, the performance of the methods and the 
quality of the estimation depends on the correct a priori 
knowledge of process Q t and measurement noise covariance 

matrices R t • In proposed method, to solve this problem 

extendedH 00 filter instead of EKF is used (H 00 FastSLAM). 

In H 00 FastSLAM, such as FastSLAM 2.0, poses are sampled 

under consideration of both the motion ul and the 

measurement z I This is formally denoted by the following 

sampling distribution, which now takes the measurement 
z I into consideration: 

q(s}mllsl-l,[ml,z t ,ul ,nl) (16) 

An effective approach to accomplish this is to use H 00 filter 

generated Gaussian approximation: 

q(s[mllst-l,[ml z t ut nt)r-vN(s s[ml p[ml) (17) t , , , t '  t 't  
Approximates the distribution using H 00 filter as following 

equations: 
A[ml _ f( [ml ) sl+1 - St ,uI 
p[ml- = Vr p[mlVrT + VG QVGT 1+1 J I I J t u u 

where 

(18) 

VG =af 
u au 

K [ml - p[ml-HT (H p[ml-HT +R )-1 
I -I I I I  I I 

s}ml =iJml +Kt[ml(Zk -h(iJml)) 

PI[ml = PI[ml-_ PI[ml-[GT IJ R-1 [Gon, ]p[ml-
0", e,l-l 

I 
I 

R = [ R 0 ]+[GO"' jP [ml-[GT IJ e,1 0 -yI I I 0", 

(19) 

(20) 

(21) 

(22) 

(23) 

From the Gaussian distribution generated by the estimated 
mean and covariance of the vehicle, the state of each particle 
is sampled: 

sJml r-vN(i}ml,Pr[ml) (24) 

When there is no observation, the vehicle state is predicted 
without the measurement update using (18). If many 
landmarks are observed at the same time, (20) and (21) are 
repeated for each observed landmark, and the mean and the 
covariance of the vehicle are updated based on the previously 
updated one. 

B. LANDMARK ESTIMATE BASED H 00 FILTER 

The H 00 FastSLAM represents the posterior landmark 

estimates P«(}n lS I ,z I ,ul ,nl) using low-dimensional H 00 

filter. In fact FastSLAM2.0 updates the posterior over the 

landmark estimates, respected by the mean ,u�";�1 and the 

covariance �[ml .the updated values ,u[ml and �[ml are then n,l-l n,t n,t 
added to the temporary particle set St , along with the new 

pose. The update depends on whether or not a landmark 
n was observed at time t . For n 7; nl , the posterior over the 

landmark remains unchanged as following [24]: 
[ml_ [ml ,un,t -,un,t-l 

�[ml =�[ml n,1 n,l-l 
(25) 

For the observed feature n = nt , 

through the following equation [24]: 

the update IS specified 

P«(}n Is,,[m),n' ,z ') = t 
_ ( I () ',[m) , '-1 ) «() I ',[m) " -1 ) (26) -7J(1z, n,'s ,n,z ,(1 n,s ,n,z 

, �N (zpgC;1/t 
,sJm1 ,Rt) �N COllt ,d��i'I���I) 

The probability P«(}n Is,,[m),n
t
,zH) at time t -1 is t 

represented by a Gaussian distribution with mean ,u�";�1 and 

covariance ����1 • For the new estimate at time t to also be 

Gaussian, FastSLAM linearizes the perceptual model 

p(z,I(} .. ,s,,[m),n',zH) by EKF. Especially, FastSLAM 

approximates the measurement function g by the following 

first degree Taylor expansion [24]: 
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(0 Em]) _ ([m] Em]) '( [m] [m] )(0 [m] ) g n, ,S, - g f.in,H' S, + g s, ,f.in,H n, - f.in,'-l 
�� (27) 

=z[m] + G[m](o _ I/[m] ) t t nt rn,t-1 
Under this approximation, the posterior of landmark nt is 

indeed Gaussian. The mean and covariance are obtained using 
the following measurement update: 

� - ( [mJ ) (28) z t - g St ,Jln"t-I 
G

o 
= V on g(St ,On,) Is �s[m].o �,,[m] (29) 

1lt t t t ' I1t rllll_1 

(30) 

the current particle set represents the true posterior [25]. This 
quality is computed as 

N - 1 
(38) e

ff - '" N rJ.iJ 
L...i�1 I 

Where w (i) 
refers to the normalized weight of particle i . The 

resampling process is operated whenever Neff is bellow a 

pre-dermed threshold, N if . Here N if is usually a constant 

value as following 

3 
Nif =

�M 0� 

(31) Where M is number of particles. 

�[mJ = �[mJ _�[mJ [GT I JR-I [G 
On, l�[mJ 

n"t nt ,t-l nt,t-l (Jnt e,1 
I nt,t-l 

[R 
R -e,1 - 0 

o ] + [Go", l�[mJ [GT I] -r I I n"t-I 0", 

C. Feature Initialization 

(32) 

(33) 

(34) 

A new feature is initialized as a function of the robot 

posesfmJ and measurement z t .The feature mean JI��I and the 

feature covariance ���tl in the feature initialization are 

calculated as follows[12],[13]: 
JI��I = g -I (z" s;ml) 

�[ml = (G�mIKIG�mIT)-1 n, t 11 t n 

D. Calculating Importance weight 

(35) 

Like FastSLAM2.0, the importance weight H 00 FastSLAM 

should be computed by considering the most recent 
observation, and it is given by. 

p(z I i,[mJ zt-I ut nt ) p(s[mJI ul nt ) rJ.mJ = rJ.mJ t ' "  I , 
(36) t I-I ( [mJ I 1-1,[mJ I I t) p St s ,z ,u ,n 

E. Resampling 
Sine the variance of the importance weights increase over 
time [22], [23], resampling plays a vital role in FastSLAM. In 
the resampling process, particles with low importance weight 
are eliminated and particles with high weights are multiplied. 
After, the resampling, all particle weights are then reset to 

�mJ = � (37) 

This enables the FastSLAM to estimate increasing 
environmental sates defiantly without growing a number of 
particles. However, resampling can delete good samples from 
the sample set, in the worst case, the filter diverges. The 
decision on how to determine the point of time of the 
resampling is a fundamental issue. Liu introduced the so­
called effective number of particles Neff to estimate how well 

V. SIMULATION RESULTS 

Simulation experiments have been carried out to evaluate the 
performance of the proposed approach in comparison with the 
classical method. The proposed solution for the SLAM 
problem has been tested for the benchmark environment, with 
varied number and position of the landmarks, available in 
[15]. 

g >-
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20 

0 

·20 

-40 

�o 

.,so 

·100 
·150 ·100 ·50 50 100 

X(m) 
Fig. 1 The experiment environment: The star point "*,, denote 

the landmark positions and blue line is the path of robot 

Fig.l shows the robot trajectory and landmark location. 
The star points (*) depict location of the landmarks that are 
known and stationary in the environment. The state of the 
robot can be modeled as (x,y,¢) that (x,y) are the 

Cartesian coordinates and ¢ is the orientation respectively to 

the global environment. The kinematics equations for the 
mobile robot are in the following form [i 1 (V +vv )cos(¢+[r+v yD 

y = (V +vv )sin(¢ +[r+vyD 
(p (V +VV) • ( ) 

B 
sm r+Vy 

Where B is the base line of the vehicle and u = [V 

(40) 

rf is the 

control input at time t consisting of a velocity input V and a 
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steer input r . The process noise v = [v. v r J is assumed to 

be Gaussian. The vehicle is assumed to be equipped with a 
range-bearing sensor that provides a measurement of range 
r
i and bearing 0i to an observed feature Pi relative to the 

vehicle. The observation z of feature Pi in the map can be 

expressed as: 

[ ri 
] 

= 
r�r---(x - x i-)2 : (y. --Y i)

2 + OJ
, 
j 

O. 
tan-l�_�_",+OJ 

(41) 
, 'I' () 

X -Xi 
Where (x;oY i) is the landmark position in map and 

W = [ OJ
, 

OJ{) r related to observation noise. The initial 

position of the robot is assumed to be x 0 = 0 . The robot 

moves at a speed 3m1s and with a maximum steering angle 30 
deg. Also, the robot has 4 meters wheel base and is equipped 
with a range-bearing sensor with a maximum range of 20 
meters and a 180 degrees frontal field-of-view. The control 

noise is 0". = 0.3 mls and O"r = 3° . A control frequency is 

40 HZ and observation scans are obtained at 5 HZ. The 

measurement noise is 0.1 m in range and 0.1" in bearing. Data 
association is assumed known. To evaluate the proposed 
method the performance, it is compared with FastSLAM2.0 
for benchmark environment. First, we consider the situation 
where measurement noise is wrongly considered as 0", = 0.7 , 

O"{) = 1.0 .The performance of the proposed method is 

compared with FastSLAM2.0. Fig.2 and Fig.3 show the 
comparison between the proposed algorithm and the 
FastSLAM2.0. It can be clearly seen that the results of the 
proposed algorithm are better than that of FastSLAM2.0. In 
other words, in the proposed algorithm, estimated vehicle path 
and estimated landmark with the actual path and the actual 
positions landmarks, coincide as closely as possible. This is 
because the proposed method does not require a priori 
knowledge of the system (the process and measurement noise 
covariance matrices Qt andRt , respectively) and deepened on 

only an assumption that the noises are bounded in certain 
energy level. 
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: -t+ : - True 

80 ------------- �--------------�------- * --- ...... Proposed Estimation 
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: L\ 4, , ': F <t-'; ' 
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(b) 
Fig. 2 The proposed method: a) Estimated robot path and estimated landmark 
with true robot path and true landmark. The " . . .  " is the estimated path, the 
"+" are the estimated landmark positions. b) Estimated pose error with 

2 - 0" bound. 
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Fig.3. FastSLAM2.0: a) Estimated robot path and estimated landmark with 
true robot path and true landmark. The " . . .  " is the estimated path, the "+" are 

the estimated landmark positions. b) Estimated pose error with 2 - 0" bound. 
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VI. CONCLUSION 

This paper presents a H", FastSLAM. In the proposed method, 

H", particle filter for robot pose estimation, and a H", filter for 

landmark feature estimation is developed. The perfonnance of 

proposed method is compared with classical FastSLAM2.0 for 

benchmark environment. The results show the effectiveness of 

the proposed method. This is because in our proposed method, 
depend on not to a priori knowledge of the process covariance 

matrix Q, and the measurement noise covariance matrixR, . 
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