Preface

Robots are increasingly being used for service duties, exploring inaccessible areas and for emergency and security tasks, besides their conventional application in industrial environments. The trend toward intelligent and autonomous systems is uninterrupted and poses new challenges for the interaction between humans and robots. Controlling robots is far beyond conventional programming specific tasks and cooperation between humans and robots becomes crucially important. As a result, the behavior of modern robots needs to be optimized toward these new challenges.

Against this background, the 4th International Conference on Intelligent Robotics and Applications picked “Improving Robot Behavior” as its central subject. Building on the success of the previous ICIRA conference series in Wuhan, China, Singapore and Shanghai, China, the renowned conference left Asia for the first time and took place between December 6–8, 2011 in Aachen, Germany. On the one hand, ICIRA 2011 aimed to strengthen the link between different disciplines developing and/or using robotics and its applications. On the other hand, it improved the connection between different perspectives on the field of robotics - from fundamental research to the industrial usage of robotics.

The response from the scientific community was great and after an extensive review 122 papers were selected for oral presentation at the conference. These high-quality papers from international authors cover a broad variety of topics, resembling the state of the art in robotic research. The papers accepted for the conference are presented in this volume of Springer’s Lecture Notes in Artificial Intelligence. The volume is organized according to the conference sessions. The sessions cover a wide field of robotic research including topics such as “Robotics in Education”, “Human–Robot-Interaction” and “Bio-inspired Robotics” as well as “Robotics Assembly Applications”, “Parallel Kinematics” or “Multi-Robot Systems”.

We would like to thank all authors and contributors who supported ICIRA 2011 and the organization team under the direction of Max Haberstroh and Ralph Kunze. Our special gratitude goes to the International Advisory Committee and Program Chairs for their help and guidance, as well as the many external reviewers who helped to maintain the high quality the conference demonstrated in the past three years. Our particular thanks goes to the keynote speakers Rüdiger Dillmann (KIT, Germany), Dennis Hong (Virginia Tech, USA) and Bradley Nelson (ETH Zürich, Switzerland) for their inspiring talks.

December 2011

Sabina Jeschke
Honghai Liu
Daniel Schilberg
Conference Organization

Conference Chair

Sabina Jeschke
RWTH Aachen University, Germany

Conference Co-chair

Xiangyang Zhu
Shanghai Jiao Tong University, China

Program Chairs

Ulrich Epple
RWTH Aachen University, Aachen

Stefan Kowalewski
RWTH Aachen University, Aachen

Program Co-chairs

Honghai Liu
University of Portsmouth, UK

Jangmyung Lee
Pusan National University, Republic of Korea

Chun-Yi Su
Concordia University, Canada

International Advisory Committee

Tamio Arai
University of Tokyo, Japan

Hegao Cai
Harbin Institute of Technology, China

Toshio Fukuda
Nagoya University, Japan

Klaus Henning
RWTH Aachen University, Germany

Huosheng Hu
Essex University, UK

Oussama Khatib
Stanford University, USA

Jurgen Leopold
Huazhong University of Science and Technology, China

Ming Li
National Natural Science Foundation of China, China

Peter Luh
Connecticut University, USA

Jun Ni
University of Michigan, USA

Nikhil R. Pal
Indian Statistical Institute, India

Grigory Panovko
Russian Academy of Science, Russia

Mohammad Siddique
Fayetteville State University, USA

Xinyu Shao
Huazhong University of Science and Technology, China

Shigeki Sugano
Waseda University, Japan

Michael Wang
Chinese University of Hong Kong, China
VIII Conference Organization

Kevin Warwick
Bogdan M. Wilamowski
Ming Xie
Youlun Xiong
Lotfi Zadeh

University of Reading, UK
Auburn University, USA
Nanyang Technological University, Singapore
Huazhong University of Science and Technology, China
California University of Berkeley, USA

Conference Area Chairs

Andrew Adamatzky
Shamsudin H.M. Amin
Nikos A. Aspragathos
Philippe Bidaud
Darwin G. Caldwell
Jan-Olof Eklundh
Ashraf M. Elnagar
Hubert Gattringer
Vladimir Golovko
Jwusheng Hu
Karel Jezernik
Petko Kiriazov
Heikki Koivo
Krzysztof Kozlowski
Maarja Kruusmaa
Dirk Lefeber
Yangmin Li
Bruce MacDonald
Eric T. Matson
Ivan Petrovic
Miguel A. Salichs
Jim Torresen
Laszlo Vajta
Holger Voos
Cees Witteveen
Changjiu Zhou

University of the West of England, UK
Universiti Teknologi Malaysia, Malaysia
University of Patras, Greece
Université Pierre and Marie Curie, France
Center for Autonomous Systems, Sweden
University of Sharjah, United Arab Emirates
Johannes Kepler University Linz, Austria
National Chiao Tung University, Taiwan
University of Maribor, Slovenia
Bulgarian Academy of Sciences, Bulgaria
Helsinki University of Technology, Finland
Poznan University of Technology, Poland
Tallinn University of Technology, Estonia
Vrije Universiteit Brussel, Belgium
University of Macau, Macau
University of Auckland, New Zealand
Purdue University, USA
University of Zagreb, Croatia
Universidad Carlos III de Madrid, Spain
University of Oslo, Norway
Budapest University of Technology and Economics, Hungary
University of Luxembourg, Luxembourg
Delft University of Technology, The Netherlands
Singapore Polytechnic, Republic of Singapore

Conference Special Session Chair

Naoyuki Kubota

Tokyo Metropolitan University, Japan
International Program Committee

Fakhreddine Ababsa, France
Ehsan Aboosaeedan, Iran
Sadek Crisóstomo Absi Alfaro, Brazil
Cihan Acar, Japan
Carlos Antonio Acosta Calderon, Singapore
Nitin Afzulpurkar, Thailand
Mojtaba Ahmadi, Canada
Andika Aji Wijaya, Malaysia
Otar Akanyeti, Italy
Berkant Akin, Turkey
Mohammad Al Janaideh, Jordan
Mohamed Al Marzouqi, UAE
Ahmed Al-Araj
Amna ALDahak, UAE
Khalid A.S. Al-Khateeb, Malaysia
Kaspar Althoefer, UK
Erdinç Altug, Turkey
Farshid Amirabdollahian, UK
Cecilio Angulo, Spain
Sherine Antoun, Australia
Silvia Appendino, Italy
Philippe S. Archambault, Canada
Kartik Ariyur, USA
Panagiotis Artemiadis, USA
Joonbum Bae, USA
Feng Bai, China
Subhasis Banerji, Singapore
Sven Behnke, Germany
Nicola Bellotto, UK
Cindy Bethel, USA
Richard J. Black, USA
Misel Brezak, Croatia
Elizabeth Broadbent, New Zealand
Magdalena Bugajska, USA
Darius Burschka, Germany
Qiao Cai, USA
Berk Calli, The Netherlands
Jiangtao Cao, China
Zhiqiang Cao, China
David Capson, Canada
Barbara Caputo, Switzerland
Guillaume Caron, France
Auat Cheein, Argentina
Xiaopeng Chen, China
Ian Chen, New Zealand
Zhaopeng Chen, Germany
Wenjie Chen, Singapore
Youhua Chen, USA
Dimitrios Chrysostomou, Greece
Xavier Clady, France
Burkhard Corves, Germany
Daniel Cox, USA
Jacob Crandall, UAE
Robert Cupec, Croatia
Boris Curk, Slovenia
Marija Dakulovic, Croatia
Konstantinos Dalamagkidis, Germany
Fadly Jashi Darsivan, Malaysia
Kamen Delchev, Bulgaria
Hua Deng, China
Ming Ding, Japan
Hao Ding, Germany
Can Ulas Dogruer, Turkey
Haiwei Dong, Japan
Zhenchun Du, China
Hadi ElDaou, Estonia
Martin Esser, Germany
Andrés Faña, Spain
Yongchun Fang, China
Faezeh Farivar, Iran
Ehsan Fazl-Ersi, Canada
Ying Feng, Canada
Lucia Fernandez Cossio, Spain
Manuel Fernandez-Carmona, Spain
Kevin Fite, USA
Antonio Frisoli, Italy
Zhuang Fu, China
Velappa Gounder Ganapathy, Malaysia
Zhen Gao, Canada
Antonios Gasteratos, Greece
Yiannis Georgilas, UK
Hu Gong, China
Dongbing Gu, UK
Liwen Guan, China
Lei Guo, China
Alvaro Gutierrez, Spain
Norihiro Hagita, Japan
Hassan Haleh, Iran
Kenji Hashimoto, Japan
Mitsuhiro Hayashibe, France
Patrick Hénaff, France
Sophie Hennequin, France
Dominik Henrich, Germany
K.V. Hindricks, The Netherlands
Vesa Hölttä, Finland
Masaaki Honda, Japan
Tianjiang Hu, China
Yong’an Huang, China
Cong-Hui Huang, Taiwan
Mathias Hüsing, Germany
Detelina Ignatova, Bulgaria
Atsutoshi Ikeda, Japan
Akira Imada, Belarus
Mircea Ivanescu, Romania
Edouard Ivanjko, Croatia
Yumi Iwashita, Japan
Patric Jensfelt, Sweden
Seonghee Jeong, Japan
Li Jiang, China
Bahram Jozi, Australia
Takahiro Kagawa, Japan
Yasuhiro Kakinuma, Japan
Kaneko Kaneko, Japan
Pizzanu Kanongchaiyos, Thailand
Shigeyasu Kawaji, Japan
Eunyoung Kim, USA
Chyon Hae Kim, Japan
Balint Kiss, Hungary
Andreja Kitanov, Croatia
Bin Kong, China
Petar Kormushev, Italy
Akio Kosaka, USA
Volker Krüger, Denmark
Naoyuki Kubota, Japan
Chung-Hsien Kuo, Taiwan
Bela Lantos, Hungary
Kiju Lee, USA
Kristijan Lenac, Croatia
Gang Li, China
Kang Li, UK
Zhijun Li, China
Qinchuan Li, China
Bin Li, China
Feng-Li Lian, Taiwan
Geng Liang, China
Chyi-Yeu Lin, Taiwan
Wei Liu, China
Jindong Liu, UK
Jia Liu, China
Xin-Jun Liu, China
Bingbing Liu, Singapore
Benny Lo, UK
Yunjiang Lou, Macao
Leena Lulu, UAE
Dominic Maestas
Elmar Mair, Germany
Takafumi Matsumaru, Japan
Jouni Kalevi Mattila, Finland
Johannes Mayr, Austria
Abdul Md Mazid, Australia
Emmanuele Menegatti, Italy
Qinhao Meng
Huasong Min, China
Lei Min, China
Seyed Mohamed Buhari Mohamed
Ismail, Brunei Darussalam
Hyungpil Moon, Republic of Korea
Rainer Müller, Germany
Hyun Myung
Hiroyuki Nakamoto, Japan
Lazaros Nalpantidis, Greece
John Nassour, France
Andreas C. Nearchou, Greece
Samia Nefti-Meziani, UK
Duc Dung Nguyen, Republic of Korea
Hirotaka Osawa, Japan
Mohammadreza Asghari Oskoei, UK
Chee Khiang Pang, Singapore
Christopher Parlitz, Germany
Federica Pascucci, Italy
Fernando Lobo Pereira, Portugal
Anton Satria Prabuwono, Malaysia
Flavio Prieto, Colombia
Hong Qiao, China
Md. Jayedur Rashid, AASS, Sweden
Sushil Raut, India
Nilanjan Ray, Canada
Robert Richardson, UK
Roland Riepl, Austria
Jorge Rivera-Rovelo, México
Fabrizio Rocchi, Italy
Stephen Rock, USA
Andreja Rojko, Slovenia
Juha Röning, Finland
Anis Sahbani, France
Sébastien Saint-Aimé, France
Elsayed Sallam, Egypt
Marti Sanchez-Fibla, Spain
Ingrid Schjolberg, Norway
Kosuke Sekiyama, Japan
Naserodin Sepehry, Iran
Xinjun Sheng, China
Desire Sidibe, France
Ponnambalam Sivalinga G., Malaysia
Jorge Solis, Japan
Kai-Tai Song, Taiwan
Peter Stauffer, Austria
Giovanni Stellini, Italy
Chun-Yi Su, Canada
Anan Suensomran, Thailand
Jussi Suomela, Finland
Yoshiyuki Takahashi, Japan
Yuegang Tan, China
Li Tan, USA
Bo Tao, China
Kalevi Tervo, Finland
Ching-Hua Ting, Taiwan
Federico Tombari, Italy
Aksel Andreas Transeth, Norway
Nikos Tsourveloudis, Greece
Akira Utsumi, Japan
Kalyana Veluvolu, Republic of Korea
Ivanka Veneva, Bulgaria
Aihui Wang, Japan
Xiangke Wang, China
Hao Wang, China
Shuxin Wang, China
Furui Wang, USA
Guowu Wei, UK
Stephen Wood, USA
Hongtao Wu
Xiaojun Wu, Singapore
Xianbo Xiang, China
Elias Xidias, Greece
Rong Xiong, China
Caihua Xiong, China
Peter Xu, New Zealand
Xipeng Xu, China
Kai Xu, China
Jijie Xu, USA
Xin Xu, China
Guohua Xu, China
Bing Xu, China
Xinqing Yan, China
Wenyu Yang, China
Zhouping Yin, China
Masahiro Yokomichi, Japan
Kuu-Young Young, Taiwan
Hanafiah Yussof, Malaysia
Massimiliano Zecca, Japan
Jianguo Zhang, UK
Wenzeng Zhang, China
Xianmin Zhang, China
Xuguang Zhang, China
Yingqian Zhang, The Netherlands
Dingguo Zhang, China
Yanzheng Zhao, China
Xiaoguang Zhao, China
Yi Zhou, Singapore
Huiyu Zhou, UK
Chu Zhu, Japan
Limin Zhu, China
Chun Zhu, USA
Chungang Zhuang, China
Wei Zou, China

Organizing Committee

Max Haberstroh
Ralph Kunze
Christian Tummel
Alicia Dröge
Claudia Capellmann

Katrin Ohmen
Richar Bosnic
Robert Glasshagen
Larissa Müller
Kathrin Schoenefeld
Table of Contents – Part I

Progress in Indoor UAV

On the Way to a Real-Time On-Board Orthogonal SLAM for an Indoor UAV ... 1
Mirco Alpen, Klaus Frick, and Joachim Horn

Quadrocopter Localization Using RTK-GPS and Vision-Based Trajectory Tracking .. 12
Ulf Pilz, Willem Gropengießer, Florian Walder, Jonas Witt, and Herbert Werner

Five-Axis Milling Simulation Based on B-rep Model 22
Yongzhi Cheng, Caihua Xiong, Tao Ye, and Hongkai Cheng

Robotics Intelligence

Exploration Strategies for Building Compact Maps in Unbounded Environments ... 33
Matthias Nieuwenhuisen, Dirk Schulz, and Sven Behnke

The Basic Component of Computational Intelligence for KUKA KR C3 Robot .. 44
Tadeusz Szkodny

An Experimental Comparison of Model-Free Control Methods in a Nonlinear Manipulator .. 53
Mateusz Przybyła, Rafal Madonski, Marta Kordasz, and Przemysław Herman

Industrial Robots

Research on Modular Design of Perpendicular Jointed Industrial Robots ... 63
Lin Song and Suixian Yang

Online Path Planning for Industrial Robots in Varying Environments Using the Curve Shortening Flow Method 73
Marcel Huptych, Konrad Groh, and Sascha Röck

Parallel-Populations Genetic Algorithm for the Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots 83
Fares J. Abu-Dakka, Iyad F. Assad, Francisco Valero, and Vicente Mata
Robotics Assembly Applications

Integrative Path Planning and Motion Control for Handling Large Components ... 93
 Rainer Müller, Martin Esser, and Markus Janssen

Automatic Configuration of Robot Systems – Upward and Downward Integration ... 102
 Gunther Reinhart, Stefan Hüttnner, and Stefan Krug

Process and Human Safety in Human-Robot-Interaction – A Hybrid Assistance System for Welding Applications 112
 Carsten Thomas, Felix Busch, Bernd Kuhlenkoetter, and Jochen Deuse

Operation Simulation of a Robot for Space Applications 122
 Hui Li, Giuseppe Carbone, Marco Ceccarelli, and Qiang Huang

Re-grasping: Improving Capability for Multi-Arm-Robot-System by Dynamic Reconfiguration ... 132
 Burkhard Corves, Tom Mannheim, and Martin Riedel

A Parallel Kinematic Concept Targeting at More Accurate Assembly of Aircraft Sections ... 142
 Christian Löchte, Franz Dietrich, and Annika Raatz

Dimensional Synthesis of Parallel Manipulators Based on Direction-Dependent Jacobian Indices .. 152
 Marwène Nefzi, Clément Gosselin, Martin Riedel, Mathias Hüsing, and Burkhard Corves

Rehabilitation Robotics

EMG Classification for Application in Hierarchical FES System for Lower Limb Movement Control .. 162
 Dingguo Zhang, Ying Wang, Xinpu Chen, and Fei Xu

Situated Learning of Visual Robot Behaviors 172
 Krishna Kumar Narayanan, Luis-Felipe Posada, Frank Hoffmann, and Torsten Bertram

Humanoid Motion Planning in the Goal Reaching Movement of Anthropomorphic Upper Limb .. 183
 Wenbin Chen, Caihua Xiong, Ronglei Sun, and Xiaolin Huang

Human Sitting Posture Exposed to Horizontal Perturbation and Implications to Robotic Wheelchairs 192
 Karim A. Tahboub and Essameddin Badreddin
Automatic Circumference Measurement for Aiding in the Estimation of Maximum Voluntary Contraction (MVC) in EMG Systems 202
James A.R. Cannan and Huosheng Hu

Classification of the Action Surface EMG Signals Based on the Dirichlet Process Mixtures Method .. 212
Min Lei and Guang Meng

Displacement Estimation for Foot Rotation Axis Using a Stewart-Platform-Type Assist Device 221
Ming Ding, Tomohiro Iida, Hiroshi Takemura, and Hiroshi Mizoguchi

Mechanisms and their Applications

Inverse Kinematics Solution of a Class of Hybrid Manipulators........ 230
Shahram Payandeh and Zhouming Tang

Stiffness Analysis of Clavel’s DELTA Robot 240
Martin Wahle and Burkhard Corves

Optimum Kinematic Design of a 3-DOF Parallel Kinematic Manipulator with Actuation Redundancy 250
Fugui Xie, Xin-Jun Liu, Xiang Chen, and Jinsong Wang

Integrated Structure and Control Design for a Flexible Planar Manipulator .. 260
Yunjiang Lou, Yongsheng Zhang, Ruining Huang, and Zexiang Li

Effects of Clearance on Dynamics of Parallel Indexing Cam Mechanism ... 270
Zongyu Chang, Lixin Xu, Yuhu Yang, Zhongqiang Zheng, and Tongqing Pan

Design and Compliance Experiment Study of the Forging Simulator 281
Pu Zhang, Zhenqiang Yao, Zhengchun Du, Hao Wang, and Haidong Yu

Design of Compliant Bistable Mechanism for Rear Trunk Lid of Cars 291
Shouyin Zhang and Guimin Chen

Multi Robot Systems

DynaMOC: A Dynamic Overlapping Coalition-Based Multiagent System for Coordination of Mobile Ad Hoc Devices 300
Vitor A. Santos, Giovanni C. Barroso, Mario F. Aguilar,
Antonio de B. Serra, and Jose M. Soares
Design of a High Performance Quad-Rotor Robot Based on a Layered Real-Time System Architecture .. 312
 Jonas Witt, Björn Annighöfer, Ole Falkenberg, and Uwe Weltin

Simple Low Cost Autopilot System for UAVs 324
 S. Veera Ragavan, Velappa Ganapathy, and Chee Aiying

A Marsupial Relationship in Robotics: A Survey 335
 Hamido Hourani, Philipp Wolters, Eckart Hauck, and Sabina Jeschke

Multi-objective Robot Coalition Formation for Non-additive Environments ... 346
 Manoj Agarwal, Lovekesh Vig, and Naveen Kumar

Development of a Networked Multi-agent System Based on Real-Time Ethernet .. 356
 Xiong Xu, Zhenhua Xiong, Jianhua Wu, and Xiangyang Zhu

A Conceptual Agent-Based Planning Algorithm for the Production of Carbon Fiber Reinforced Plastic Aircrafts by Using Mobile Production Units .. 366
 Hamido Hourani, Philipp Wolters, Eckart Hauck,
 Annika Raatz, and Sabina Jeschke

Robot Mechanism and Design

Trajectory Tracking and Vibration Control of Two Planar Rigid Manipulators Moving a Flexible Object 376
 Balasubramanian Esakki, Rama B. Bhat, and Chun-Yi Su

Concept and Design of the Modular Actuator System for the Humanoid Robot MYON .. 388
 Torsten Siedel, Manfred Hild, and Mario Weidner

Design of a Passive, Bidirectional Overrunning Clutch for Rotary Joints of Autonomous Robots .. 397
 Manfred Hild, Torsten Siedel, and Tim Geppert

DeWaLoP-Monolithic Multi-module In-Pipe Robot System 406
 Luis A. Mateos and Markus Vincze

Design and Control of a Novel Visco-elastic Braking Mechanism Using HMA ... 416
 Keith Gunura, Juanjo Bocanegra, and Fumiya Iida
Parallel Kinematics, Parallel Kinematics Machines and Parallel Robotics

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topological Design of Weakly-Coupled 3-Translation Parallel Robots</td>
<td>426</td>
</tr>
<tr>
<td>Based on Hybrid-Chain Limbs</td>
<td></td>
</tr>
<tr>
<td>Huiping Shen, Tingli Yang, Ltzhong Ma, and Shaobin Tao</td>
<td></td>
</tr>
<tr>
<td>Working Space and Motion Analysis on a Novel Planar Parallel</td>
<td>436</td>
</tr>
<tr>
<td>Manipulator with Three Driving Sliders</td>
<td></td>
</tr>
<tr>
<td>Huiping Shen, Wei Wang, Changyu Xue, Jiaming Deng, and Zhenghua Ma</td>
<td></td>
</tr>
<tr>
<td>Optimal Kinematic Design of a 2-DoF Translational Parallel</td>
<td>445</td>
</tr>
<tr>
<td>Manipulator with High Speed and High Precision</td>
<td></td>
</tr>
<tr>
<td>Gang Zhang, PinKuan Liu, and Han Ding</td>
<td></td>
</tr>
<tr>
<td>Modeling and Control of Cable Driven Parallel Manipulators with</td>
<td>455</td>
</tr>
<tr>
<td>Elastic Cables: Singular Perturbation Theory</td>
<td></td>
</tr>
<tr>
<td>Alaleh Vafaei, Mohammad A. Khosravi, and Hamid D. Taghirad</td>
<td></td>
</tr>
<tr>
<td>CAD-2-SIM – Kinematic Modeling of Mechanisms Based on the</td>
<td>465</td>
</tr>
<tr>
<td>Sheth-Uicker Convention</td>
<td></td>
</tr>
<tr>
<td>Bertold Bongardt</td>
<td></td>
</tr>
</tbody>
</table>

Handling and Manipulation

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-rigid Object Trajectory Generation for Autonomous Robot</td>
<td>478</td>
</tr>
<tr>
<td>Handling</td>
<td></td>
</tr>
<tr>
<td>Honghai Liu and Hua Lin</td>
<td></td>
</tr>
<tr>
<td>Robotized Sewing of Fabrics Based on a Force Neural Network Controller</td>
<td>486</td>
</tr>
<tr>
<td>Panagiotis N. Koustoumpardis and Nikos A. Aspragathos</td>
<td></td>
</tr>
<tr>
<td>Dynamic Insertion of Bendable Flat Cables with Variation Based on</td>
<td>496</td>
</tr>
<tr>
<td>Shape Returning Points</td>
<td></td>
</tr>
<tr>
<td>Yuuki Kataoka and Shinichi Hirai</td>
<td></td>
</tr>
<tr>
<td>A Vision System for the Unfolding of Highly Non-rigid Objects on a</td>
<td>509</td>
</tr>
<tr>
<td>Table by One Manipulator</td>
<td></td>
</tr>
<tr>
<td>Dimitra Triantafyllou and Nikos A. Aspragathos</td>
<td></td>
</tr>
</tbody>
</table>

Tangibility in Human-Machine Interaction

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizing Motion of Robotic Manipulators in Interaction with Human Operators</td>
<td>520</td>
</tr>
<tr>
<td>Hao Ding, Kurniawan Wijaya, Gunther Reißig, and Olaf Stursberg</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Haptic Display of Rigid Body Contact Using Generalized Penetration</td>
<td>532</td>
</tr>
<tr>
<td>Jun Wu, Dangxiao Wang, and Yuru Zhang</td>
<td></td>
</tr>
<tr>
<td>Assistive Robots in Eldercare and Daily Living: Automation of</td>
<td>542</td>
</tr>
<tr>
<td>Individual Services for Senior Citizens</td>
<td></td>
</tr>
<tr>
<td>Alexander Mertens, Ulrich Reiser, Benedikt Brenken,</td>
<td></td>
</tr>
<tr>
<td>Mathias Lüdtke, Martin Hägele, Alexander Verl,</td>
<td></td>
</tr>
<tr>
<td>Christopher Brandl, and Christopher Schlick</td>
<td></td>
</tr>
<tr>
<td>Key Factors for Freshmen Education Using MATLAB and LEGO Mindstorms</td>
<td>553</td>
</tr>
<tr>
<td>Alexander Behrens, Linus Atorf, Dorian Schneider, and Til Aach</td>
<td></td>
</tr>
</tbody>
</table>

Navigation and Localization of Mobile Robot

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Dynamic Path Following Control of an Unicycle-Like Mobile</td>
<td>563</td>
</tr>
<tr>
<td>Robot</td>
<td></td>
</tr>
<tr>
<td>Victor H. Andaluz, Flavio Roberti, Juan Marcos Toibero,</td>
<td></td>
</tr>
<tr>
<td>Riccardo Carelli, and Bernardo Wagner</td>
<td></td>
</tr>
<tr>
<td>A Study on Localization of the Mobile Robot Using Inertial Sensors</td>
<td>575</td>
</tr>
<tr>
<td>and Wheel Revolutions</td>
<td></td>
</tr>
<tr>
<td>Bong-Su Cho, Woosung Moon, Woo-Jin Seo, and Kwang-Ryul Baek</td>
<td></td>
</tr>
<tr>
<td>Robust and Accurate Genetic Scan Matching Algorithm for Robotic</td>
<td>584</td>
</tr>
<tr>
<td>Navigation</td>
<td></td>
</tr>
<tr>
<td>Kristijan Lenac, Enzo Mumolo, and Massimiliano Nolich</td>
<td></td>
</tr>
<tr>
<td>Beacon Scheduling Algorithm for Localization of a Mobile Robot</td>
<td>594</td>
</tr>
<tr>
<td>Jaehyun Park, Sunghee Choi, and Jangmyung Lee</td>
<td></td>
</tr>
<tr>
<td>Position Estimation Using Time Difference of Flight of the Multi-coded</td>
<td>604</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td></td>
</tr>
<tr>
<td>Woo-Jin Seo, Bong-Su Cho, Woo-Sung Moon, and Kwang-Ryul Baek</td>
<td></td>
</tr>
<tr>
<td>Detecting Free Space and Obstacles in Omnidirectional Images</td>
<td>610</td>
</tr>
<tr>
<td>Luis Felipe Posada, Krishna Kumar Narayanan, Frank Hoffmann, and Torsten Bertram</td>
<td></td>
</tr>
<tr>
<td>A Composite Random Walk for Facing Environmental Uncertainty and</td>
<td>620</td>
</tr>
<tr>
<td>Reduced Perceptual Capabilities</td>
<td></td>
</tr>
<tr>
<td>C.A. Pina-Garcia, Dongbing Gu, and Huosheng Hu</td>
<td></td>
</tr>
<tr>
<td>Motion Design for Service Robots</td>
<td>630</td>
</tr>
<tr>
<td>Elias Xidias, Nikos A. Aspragathos, and Philip Azariadis</td>
<td></td>
</tr>
</tbody>
</table>

Author Index | 639 |
Modeling and Control of Cable Driven Parallel Manipulators with Elastic Cables: Singular Perturbation Theory

Alaleh Vafaei\(^1\), Mohammad A. Khosravi\(^2\), and Hamid D. Taghirad\(^2\)

\(^1\) Electrical and Computer Engineering Department, Advanced Robotics and Automated Systems (ARAS), Faculty of Electrical and Computer Engineering, University of Tehran, K.N. Toosi University of Technology

Abstract. This paper presents a new approach to the modeling and control of cable driven parallel manipulators and particularly KNTU CDRPM. First, dynamical model of the cable driven parallel manipulator is derived considering the elasticity of the cables, and then this model is rewritten in the standard form of singular perturbation theory. This theory used here as an effective tool for modeling the cable driven manipulators. Next, the integrated controller, applied for control of the rigid model of KNTU CDRPM in previous researches, is improved and a composite controller is designed for the elastic model of the robot. Asymptotic stability analysis of the proposed rigid controller is studied in detail. Finally, a simulation study performed on the KNTU CDRPM verifies the closed-loop performance compared to the rigid model controller.

1 Introduction

Cable driven parallel robots are a special kind of parallel robots in which rigid links are replaced by cables. This has produced some advantages for cable driven ones that has attracted the attention of researches [1][2][3]. High acceleration due to the reduced mobile mass, larger workspace, transportability and ease of assembly/disassembly, economical structure and maintenance are among these advantages. The most important limitation of cable driven robots is that, the cables suffer from unidirectional constraints that can only be pulled and not pushed. In this class of robots, the cables must be in tension in the whole workspace. Cables are sagged under compression forces, and therefore, to enable tension forces in the cables throughout the whole workspace, the mechanism must be designed over-constrained [4]. KNTU CDRPM is an over-constrained parallel manipulator that uses a novel design to achieve high stiffness, accurate positioning for high-speed maneuvers [5]. Controller must ensure that the cables are always in positive tension by using an appropriate redundancy resolution scheme, [5].

The major challenge in the controller design of these robots is deformation of the cables under tension. Elongation is one kind of these deformations that causes position and orientation errors. Moreover, the flexibility of the cables may
lead the system to vibration, and cause the whole system to be uncontrollable [6]. Although cable behavior has been the subject of researches in civil engineering but different use of them in parallel robots requires new studies. Cables in parallel robots are much lighter than one used in civil engineering and usually we have large changes in cable length and the tension exerted to them. Reported studies on the effect of cable flexibility on modeling, optimal design and control of such manipulators are very limited and usually neglected.

It should be noticed that a complete dynamic model of cable robots is very complicated. Furthermore, such complicated models are useless for controller design strategies, although they can accurately describe dynamic intrinsic characteristics of cables. Thus, in practice it is proposed to include only the dominant effects in the dynamics analysis. For this reason in many robotics applications, cables mass have been neglected and cable has been considered as a rigid element [7,8]. With those assumptions the dynamics of cable driven robot is reduced to the end-effector dynamics, that will lead to some inaccuracies in tracking error and especially the stability of the manipulator. In this paper a more precise model of the cable driven robot considering cable flexibility is derived and being used in the controller design and stability analysis. Using natural frequencies of system, Diao and Ma have shown in [9] that in fully constrained cable driven robots the vibration of cable manipulator due to the transversal vibration of cables can be ignored in comparison to that of cable axial flexibility. By this means, this model can describe the dominant dynamic characteristics of cable and can be used in the dynamic model of cable robot. Based on this observation, in this paper axial spring is used to model cable dynamics.

In this paper, considering axial flexibility in cables, a new dynamical model for cable driven robots is presented. This model is formulated in the standard form of singular perturbation theory. The most contribution of this theory in solving the control problems of the systems is in the modeling part [10]. By using the obtained model, the control of the system is studied. Next, the stability of the
system is analyzed through Lyapunov second method and it is proven that the closed-loop system with the proposed control algorithm is stable. Finally the performance of the proposed algorithm is examined through simulation.

2 Singular Perturbation Standard Model

The singular perturbation model of a dynamical system is a state space model where the derivatives of some of the states are multiplied by a small positive scalar \(\varepsilon \), that is

\[
\dot{x} = f(x, z, \varepsilon, t) \quad x \in \mathbb{R}^n
\]

\[
\varepsilon \dot{z} = g(x, z, \varepsilon, t) \quad z \in \mathbb{R}^m
\]

It is assumed that \(f, g \) have continuous derivatives along \((t, x, z, \varepsilon) \in [0, t_1] \times D_1 \times D_2 \times [0, \varepsilon_0]\), on their domains \(D_1 \subset \mathbb{R}^n \) and \(D_2 \subset \mathbb{R}^m \). Putting \(\varepsilon = 0 \), the dimension of the standard model reduces from \(m + n \) to \(n \), since the differential equation (2) changes to

\[
g(x, z, \varepsilon, t) = 0
\]

The model (1) and (2) is an standard model, if and only if, the equation (3), has \(k \geq 1 \) distinct real solutions:

\[
z = h_i(t, x) \quad \forall [t, x] \in [0, t_1], i = 1, 2, 3, \ldots
\]

This assumption ensures that the reduced model with appropriate order of \(n \) is related to the roots of equation (3). For achieving the \(i \)-th reduced order model, substitute (4) in (1) and assume \(\varepsilon = 0 \), then:

\[
\dot{x} = f(t, x, h(t, x), 0)
\]

This approximation is a wise simplification of the dynamic system in which the high frequency dynamics is neglected, which is sometimes called a quasi-steady model. Since the velocity of variable \(z \) i.e. \(\dot{z} = g/\varepsilon \) can be a large number while \(\varepsilon \) is small and \(g \neq 0 \), therefore, variable \(z \) converges rapidly to the roots of equation \(g = 0 \), the quasi-steady form of (2). The equation (5) is often called slow model.

3 Dynamics

Due to redundancy characteristic of KNTU CDRPM and other over-constrained cable driven parallel manipulators, the sagging of the cables is neglected. A simple model that can hold elastic characteristic of the cable and also can be used in controller design procedure, is to model the cable as a spring. This simple model can be well included in singular perturbation theory in order to derive a dynamic model for KNTU CDRPM considering elasticity of the cables. In what follows, we will first describe the dynamics of rigid robot briefly and then dynamic equations of the elastic system are derived using rigid ones. In the next step the dynamics equations are formulated in the standard form of singular perturbation theory.
3.1 Dynamics with Ideal Cables

The rigid model of parallel robots can be formulated into the general form of \[12\]:

\[
M(x)\ddot{x} + C(x, \dot{x})\dot{x} + G(x) = J^T \tau
\]

in which, \(x\) is the vector of generalized coordinates showing the position and orientation of the end-effector, \(M(x)\) is a \(6 \times 6\) matrix called mass matrix, \(C(x, \dot{x})\) is a \(6 \times 6\) matrix representing the Coriolis and centrifugal forces, \(G(x)\) is a \(6 \times 1\) vector of gravitational forces, \(J\) \(n \times 6\) denotes the Jacobian matrix, \(\tau\) \(n \times 1\) is the cable tension vector. \(n\) is equal to the number of cables and for KNTU CDRPM it is equal to 8. The actuator dynamics can be represented as

\[
M_m \ddot{L} + D \dot{L} + \tau = u
\]

in which, \(L\) is the \(n \times 1\) cable length vector, \(M_m\) is a diagonal \(n \times n\) inertia matrix of actuators, \(D\) a diagonal \(n \times n\) matrix including viscous friction coefficients for actuators (pulleys), \(\tau\) \(n \times 1\) cable tension vector, \(u: n \times 1\) actuator input vector. Use equations (6) and (7) to derive

\[
M_{eq}(x)\ddot{x} + C_{eq}(x, \dot{x})\dot{x} + G_{eq}(x) = J^T u
\]

in which,

\[
M_{eq}(x) = M(x) + J^T M_m J
\]

\[
C_{eq}(x, \dot{x}) = C(x, \dot{x}) + J^T M_m \dot{J} + J^T DJ
\]

\[
G_{eq}(x) = G(x)
\]

3.2 Dynamics with Real Cables

In parallel manipulators with elastic cables, actuator position is not directly related to end-effector position, and therefore, both the actuator and the end-effector positions must be taken into state vector. In other words both the cable length in the unloaded state and the cable length under tension are taken as state vector. For modeling a parallel manipulator with \(n\) cables, we assume \(\hat{L}_{1i} : i = 1, 2, ..., n\) indicate the length of \(i\)-th cable under tension and \(\hat{L}_{2i} : i = 1, 2, ..., n\) indicate the \(i\)-th cable without tension. In the case of rigid system, we have: \(\hat{L}_{1i} = \hat{L}_{2i} (\forall i)\). In vector representation

\[
L = (\hat{L}_{11}, ..., \hat{L}_{1n}, \hat{L}_{21}, ..., \hat{L}_{2n})^T = (L_1^T | L_2^T)
\]

The kinetic energy of the system is

\[
T = \frac{1}{2} \dot{x}^T M(x) \dot{x} + \frac{1}{2} \dot{L}_2^T M_m \dot{L}_2
\]

The sum of total potential energy of the system is

\[
P = P_1 + P_2(L_1 - L_2)
\]
In which P_1 is the potential energy of the rigid robot and the second term, the potential energy of the i-th cable which its elasticity is approximated with a linear spring, is as follows

$$P_2 = \frac{1}{2} (L_1 - L_2)^T K (L_1 - L_2)$$

and K is the matrix of the stiffness coefficients of cables. Now the Lagrangian of the system is derived by $L = T - P$, as

$$L = \frac{1}{2} \dot{x}^T M(x) \dot{x} + \frac{1}{2} \dot{L}_2^T M_m \dot{L}_2 - P_1 - \frac{1}{2} (L_1 - L_2)^T K (L_1 - L_2)$$

The total dynamic equations of the system is derived simply by applying the Lagrange equations

$$\begin{cases}
M(x) \ddot{x} + C(x, \dot{x}) \dot{x} + G(x) = J^T K (L_2 - L_1) \\
M_m \ddot{L}_2 + K (L_2 - L_1) + D \dot{L}_2 = u
\end{cases}$$

in which, the relation between x and L_1 is obtained by $\dot{L}_1 = J \dot{x}$. Furthermore, in eq. (15), K is the $n \times n$ diagonal stiffness matrix of the cables, $M(x)$ the 6×6 inertia matrix, $C(x, \dot{x})$ a 6×6 matrix with Coriolis and centrifugal terms, $G(x)$ the 6×1 vector of gravitational forces, J the $n \times 6$ Jacobian matrix, M_m the diagonal $n \times n$ inertia matrix of actuators(pulleys), D the diagonal $n \times n$ matrix including viscous friction coefficients for actuators, and $n = 8$ for KNTU CDRPM.

3.3 Singular Perturbation Model

The spring stiffness matrix K which connects two equations in (15) enables us to formulate these equations in singular perturbation form. Without loss of generality, assume that all of the cables stiffness are equal. Then write the elastic forces in the cables in the form $z = k(L_1 - L_2)$, $K = kI$. Since the singular perturbation theory is defined usually for small terms, define $\varepsilon = 1/k$, therefore $\varepsilon \to 0$ as $k \to \infty$. Multiplying two sides of the first line of equation (15) by M^{-1} and consider $z = k(L_1 - L_2)$, we have

$$\begin{cases}
\ddot{x} = -M^{-1}(x) J^T \dot{x} z - M^{-1}(x) (C(x, \dot{x}) \dot{x} + G(x)) \\
-\varepsilon \ddot{z} = M_m^{-1} z - M_m^{-1} D \dot{L}_2 + M_m^{-1} u - \ddot{L}_1
\end{cases}$$

Considering the following equations,

$$\begin{align*}
\dot{L}_2 &= \dot{L}_1 - \varepsilon \dot{z} \\
\dot{L}_1 &= J \dot{x} \\
\dot{\varepsilon} &= J \dot{x} + J \dot{x}
\end{align*}$$

We can summarize equation (16), which is in the standard form of singular perturbation theory in the form

$$\begin{cases}
\ddot{x} = a_1(x, \dot{x}) + A_1(x) z \\
\varepsilon \ddot{z} = a_2(x, \dot{x}, \varepsilon \ddot{z}) + A_2(x) z + B_2 u
\end{cases}$$
In which

\[A_1 = -M^{-1}(x)J^T \]
\[a_1 = -M^{-1}(x)(C(x, \dot{x})\dot{x} + G(x)) \]
\[a_2 = -\varepsilon M_m^{-1}D\dot{z} + M_m^{-1}DJ\dot{x} - JM^{-1}(x)(C(x, \dot{x}) + G(x)) + \dot{J}\dot{x} \]
\[A_2 = -(J(x)M^{-1}(x)J^T(x) + M_m^{-1}) \]
\[B_2 = -M_m^{-1} \]

Note that the rigid model is the marginal mode of the elastic model of eq. (6), when the stiffness of the cables tends to infinity or \(\varepsilon \to 0 \).

4 Control

4.1 Control Law for the Rigid Model

The controller applied to the rigid model is a combination of two control loops with an inverse-dynamic controller. The first control loop is a PD controller in joint-space and the second one in work space (Fig. 2). It is shown that this controller can improve the performance of the control system up to 80% compared to conventional single loop controllers [5]. The structure of this controller is illustrated in Fig. 2 and the control law is defined as:

\[F = F_j + F_x \]
\[F_j = J^T(K_{pj}(L_d - L) + K_{vj}(\dot{L}_d - \dot{L})) \]
\[F_x = K_{pw}(x_d - x) + K_{vw}(\dot{x}_d - \dot{x}) + M_{eq}\ddot{x}_d + G_{eq} + C_{eq}\dot{x}_d \]
\[u = P + P_n = (J^T)^\dagger F + (I - J^T J^T)^\dagger k_e \]

(19)

in which, \((\cdot)^\dagger\) denotes the pseudo inverse and \((\cdot)_d\) denote the desired values. \(P \) and \(P_n \) are defined as

\[F = J^T P \]
\[0 = J^T P_n \]

and \(k_e \) is an n dimensional vector which is optimized through redundancy resolution scheme, [5]. \(K_{pj}, K_{vj}, K_{pw} \) and \(K_{vw} \) are diagonal positive definite matrices.
Stability Analysis of the Closed-loop System. First, let us derive the error dynamics to prove the stability of the closed-loop system using the controller in equation (19). According to the robot dynamic equations (8) and control law we can write

\[
M_{eq} \ddot{x} + C_{eq} \dot{x} + G_{eq} = K_{pw}(x_d - x) + K_{vw}(\dot{x}_d - \dot{x}) + M_{eq} \ddot{x}_d + \dot{G}_{eq} + C_{eq} \dot{x}_d + J^T(K_{pj}(L_d - L) + K_{vj}(\dot{L}_d - \dot{L})) \tag{20}
\]

Or,

\[
M_{eq} \ddot{e} + (K_{vw} + J^T K_{vj} J) \dot{e} + K_{pw} e + J^T K_{pj} e_L + C_{eq} \dot{e} = 0 \tag{21}
\]

in which, \(e_L = L_d - L\) and \(e = x_d - x\). Now, introduce a Lyapunov candidate to prove the stability of the system under control.

\[
V = \frac{1}{2} e^T M_{eq} \dot{e} + \frac{1}{2} e^T K_{pw} e + \frac{1}{2} e_L^T K_{pj} e_L \tag{22}
\]

in which, \(M_{eq}, K_{pw}\) and \(K_{pj}\) matrices are positive definite, therefore \(V\) is positive definite. The derivative of Lyapunov function is:

\[
\dot{V} = e^T M_{eq} \ddot{e} + \frac{1}{2} e^T M_{eq} \ddot{e} + e^T K_{pw} \dot{e} + e_L^T K_{pj} e_L \tag{23}
\]

Substitute the term \(M_{eq} \ddot{e}\) from the dynamic equations of the system.

\[
\dot{V} = e^T (-(K_{vw} + J^T K_{vj} J) \dot{e} - K_{pw} e - J^T K_{pj} e_L - C_{eq} \dot{e}) + \frac{1}{2} e^T M_{eq} \ddot{e} + e^T K_{pw} \dot{e} + e_L^T K_{pj} e_L \tag{24}
\]

Hence,

\[
\dot{V} = -e^T (K_{vw} + J^T K_{vj} J) \dot{e} + \frac{1}{2} e^T (M_{eq} - 2C_{eq}) \dot{e} = -e^T (K_{vw} + J^T K_{vj} J + 2J^T D J) \dot{e} \leq 0 \tag{25}
\]

note that \(J^T K_{vj} J\) is a positive semi-definite (PSD) matrix, because \(K_{vj}\) is PD and

\[
y^T (J^T K_{vj} J) y = y^T (J^T K_{vj}^{-1/2} K_{vj}^{1/2} J) y = z^T z \geq 0. \tag{26}
\]

Therefore, \(K_{vw} + J^T K_{vj} J + 2J^T D J\) which is sum of two PSD matrices and a PD matrix, is a PD matrix. Then we can conclude \(\dot{V} \leq 0\). Therefore, we know that the motion of the robot will converge to the largest invariant set that satisfies \(\dot{V} = 0\). In this case, \(\dot{V} = 0\) results in \(\dot{e} = 0\). Therefore, from equation (21) the largest invariant set is

\[
K_{pw} e + J^T K_{pj} e_L = 0 \tag{27}
\]

It is shown in Appendix that \(J.e\) has the same sign of \(e_L\), hence, we can write \(e_L = \alpha J e, \alpha > 0\) and then we can rewrite equation (27) in this form:

\[
(K_{pw} + \alpha J^T K_{pj} J).e = 0, \quad \alpha > 0 \tag{28}
\]

According to the above equation and positive definiteness of \((K_{pw} + \alpha J^T K_{pj} J)\) it is concluded that \(e = 0\). Therefore, as time tends to infinity we have \(x = x_d\) and this means the end-effector position converges to the desired trajectory.
<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>K: Spring stiffness matrix</td>
<td>$100I_{8\times8}$</td>
</tr>
<tr>
<td>M_m: Inertia matrix of actuators</td>
<td>$0.006I_{8\times8}$</td>
</tr>
<tr>
<td>D: Viscous friction coefficients for actuators</td>
<td>$0.244I_{8\times8}$</td>
</tr>
</tbody>
</table>

Table 1. Geometric and Inertial Parameters of the KNTU CDRPM

4.2 Control Law for the Elastic Model

Control of the systems with real cables can be done using a composite control scheme that is a well-known technique in the control of singularly perturbed systems \cite{10}. In this framework the control effort u_{tot} consists of two main parts, i.e. u the control effort for slow subsystem, the model in eq. (8), and u_f the control effort for fast subsystem. Here we use a control law that is combination of rigid model control and a PD controller for the fast dynamics

$$u_t = u + \tilde{K}_p(L_1 - L_2) + \tilde{K}_v(\dot{L}_1 - \dot{L}_2)$$

(29)

As a practical point of view, it must be said that L_1 can be measured by an encoder and L_2 by a string pot. In next section, it is shown through simulation that this controller can stabilize the closed-loop system with real cables and reach to a desired tracking error. Stability analysis of the system with this composite controller will be discussed in later researches.

4.3 Simulation Study

In this section, the performance of the proposed controller is demonstrated through simulating the KNTU CDRPM. The dynamic equations of the CDRPM

\[\begin{align*}
F_i & = \mathbf{K}(\theta_i) \mathbf{L}_i + \mathbf{C}(\theta_i, \dot{\theta}_i) \dot{\theta}_i + \mathbf{D}(\theta_i, \dot{\theta}_i) \dot{\theta}_i + \mathbf{F}_\text{ext}\left(\vec{r}_i, \mathbf{v}_\text{ext}\right) + \mathbf{F}_\text{fric}\left(\dot{\theta}_i\right)
\end{align*}\]

Fig. 3. Desired path in the workspace
considering the elasticity of the cables are shown in eq. (15). These equations in the standard form of singular perturbation theory are shown in eq. (18). Table 1 shows robot and controller specifications, other parameters are the same as what is given in [5]. The desired path of the manipulator in 3D is cylindrical and is shown in Fig. 3. The tracking performance of the CDRPM using the proposed controller is shown in Fig. 4. As seen in this figure, the proposed control topology is capable of reducing the tracking errors less than 0.15 millimeters in position and less than 2×10^{-3} degrees in orientation. The tracking error of a single controller for the rigid model i.e. u in eq. (19) is shown in Fig. 5 for comparison. It is obvious that this controller cannot stabilize the cable driven manipulator.

5 Conclusions

A dynamical model for cable driven manipulators considering the flexibility of the cables is proposed using cable model as a linear axial spring. The model is formulated in standard form of singular perturbation theory. A composite control is employed for control of cable driven manipulators, which is composition of the controller for the rigid model and a PD controller for controlling the fast dynamics. It is shown that the rigid control law can stabilize the system with ideal and inflexible cables asymptotically. The efficiency of the proposed controller is verified through simulations on KNTU CDRPM.

A Appendix

Here, we will show that $\mathbf{J}e_x = \mathbf{J}(x_d - x)$ has the same sign of $e_l = (\ell_d - \ell)$, the proof will be done by reduction to the absurd (or contradiction). Therefore, assume that they have different sign:

$$l_d - l = \alpha \mathbf{J}(x_d - x), \alpha < 0$$

Therefore, $\exists M \gg 1 \Rightarrow \frac{\Delta l}{M} = \frac{\alpha}{M} J \Delta x$.

$\frac{\Delta l}{M} = dl$ and we know that $dl \simeq J dx$, so from equation (30) we have:

$$J dx = dl \simeq \frac{\alpha}{M} J \Delta x$$

$$dx \simeq \frac{\alpha}{M} \Delta x$$

Which is a wrong expression when $\alpha < 0$. Thus by contradiction, we can conclude that $\alpha > 0$, i.e. $\mathbf{J}(x_d - x)$ and $(l_d - l)$ have the same sign.

\[\square\]

References